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Basic Decision Theory



Classical Decision Theory

Informal description of the model:

• An agent has to choose among different acts X from a set G.

• The consequence that choosing X yields depends on which state of
nature s from a set S is the true one.
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Classical Decision Theory

Informal description of the model:

• An agent has to choose among different acts X from a set G.

• The consequence that choosing X yields depends on which state of
nature s from a set S is the true one.

Formal description of the model:

• Let A denote some non-empty set of consequences.

• Each act X corresponds to a mapping X : S→ A.

• The set G is a subset of AS = {X : S→ A}.

Goal: Determining a choice function

ch : 2G → 2G with ch(D) ⊆ D for all D ∈ 2G

that best possibly utilizes the available information.

3



Interpreting Choice Functions

Depending on the quality of the underlying information, the choice sets ch(D)
can be given two different interpretations:

Strong interpretation:

ch(D) is the set of equally optimal acts from D.
The agent is indifferent between these acts.

Weak interpretation:

ch(D) is the set of all non-neglectable acts from D given the information.
These acts are incomparable for the agent.

Obvious comment:

If only weakly structured information is available, we often have to work with
weakly interpretable choice functions.
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Two Classical Choice Functions under Risk

Expected utility:

If a probability π on S and a cardinal scale u : A→ [0, 1] are available, set

chu,π(D) =
{
Y ∈ D : Eπ(u ◦ Y) ≥ Eπ(u ◦ X) for all X ∈ D

}
,

and choose that acts from D that maximize expected utility.

First-Order Stochastic Dominance:

If a probability π on S and a preorder ≿ on A are available, set

ch≿,π(D) =

{
Y : ∄X s.t. Eπ(u ◦ X) ≥ Eπ(u ◦ Y) for all u ∈ U≿

Eπ(u ◦ X) > Eπ(u ◦ Y) for some u ∈ U≿

}

where U≿ is the set of all ≿-isotone u : A → [0, 1]. Choose acts that are not
excluded by every compatible EU-maximizer.

5



Two Classical Choice Functions under Risk

Expected utility:

If a probability π on S and a cardinal scale u : A→ [0, 1] are available, set

chu,π(D) =
{
Y ∈ D : Eπ(u ◦ Y) ≥ Eπ(u ◦ X) for all X ∈ D

}
,

and choose that acts from D that maximize expected utility.

First-Order Stochastic Dominance:

If a probability π on S and a preorder ≿ on A are available, set

ch≿,π(D) =

{
Y : ∄X s.t. Eπ(u ◦ X) ≥ Eπ(u ◦ Y) for all u ∈ U≿

Eπ(u ◦ X) > Eπ(u ◦ Y) for some u ∈ U≿

}

where U≿ is the set of all ≿-isotone u : A → [0, 1]. Choose acts that are not
excluded by every compatible EU-maximizer.

5



A Toy Example

An agent wants to invest in exactly one of the stocks in G = {X1, X2, X3}.

The consequence depends on the true economic scenario from S = {s1, s2, s3}.

Suppose we have the following consequence table, where A = {a1, . . . , a9}:

s1 s2 s3
X1 a1 a4 a7
X2 a2 a5 a8
X3 a3 a6 a9

Moreover, assume π is the uniform distribution on S.
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A Toy Example, continued: Cardinal preferences

Assume, the agent’s preferences allow for a description via a cardinal utility
u : A→ R on A (i.e., u is unique up to plts).

⇒ Consequence table can be transformed in utility table, e.g.:

s1 s2 s3
u ◦ X1 6000 3000 -2000
u ◦ X2 8000 1000 -3000
u ◦ X3 5000 4000 0

Due to uniqueness of u, maximizing expected utility is well-defined.

⇒ We can apply

chu,π(G) = argmaxX∈GEπ(u ◦ X) = {X3}

⇒ X3 is the unique optimal stock. (Strong interpretation!)
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A Toy Example, continued: (P)ordinal preferences

Now assume, the preferences allow only for a preorder ≿ on A.

Then, the situation looks for instance like this:

s1 s2 s3
X1 a1 a4 a7
X2 a2 a5 a8
X3 a3 a6 a9

Every ≿-isotone function u : A→ R is a compatible scale.

⇒ Maximizing expected utility is not-well-defined!

⇒ We can still apply FSD, but now ch≿,π(G) = G, since for every stock there
exists a compatible scale making it the unique EU-maximizer.

⇒ None of the stocks can be excluded. (Weak interpretation!)
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Weakly structured Information



Common Assumptions in Classic Decision Theory

Classical assumptions:

(I) The agent’s preferences among the elements of A are characterized by a
cardinal utility function u : A→ R.

(II) The uncertainty among the states from S is described by some classical
probability measure π.

Recall:

Expected utility rule chu,π(·) relies on both (I) and (II).

Stochastic dominance rule ch≿,π(·) relies on (II) but not on (I).
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Challenging the Classical Assumptions

Problem: Both (I) and (II) rely on strong axiomatic assumptions.
(e.g., [von Neumann et al., 1944, Savage, 1954]))

Together, these assumptions explicitly dismiss:

• Purely ordinal or partial preferences.
(e.g., [Seidenfeld et al., 1995, Nau, 2006]))

• Agents with partial probabilistic beliefs.
(e.g., [Levi, 1974, Walley, 1991, Kikuti et al., 2011])

• Problems of group decision making.
(e.g., [Bacharach, 1975, Bradley, 2019]))

These are highly relevant situations to investigate!
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Weakly structured Information

Two different sources of complexity:
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Modelling U : Preference Systems

Notation: Binary relation R has strict part PR and indifference part IR.

Preference system & Consistency
Let A denote a set of consequences. Let further

• R1 ⊆ A× A be a binary relation on A

• R2 ⊆ R1 × R1 be a binary relation on R1

The triplet A = [A,R1,R2] is called a preference system on A.

We call A consistent if there is u : A→ [0, 1] with for all a, b, c,d ∈ A:

(a, b) ∈ R1 ⇒ u(a) ≥ u(b) (with = iff ∈ IR1 ).

((a, b), (c,d)) ∈ R2 ⇒ u(a)− u(b) ≥ u(c)− u(d) (with = iff ∈ IR2 ).

The set of all representations u of A is denoted by UA.

Interpretation of the components of A:
• (a, b) ∈ R1: “a is at least as desirable as b”

• ((a, b), (c,d)) ∈ R2: “exchanging b by a is at least as desirable as d by c”
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Preference System: Toy Example

Suppose, an agent is looking for a new job.
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ModellingM: Credal sets

Credal set
The uncertainty among the elements of S is described by a polyhedral
credal set of probability measures of the form

M =
{
π ∈ P : bℓ ≤ Eπ(fℓ) ≤ bℓ for ℓ = 1, . . . , r

}
where P is the set of all probability measures on (S, σ(S)) and

• f1, . . . , fr : S→ R are real-valued mappings and

• bℓ ≤ bℓ, ℓ = 1, . . . , r, are lower and upper expectation bounds.

Special cases: Classical probability – Probability intervals – Interval probabil-
ity – Linear partial information – (Finitely generated) Lower previsions
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Generalized Choice Functions and Elicitation

Choice functions for decision making based on the sets UA andM as well as
efficient computation algorithms have been developed in:

[Jansen et al., 2018]

Information-efficient procedures for eliciting optimal decisions according to
these criteria are discussed in:

[Jansen et al., 2022]
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Generalized Stochastic Dominance

Today, we focus on only one choice function from these papers, based on:

Generalized Stochastic Dominance Relation (GSD-Relation)
Let A = [A,R1,R2] be consistent andM a credal set on (S,S).

For X, Y ∈ F(A,S),1 we say that Y is (A,M)-dominated by X if

Eπ(u ◦ X) ≥ Eπ(u ◦ Y)

for all u ∈ UA and π ∈M. The induced relation is denoted by ≥(A,M) and
called Generalized Stochastic Dominance Relation (GSD-Relation).

The GSD-relation now directly induces the GSD choice function by setting

chA,M(D) :=
{
X ∈ D : ∄Y ∈ D such that (Y, X) ∈>(A,M)

}

1F(A,S) :=
{
X ∈ AS : u ◦ X is S-BR([0, 1])-measurable for all u ∈ UA

}
.
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Some Special Cases of GSD

The GSD-relation ≥(A,M) has some prominent special cases.

For . . .

• ... andM = {π} and R2 trivial

→ Reduction to (first-order) stochastic dominance
(see, e.g., [Mosler and Scarsini, 1991]))

• ... andM = {π} and R1 and R2 guaranteeing utility unique up to plts

→ Reduction to comparing expected utilities.
(see, e.g., [Krantz et al., 1971]))

• ... M non-trivial and R1 and R2 guaranteeing utility unique up to plts

→ Reduction to Bewley dominance.
(see, e.g., [Bewley, 2002, Troffaes, 2007, Etner et al., 2012]))
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Locally Varying
Scales of Measurement



Group and collaborators

Most of the following is joint work with (in alphabetic order):

• Thomas Augustin,

• Hannah Blocher,

• Malte Nalenz,

• Julian Rodemann,

• Georg Schollmeyer,

and mainly based on the following three papers: ([Jansen et al., 2023])
C. Jansen, G. Schollmeyer, H. Blocher, J. Rodemann and T. Augustin (2023): Robust statistical
comparison of random variables with locally varying scale of measurement. In: Proceedings
of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI 2023). Proceedings
of Machine Learning Research, vol. 216.

C. Jansen, M. Nalenz, G. Schollmeyer and T. Augustin (2023): Statistical comparisons of clas-
sifiers by generalized stochastic dominance. Journal of Machine Learning Research (JMLR),
24 (231): 1 - 37.

C. Jansen, G. Schollmeyer, J. Rodemann, H. Blocher and T. Augustin (2024): Statistical multicri-
teria benchmarking via the GSD-front. Under review.
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Motivation

1.) Statistical methods are usually tailored for data situations that can be
clearly assigned to a standard scale of measurement.

2.) Non-standard data can often not clearly be assigned to a standard scale.

1.)+2.) ⇒ Statistical methods are often not well-suited for analyzing non-
standard data!

Idea: Use the notion of a preference system to model data with scales of mea-
surement which not correspon to one of these extreme poles.

19



Standard Scales of Measurement

Consider some random variable X : Ω→ A mapping to some set A.

• If A is structured only by a preorder ≿, we call A of ordinal scale.

⇒ The set Uall of all ≿-isotone candidate scales u : A → R as a whole
represents the structural information on A.

⇒ Any analysis of the variable X should be invariant under the choice of
the candidate scale u ∈ Uall.

• If the order on A is induced by some metric d, we call A of cardinal scale.

⇒ There exists a scale u∗ : A→ R that is unique (up to irrelevant trafos).

⇒ Any analysis of the variable X can be based on u∗ alone.
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Preference Systems in Statistics

Question: What if the structure on A does not belong to either extreme pole?

In other words: What if the structuredness of A varies along its subsets?

A preference system A = [A,R1,R2] helps to formalize this intuition:

• R1 formalizes the available ordinal information, i.e. information about
the arrangement of the elements of A.

• R2 describes the available cardinal information, i.e. pairs standing in re-
lation are ordered with respect to the intensity of the relation.

• A is locally almost cardinal on subsets where R1 and R2 are very dense.

• A is locally at most ordinal on subsets where R2 is sparse or even empty.

21



Preference Systems in Statistics

Question: What if the structure on A does not belong to either extreme pole?

In other words: What if the structuredness of A varies along its subsets?

A preference system A = [A,R1,R2] helps to formalize this intuition:

• R1 formalizes the available ordinal information, i.e. information about
the arrangement of the elements of A.

• R2 describes the available cardinal information, i.e. pairs standing in re-
lation are ordered with respect to the intensity of the relation.

• A is locally almost cardinal on subsets where R1 and R2 are very dense.

• A is locally at most ordinal on subsets where R2 is sparse or even empty.

21



Regularization and Preference Systems

Opportunity: Preference systems offer a nice way for regularization by exclud-
ing those u ∈ UA that are too extreme (in some sense).

Simple idea: If A has R1-minimal/maximal elements a∗, a∗, define

NA :=
{
u ∈ UA : u(a∗) = 0 ∧ u(a∗) = 1

}
N δ

A :=
{
u ∈ NA : u(c)− u(d)− u(e) + u(f) ≥ δ ∀((c,d), (e, f)) ∈ PR2

}

Two ways for regularization:
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Random Variables Mapping Into Preference Systems

Goal: We now want to address the problem of comparing random variables
X, Y : Ω→ A that map into a preference system.

Challenge: We have epistemic uncertainty in form of

• Approximation uncertainty: Only samples of the considered variables
(rather than π itself) are available.

• Model uncertainty: The weakly structured order information makes a set
of candidate scales compatible with the structure on A.
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Addressing Model Uncertainty via GSD

Idea: Weaken ≿E(u) to a preorder by demanding expectation dominance for
all scales u compatible with the preference system A.

⇒ This idea leads to a ”precise” version of GSD.

Recall:

Precise GSD
Let A be consistent and π be a probability measure on (S,S).

For X, Y ∈ F(A,S), we call Y (A, {π})-dominated by X if

Eπ(u ◦ X) ≥ Eπ(u ◦ Y)

for all u ∈ UA. This induces preorder R(A,π) on F(A,{π}) which is called the
precise GSD-relation.

Obviously, precise GSD is invariant under the scale.
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Addressing Approximation Uncertainty

Practical Problem: Usually, we do not know π but only i.i.d. samples X =

(X1, . . . , Xn) and Y = (Y1, . . . , Ym) of X and Y are available.

Approach: Perform a statistical test for GSD.

Ideal Hypotheses:

Hid0 : (X, Y) /∈ R(A,π) vs. Hid1 : (X, Y) ∈ R(A,π)

Pragmatic Hypotheses:

H0 : (Y, X) ∈ R(A,π) vs. H1 : (Y, X) /∈ R(A,π)

Addition: To mitigate the effect of the reversed hypotheses, we can addition-
ally test with the variables X and Y in reversed roles.
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The Choice of the Test Statistic

Observation: It holds (X, Y) ∈ R(A,π) if and only if

D(X, Y) := inf
u∈NA

(Eπ(u ◦ X)− Eπ(u ◦ Y)) ≥ 0.

Consequence: A natural test statistic is the empirical version of D(X, Y), i.e.,

dX,Y : Ω→ R

ω 7→ inf
u∈NAω

∑
z∈(XY)ω

u(z) · (π̂ω
X ({z})− π̂ω

Y ({z}))

with, for ω ∈ Ω fixed,

• π̂ω
X and π̂ω

Y the observed empirical image measures of X and Y,

• (XY)ω = {Xi(ω) : i ≤ n} ∪ {Yi(ω) : i ≤ m} ∪ {a∗, a∗}, and

• Aω the subsystem of A restricted to (XY)ω .
26



Regularization of the Test Statistic

Observation: dX,Y cannot measure extent of GSD in the sample. Thus, dX,Y may
be too little sensitive.

Idea: Regularize dX,Y so that it can also account for the extent of GSD.

Formally: The regularized test statistic looks as follows:

dεX,Y : Ω→ R

ω 7→ inf
u∈Nδε(ω)

Aω

∑
z∈(XY)ω

u(z) · (π̂ω
X ({z})− π̂ω

Y ({z}))

with ε ∈ [0, 1] and
δε(ω) := ε · sup{ξ : N ξ

Aω
6= ∅}.

Computation: Both test statistics dX,Y and dεX,Y can be computed by solving
one single linear programming problem.
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A Permutation Test

Assumption: We made observations of the i.i.d. variables, i.e., we observed:

x := (x1, . . . , xn) := (X1(ω0), . . . , Xn(ω0))
y := (y1, . . . , ym) := (Y1(ω0), . . . , Ym(ω0))

Good News: As the worst case of the null hypothesis H0 is πX = πY, performing
a permutation test is a valid level α test.

The resampling scheme then looks:

Step 1: Pool data sample: w := (w1, . . . ,wn+m) := (x1, . . . , xn, y1, . . . , ym)

Step 2: Take all k :=
(n+m

n
)
index sets I ⊆ {1, . . . , n+m} of size n. Compute dX,Y resp.

dεX,Y for (wi)i∈I and (wi)i∈{1,...,n+m}\I instead of x/y to get dI resp. dεI .

Step 3: Sort all dI resp. dεI in increasing order to get d(1), . . . , d(k) resp. dε(1), . . . , d
ε
(k) .

Step 4: Reject H0 if dX,Y(ω0) resp. dεX,Y(ω0) is greater than d(ℓ) resp. dε(ℓ) , with ℓ :=

⌈(1− α) · k⌉ and α the significance level.
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Credal Sets For Robustification

Rough Idea: Use credal sets to robustify the permutation test to small devia-
tions from the i.i.d. assumption.

More concrete: We allow our samples to be (potentially) biased in the sense
that we only assume the true empirical laws to lie in some credal neighbor-
hoodsMX andMY around the biased empirical laws.

Adapted Resampling Scheme: Replace

• dεX,Y(ω0) by inf(π1,π2)∈Mω0
X ×Mω0

Y
d̃εX,Y(ω0)

• dεI (ω0) by sup(π1,π2)∈Mω0
X ×Mω0

Y
d̃εI (ω0)

Results in: Valid (yet conservative) statistical test!
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γ-Contamination Model

A special class of credal sets with a very intuitive interpretation are

γ-contamination models

For ω ∈ Ω, γ ∈ [0, 1], and Z ∈ {X, Y} fixed, we set

Mω
Z =

{
π : π ≥ (1− γ) · π̂ω

Z

}
or equivalently

Mω
Z =

{
γ · ν + (1− γ) · π̂ω0

Z : ν probability measure
}
.

The observed p-values of the robustified test can then be computed as a func-
tion of the contamination size γ:

fε(γ) := 1− 1
N ·
∑
I∈IN

1{
dεX,Y(ω0)−dεI >

2γ
(1−γ)

}
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Application I



Spaces with Differently Scaled Dimensions (SDSDs)

Situation: Consider an r-dimensional space A ⊆ Rr and assume that

• the first 0 ≤ z ≤ r dimensions are of cardinal scale and

• the remaining dimensiones are purely ordinal.

Question: How can we utilize the cardinal dimensions without making unjus-
tified assumptions about the ordinal ones?

Idea: Utilize the cardinal information only on those parts of A where there is
no possible conflict with the ordinal information.

Formalization: Consider A to be a subsystem of P = [Rr,R∗
1 ,R∗

2 ], where

R∗
1 =

{
(x, y) : xj ≥ yj ∀j ≤ r

}
R∗
2 =

{
((x, y), (x′, y′)) : xj − yj ≥ x′j − y′j ∀j ≤ z

xj ≥ x′j ≥ y′j ≥ yj ∀j > z

}
.

31



A Characterization Theorem in SDSDs

For the special case of A being a multidimensional space with differently
scaled dimensions, the GSD-relation can be neatly characterized.

Theorem
Let X = (∆1, . . . ,∆r), Y = (Λ1, . . . ,Λr) ∈ F(P,π). Then:

i) P is consistent.

ii) If z = 0, then R(P,π) equals (first-order) stochastic dominance w.r.t. π

and R∗
1 (short: FSD(R∗

1 , π)).

iii) If (X, Y) ∈ R(P,π) and ∆j,Λj ∈ L1(Ω,S1, π) for all j = 1, . . . , r, then

I. Eπ(∆j) ≥ Eπ(Λj) for all j = 1, . . . , r, and

II. (∆j,Λj) ∈FSD(≥, π) for all j = z+ 1, . . . , r.

If all components of X are jointly independent and all components of
Y are jointly independent, I. and II. imply (X, Y) ∈ R(P,π).
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Multidimensional Poverty Analysis

Capability Approach: Poverty is a multidimensional concept with more facets
than just income or wealth ([Sen, 1985]).

Exemplary operationalization: We use the ALLBUS data and account for three
dimensions of poverty: income (numeric), health (ordinal, 6 levels) and
education (ordinal, 8 levels)

Example:
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Multidimensional Poverty Analysis, cont.

For the ALLBUS data, we focus on a subsample with n = m = 100 men and
women each. Again, we operationalize poverty by the variables income (nu-
meric), health (ordinal, 6 levels) and education (ordinal, 8 levels)

Test results:

Results: All tests significant for α = 0.05.

Reversed test: No evidence for incomparability: All reversed p-values ≥ 0.95. 34



Multidimensional Poverty Analysis, cont.

Results of the robustified test:
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Application II



Statistical Multicriteria Comparison of Classifiers

Question of interest: How to utilize our decision-theoretical approach for
comparing classifiers under multiplicity of quality criteria and data sets?

Setup: Let

• D denote the set of all relevant data sets,

• C denote the finite set of all relevant classifiers,

•
(
ϕi : C × D → [0, 1]

)
i∈{1,...,r} denote a family of quality criteria,

• ϕ := (ϕ1, . . . , ϕr) : D×C → [0, 1]r be a mulidimensional quality criterion.
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Question of interest: How to utilize our decision-theoretical approach for
comparing classifiers under multiplicity of quality criteria and data sets?

Setup: Let

• D denote the set of all relevant data sets,

• C denote the finite set of all relevant classifiers,

•
(
ϕi : C × D → [0, 1]

)
i∈{1,...,r} denote a family of quality criteria,

• ϕ := (ϕ1, . . . , ϕr) : D×C → [0, 1]r be a mulidimensional quality criterion.

Assumptions:

• For 0 ≤ z ≤ r, the criteria ϕ1, . . . , ϕz are of cardinal scale (differences may
be interpreted)

• The remaining criteria are purely ordinal (differences are meaningless
apart from sign).
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Statistical Multicriteria Comparison of Classifiers

Three levels of problems when comparing classifiers w.r.t. multiple quality
criteria on multiple data sets simultaneously.

classifier
data sets D1 . . . Ds

C1


ϕ1(C1, D1)

...
ϕn(C1, D1)

 . . .


ϕ1(C1, Ds)

...
ϕn(C1, Ds)


...

...
...

...

Cq


ϕ1(Cq, D1)

...
ϕn(Cq, D1)

 . . .


ϕ1(Cq, Ds)

...
ϕn(Cq, Ds)



36



Statistical Multicriteria Comparison of Classifiers

Three levels of problems when comparing classifiers w.r.t. multiple quality
criteria on multiple data sets simultaneously.

classifier
data sets D1 . . . Ds

C1


0.8
...
0.7

 . . .


ϕ1(C1, Ds)

...
ϕn(C1, Ds)


...

...
...

...

Cq


0.7
...
0.8

 . . .


ϕ1(Cq, Ds)

...
ϕn(Cq, Ds)



Level 1: On a fixed data set D it may hold

ϕ1(C1,D) > ϕ1(C2,D) ∧ ϕ2(C1,D) < ϕ2(C2,D).
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Statistical Multicriteria Comparison of Classifiers

Three levels of problems when comparing classifiers w.r.t. multiple quality
criteria on multiple data sets simultaneously.

classifier
data sets D1 . . . Ds

C1


0.8
...
0.8

 . . .


0.6
...

ϕn(C1, Ds)


...

...
...

...

Cq


0.7
...
0.7

 . . .


0.9
...

ϕn(Cq, Ds)



Level 2: Even if, for all i ∈ {1, . . . ,n}, we have

ϕi(C1,D1) > ϕi(C2,D1)

there may exists some i0 ∈ {1, . . . ,n} such that

ϕi0(C1,D2) < ϕi0(C2,D2). 36
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 . . .
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...
0.8


...

...
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 . . .


0.7
...
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Level 3: Even if a decision can be made for a sample (D1, . . . ,Ds) of data sets,
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Statistical Multicriteria Comparison of Classifiers

Three levels of problems when comparing classifiers w.r.t. multiple quality
criteria on multiple data sets simultaneously.

classifier
data sets D∗

1 . . . D∗
s

C1


0.7
...
0.9

 . . .


0.75
...
0.4


...

...
...

...

Cq


0.85
...

0.67

 . . .


0.33
...

0.98



Level 3: Even if a decision can be made for a sample (D1, . . . ,Ds) of data sets,
no clear decision might be possible for a different sample (D∗

1 , . . . ,D∗
s ).
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Transferring GSD to Classifier Comparison

Idea: Embed the range Φ(C × D) of Φ in the following preference system
P = [Rr,R∗

1 ,R∗
2 ] from before.

Then:
• To transfer the GSD-relation, interpret the data sets in D as realizations
of a random variable T : Ω→ D on some probability space (Ω,S, π).

• Associate each C ∈ C with the variableΦC := Φ(C, T(·)) onΩ and compare
classifiers by comparing the associated random variables by precise GSD.

Formally:

GSD for Classifier Comparison
Let PΦ be the preference system obtained by restricting P to Φ(C × D).
Further, let C be such that {ΦC : C ∈ C} ⊆ F(PΦ,π).
For C, C′ ∈ C, say that C dominates C′, abbreviated C ≿ C′, whenever

(ΦC,ΦC′) ∈ R(PΦ,π).
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Theoretical and Empirical GSD-Front

We associate the following two sets to the relation ≿:

The GSD-Front
Let C be such that {ΦC : C ∈ C} ⊆ F(PΦ,π) and T1, . . . , Ts be i.i.d. copies of T.

i) The GSD-front is the set

gsd(C) :=
{
C ∈ C : ∄C′ ∈ C s.t. C′ � C

}
,

where � denotes the strict part of ≿.

ii) Let ρ ∈ [0, 1]. The ρ-empirical GSD-front is the (random) subset of C
defined by

egsdρs (C) =
{
C : ∄C′ ∈ C s.t. d(ΦC′ ,ΦC) ≥ −ρ

d(ΦC,ΦC′ ) < 0

}
.
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Consistent Estimability of the GSD-Front

The following theorem on the consistent estimability of the GSD-front holds:

Estimating the GSD-Front
Denote by IΦ the set of all sets {a : u(a) ≥ c}, where c ∈ [0, 1] and u ∈ UPΦ .
Assume that ≿ is antisymmetric.
If the VC-dimension2 of IΦ is finite and ρ : N→ [0, 1] converges to 0 with at
most Θ(1/ 4√s), then (egsdρ(s)s (C))s∈N is consistent, i.e.,

π

({
ω ∈ Ω : lim

s→∞
egsdρ(s)s (C) = gsd(C)

})
= 1,

where set convergence is defined via the trivial metric.

2The VC-dimension of a family of sets S is the largest possible cardinality of a set A,
such that 2A = {A ∩ S : S ∈ S}, i.e., A can be shattered by S .
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Consistent Tests for the GSD-Front

Goal: Compare the (multivariate, mixed-scaled) quality of a newly developed
classifier C with a set C of state-of-the-art classifiers.

How to proceed? Develop a statistical test for the pair

H0 : C /∈ gsd(C) vs. H1 : C ∈ gsd(C)

How exactly? Note that H0 can be rewritten as:

H0 : ∃C′ ∈ C \ {C} : C′ ≿ C.

Thus, H0 is false iff the hypothesis HC
′
0 : C′ ≿ C is false for every C′ ∈ C \ {C}.

Good news:
• The pairs (HC′0 ,¬HC

′
0 ) can be tested using the test from Application I.

• Thus, (H0,¬H0) can (essentially) be tested by running these tests multi-
ple times, while rejecting H0 if all HC

′
0 are rejected.

• This even allows to construct consistent tests.

40



Consistent Tests for the GSD-Front

Goal: Compare the (multivariate, mixed-scaled) quality of a newly developed
classifier C with a set C of state-of-the-art classifiers.

How to proceed? Develop a statistical test for the pair

H0 : C /∈ gsd(C) vs. H1 : C ∈ gsd(C)

How exactly? Note that H0 can be rewritten as:

H0 : ∃C′ ∈ C \ {C} : C′ ≿ C.

Thus, H0 is false iff the hypothesis HC
′
0 : C′ ≿ C is false for every C′ ∈ C \ {C}.

Good news:
• The pairs (HC′0 ,¬HC

′
0 ) can be tested using the test from Application I.

• Thus, (H0,¬H0) can (essentially) be tested by running these tests multi-
ple times, while rejecting H0 if all HC

′
0 are rejected.

• This even allows to construct consistent tests.
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Consistent Tests for the GSD-Front
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OpenML Benchmarking Experiments: Setup

• We use 80 binary classification datasets from the Open Multimedia Li-
brary (OpenML) [Van Rijn et al., 2013].

• We compare the performance of Support Vector Machine (SVM) with
• Random Forest (RF),
• Decision Tree (CART),
• Logistic Regression (LR),
• Generalized Linear Model with Elastic net (GLMNet),
• Extreme Gradient Boosting (xGBoost), and
• k-Nearest Neighbors (kNN).

• Comparison is based on the multivariate metric Φ composed of
• predictive accuracy,
• computation time on the test data, and
• computation time on the training data.

Since computation time strongly depends on the computing environ-
ment used, we treat the time-related metrics as purely ordinal.
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OpenML Benchmarking Experiments: Empirical GSD-Front

The Hasse graph of the empirical GSD relation:

The blue shaded region symbolizes the 0-empirical GSD-front.
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OpenML Benchmarking Experiments: Tests for GSD-Front

Results of the GSD-front test:
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OpenML Benchmarking Experiments: Robustness

Robustness of test decision under contamination of the benchmark suite:
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Summary and Outlook

Summary:

• Presented a framwork for decision making under weakly structured
information

• Demonstrated two applications of this framework in problems of robust
statistics and machine learning

What is next?

• Exploit other problems/fileds where a decision-theoretic perspective
might be fruitful

Thank you very much for your attention!
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