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Abstract
We are concerned in this paper with the trade-offs
which confront a decision maker who deals with
severely deficient information and unstructured un-
certainty. We employ the theory of info-gap uncer-
tainty, described briefly in section 1. Using info-gap
models of uncertainty we derive two decision func-
tions which express (1) immunity to failure (robust-
ness function) and (2) immunity to windfall gain (op-
portunity function). These immunity functions are
discussed in section 2. In this paper we will consider
three types of trade-offs: robustness vs. reward, cer-
tainty vs. windfall, and opportunity vs. robustness.
These are described succintly in section 3 and illus-
trated with an example in section 4. In section 5 we
briefly mention three methods for combining info-gap
and probabilistic models of uncertainty.


1 Info-Gap Models of
Uncertainty


Our quantification of uncertainty is based on non-
probabilistic information-gap models. An info-gap
model is a family of nested sets. Each set corresponds
to a particular degree of uncertainty, according to its
level of nesting. Each element in a set represents a
possible realization of the uncertain event. Info-gap
models, and especially convex-set models of uncer-
tainty, have been described elsewhere, both techno-
logically [2] and axiomatically [4].


Uncertain quantities are vectors or vector functions.
Uncertainty is expressed at two levels by info-gap
models. For fixed α the set U(α, ũ) represents a de-
gree of uncertain variability of the uncertain quantity
u around the centerpoint ũ. The greater the value of
α, the greater the range of possible variation, so α
is called the uncertainty parameter and expresses the
information gap between what is known (ũ and the
structure of the sets) and what needs to be known for
an ideal solution (the exact value of u). The value of α


is usually unknown, which constitutes the second level
of uncertainty: the horizon of uncertain variation is
unbounded.


Let < denote the non-negative real numbers and let S
be a Banach space in which the uncertain quantities
u are defined. An info-gap model U(α, ũ) is a map
from <× S into the power set of S.


The basic axiom, which characterizes the representa-
tion of uncertainty by info-gap models, is that the sets
of an info-gap model are nested by the uncertainty
parameter α:


U(α, ũ) ⊆ U(α′, ũ) if α ≤ α′ (1)


In many applications it is found that the relevant info-
gap models obey specific structural axioms. The most
common structural axioms are [4]:


Contraction: U(0, 0) is a singleton set containing its
centerpoint:


U(0, 0) = {0} (2)


Translation: U(α, ũ) is obtained by shifting U(α, 0)
from the origin to ũ:


U(α, ũ) = U(α, 0) + ũ (3)


where U + ũ means that ũ is added to each element
of U .


Linear expansion: info-gap models centered at the ori-
gin expand linearly:


U(β, 0) =
β
α
U(α, 0) for all α, β > 0 (4)


where β
αU means that β


α multiplies each element of U .


In some situations the linear-expansion axiom is al-
tered to include non-linear expansion properties [7].







2 Robustness and Opportunity


2.1 A First Look


The robustness function expresses the greatest level
of info-gap uncertainty at which failure cannot oc-
cur; the opportunity function is the lowest info-gap
which entails the possibility of sweeping success. The
robustness and opportunity functions address, respec-
tively, the pernicious and propitious facets of uncer-
tainty [8]


Let q be a decision vector of parameters such as de-
sign variables, time of initiation, model parameters or
operational options. We can verbally express the ro-
bustness and opportunity functions as the maximum
or minimum of a set of values of the uncertainty pa-
rameter α of an info-gap model:


α̂(q) = max {α : minimal requirements are


always satisfied}
(robustness) (5)


̂β(q) = min {α : sweeping success is


sometimes enabled}
(opportunity) (6)


We can “read” eq. (5) as follows. The robustness
α̂(q) of decision vector q is the greatest value of the
uncertainty parameter α for which specified minimal
requirements are always satisfied. α̂(q) expresses ro-
bustness — the degree of resistence to uncertainty and
immunity against failure — so a large value of α̂(q)
is desirable. Eq. (6) states that the opportunity ̂β(q)
is the least level of uncertainty α which must be tol-
erated in order to enable the possibility of sweeping
success as a result of decisions q. ̂β(q) is the immu-
nity against windfall reward, so a small value of ̂β(q)
is desirable. A small value of ̂β(q) reflects the oppor-
tune situation that great reward is possible even in the
presence of little ambient uncertainty. The immunity
functions α̂(q) and ̂β(q) are complementary and are
defined in an anti-symmetric sense. Thus “bigger is
better” for α̂(q) while “big is bad” for ̂β(q). The im-
munity functions — robustness and opportunity —
are the basic decision functions in info-gap decision
theory.


The robustness function in eq.(5) involves a maxi-
mization, but not of the performance or outcome of
the decision. The immunity to uncertainty is maxi-
mized, while the performance is “satisficed”: a crit-
ical survival-level of performance is demanded.1 By
selecting an action q according to its robustness α̂(q),


1Etymologically, ‘satisfice’ is an alteration of ‘satisfy’. The
word was introduced to the psychological and economic litera-
ture by Herbert Simon with the meaning: “To decide on and


the robustness function underlies a satisficing decision
algorithm which optimizes the immunity to pernicious
uncertainty.


The opportunity function in eq.(6) involves a min-
imization, however not, as might be expected, of
the damage which can accrue from unknown adverse
events. What is minimized is the level of uncertainty
which is needed for large windfall gain to be possible.
Unlike the robustness function, the opportunity func-
tion does not satisfice, it “windfalls”.2 When ̂β(q) is
used to choose an action q, one is “windfalling” by op-
timizing the opportunity from propitious uncertainty
in an attempt to enable highly ambitious goals or re-
wards.


2.2 Immunity Functions


Quite often the degree of success is assessed by a scalar
reward function R(q, u). The reward may be in mone-
tary units, or it may have other dimensions expressing
the performance demanded of the system. R(q, u) de-
pends on the vector q of actions or decisions as well
as on an uncertain vector u whose variations are de-
scribed by an info-gap model U(α, ũ), α ≥ 0. We will
refer rather vaguely to u as an ‘ambient uncertainty’.
It may be an outcome which depends in some way
upon the decision vector q, or u may be entirely indif-
ferent to how the decision maker acts. The uncertain
u may be the essence of the outcome which the deci-
sion maker seeks (dollars of profit, or millimeters of
displacement, etc.) or u may simply be an auxilliary
variable of no inherent significance which nonetheless
influences the overall reward.


Given a scalar reward function R(q, u), the minimal
requirement in eq.(5) is that the reward R(q, u) be no
less than a critical value rc. Likewise, the sweeping
success in eq.(6) is attainment of a “wildest dream”
level of reward rw which is much greater than rc.
Usually neither of these threshold values, rc and rw,
is chosen irrevocably before performing the decision
analysis. Rather, these parameters enable the de-
cision maker to explore a range of options. In any
case the windfall reward rw is greater, usually much
greater, than the critical reward rc:


rw > rc (7)


The robustness and opportunity functions of eqs.(5)


pursue a course of action that will satisfy the minimum require-
ments necessary to achieve a particular goal.” [11]


2While a windfall is, in its original meaning, simply some-
thing blown down by the wind, it has come to mean such a
thing of value. The Oxford English Dictionary [11] gives the
following quaint usage from 1705:


The grizly Boar is hunting round,
To see what Windfals may be found.







and (6) can now be expressed more explicitly:


α̂(q, rc) = max


{


α : min
u∈U(α,ũ)


R(q, u) ≥ rc


}


(8)


̂β(q, rw) = min


{


α : max
u∈U(α,ũ)


R(q, u) ≥ rw


}


(9)


α̂(q, rc) is the greatest level of uncertainty consistent
with guaranteed reward no less than the critical re-
ward rc, while ̂β(q, rw) is the least level of uncertainty
which must be accepted in order to facilitate (but
not guarantee) windfall as great as rw. The comple-
mentary or anti-symmetric structure of the immunity
functions is evident from eqs.(8) and (9).


The definitions of robustness and opportunity func-
tions in eqs.(8) and (9) assume that the sets of α-
values are not empty. We denote these sets as:


A(q, rc) =


{


α : min
u∈U(α,ũ)


R(q, u) ≥ rc


}


(10)


B(q, rw) =


{


α : max
u∈U(α,ũ)


R(q, u) ≥ rw


}


(11)


A(q, rc) is the set of α-values whose least upper bound
is the robustness α̂(q, rc). If A(q, rc) is empty then the
decision is completely vulnerable — no realization of
the uncertain u can lead to obtaining the demanded
reward — and we define the robustness function as
zero. Likewise, B(q, rw) is the set of α-values whose
greatest lower bound is the opportunity ̂β(q, rw). If
B(q, rw) is empty then the uncertain variation entails
no opportunity for windfall, and we ascribe to the
opportunity function the value of infinity. That is:


α̂(q, rc) = 0 if A(q, rc) = ∅ (12)
̂β(q, rw) = ∞ if B(q, rw) = ∅ (13)


In some situations the “natural” reward requirement
is that the performance function R(q, u) must not ex-
ceed a specified value rc, rather than being required
to be no less than rc as in eq.(8). For instance, if
R(q, u) represents a measure of instability of the sys-
tem then a small value may be preferred rather than a
large value. In this case, eq.(8) is modified so that the
robustness is the greatest value of the uncertainty pa-
rameter such that the maximum reward is no greater
than rc:


α̂(q, rc) = max


{


α : max
u∈U(α,ũ)


R(q, u) ≤ rc


}


(14)


This is still consistent with the verbal formulation of
the robustness in eq.(5). In like manner, the opportu-
nity function is the least value of α so that the reward
can possibly be as small as rw, so that eq.(9) is mod-
ified to:


̂β(q, rw) = min


{


α : min
u∈U(α,ũ)


R(q, u) ≤ rw


}


(15)


where rw is less, usually much less, than rc. The anti-
symmetric relation between robustness and opportu-
nity is retained and, as before, “bigger is better” for
α̂(q, rc) while “big is bad” for ̂β(q, rw).


2.3 Preferences


The immunity functions, α̂(q, rc) and ̂β(q, rw), are the
basic tools in info-gap decision theory. For given val-
ues of critical or windfall reward, rc or rw, each im-
munity function induces a preference ranking on the
set of available decisions. More importantly, the im-
munity functions enable the decision maker to explore
the desirability of different options q and different re-
quirements, rc and rw, and thus to alter earlier pref-
erences.


The robustness α̂(q, rc) is the greatest level of un-
certainty at which action q guarantees reward no
less than rc. As we have noted before, this means
that “bigger is better” for the robustness function.3


Consequently, a decision maker will usually prefer a
decision-option q over an alternative decision q′ if the
robustness of q is greater than the robustness of q′ at
the same value of critical reward rc. We can express
this preference more succinctly as:


q � q′ if α̂(q, rc) > α̂(q′, rc) (16)


Let Q be the set of all available or feasible decision
vectors q. A robust-optimal decision is one which
maximizes the robustness on the set Q of available
q-vectors. We denote the robust-optimal action by
q̂c(rc), noting that usually the robust-optimal action
depends on the critical reward. q̂c(rc) is defined im-
plicitly from the following optimization:


α̂(q̂c(rc), rc) = max
q∈Q


α̂(q, rc) (17)


It must be stressed that, nonetheless, the robustness
function does not determine the decision maker’s be-
havior, since both α̂(q, rc) and q̂c(rc) depend on the
critical reward rc, which is a free parameter. That is,
α̂(q, rc) does not establish a unique preference order-
ing on the set Q of available actions. It often happens


3This is true also when small reward is sought, as in eq.(14).







that the decision maker chooses both rc and the op-
timal action q̂c(rc) in an iterative (and introspective)
fashion from consideration of the robustness function.
In this paper we examine methods by which the de-
cision maker uses the robustness function, sometimes
together with the opportunity function, to explore the
implications of alternative scenarios.


The opportunity function ̂β(q, rw) generates a pref-
erence ranking on the available actions in a similar
way, though the resulting ranking is usually different.
̂β(q, rw) is the lowest level of uncertainty which must
be accepted in order to facilitate windfall reward as
great as rw. Thus, unlike the robustness function,
“big is bad” for ̂β(q, rw). Consequently, a decision
maker who chooses to focus on windfall opportunity
will prefer a decision q over an alternative q′ if the
opportunity with q exceeds the opportunity with q′


at the same level of reward rw. Formally:


q � q′ if ̂β(q, rw) < ̂β(q′, rw) (18)


The opportunity-optimal decision, q̂w(rw), minimizes
the opportunity function on the set of available deci-
sions:


̂β(q̂w(rw), rw) = min
q∈Q


̂β(q, rw) (19)


The two preference-rankings, eqs.(16) and (18), are
usually different, as are the optimal decisions q̂c(rc)
and q̂w(rw). The resolution of this conflict between ro-
bustness and opportunity rankings is usually simple:
most decision makers simply concentrate on enhanc-
ing their robustness while guaranteeing a specified
level of performance, and thus adopt the robustness-
ranking of eq.(16). The opportunity function then
becomes a secondary decision-support device useful in
fine-tuning ones’ choice between alternative options.


3 Trade-Offs


In this paper we discuss three types of trade-offs which
face the decision maker: robustness vs. reward, cer-
tainty vs. windfall, and opportunity vs. robustness.
In this section we briefly describe the first two trade-
offs, and consider the third in the example in section 4.


Fig. 1 illustrates the assertion (which can be proven
mathematically, [6]) that the robustness function of
eq.(8), α̂(q, rc), decreases monotonically as the min-
imal required reward rc is increased. Recalling that
bigger values of α̂ are preferred over smaller ones, this
expresses the trade-off between demanded-reward and
immunity-to-uncertainty: if large reward is required
for survival then only low immunity to uncertainty is
possible [3]. In addition, as also illustrated in fig. 1,
the opportunity function of eq.(9), ̂β(q, rw), increases
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Figure 1: Two robustness curves (α̂) and one oppor-
tunity curve (̂β).


monotonically with increasing wildest-dream reward
rw: sweeping success cannot be attained at low lev-
els of ambient uncertainty. This is also a trade-off,
since “big is bad” for ̂β. (The immunity functions in
eqs.(14) and (15) are monotonic in reversed directions,
though they represent the same trade-offs.)


The location of the robustness and opportunity curves
on the uncertainty-vs.-reward plane, as in fig. 1, re-
veals one type of gambling which is expressed by these
trade-offs. Consider the uppermost of the two robust-
ness curves, α̂(q, rc), which falls to low and vulnera-
ble levels of immunity only at high demanded reward.
Different prior information leads to the lower robust-
ness curve which, though still decreasing monotoni-
cally with rc, runs more closely to the origin. The up-
per robustness curve represents bolder behavior than
the lower curve: at any given level of demanded re-
ward (rc) a greater level of ambient uncertainty (α̂) is
tolerable according to the upper curve. Conversely, at
fixed ambient uncertainty the upper robustness curve
allows greater demanded reward than the lower curve.
Ascribing these two robustness curves to two different
decision makers operating with different information,
we can say that the lower decision maker is more sen-
sitive to uncertainty than the upper decision maker.
Equivalently, the upper curve will lead the decision
maker to behavior which would look risky or rash
when viewed through the strategy of the lower robust-
ness curve. The trade-offs portrayed in fig. 1 demon-
strate gambling-like behavior in the sense that the de-
cision maker must choose a position on the immunity
curves: this requires deciding how much security can
be exchanged for reward, or how much reward can be
relinquished in return for security. The choice reflects
the extent of the decision maker’s propensity to gam-







ble, even though no concepts of chance are involved
in the evaluation of the immunity functions.


The monotonic increase of the opportunity function
portrayed in fig. 1 also shows a gamble-like trade-
off: the decision maker’s anticipation of greater wind-
fall reward rw must be accompanied by acceptance of
greater ambient uncertainty.


The trade-offs illustrated in fig. 1 show a particular
type of coherence between the robustness and oppor-
tunity functions. As the decision maker’s expecta-
tions are reduced, whether they be for windfall reward
rw or for critical survival-level return rc, both α̂(q, rc)
and ̂β(q, rw) indicate a rosier picture of the effect of
uncertainty. The robustness function gets larger and
indicates greater immunity to failure as rc is reduced,
and the opportunity function gets smaller and shows
less immunity to windfall as rw gets smaller. α̂(q, rc)
and ̂β(q, rw) are ‘cooperative’ or ‘sympathetic’ in the
sense that they share the same trends with varying
expectations rc and rw.


However, the variation of robustness and opportunity
with varying decision q need not be sympathetic at
all. A change in the choice of q which enlarges α̂(q, rc)
need not simultaneously decrease ̂β(q, rw). These im-
munities may be either sympathetic or antagonistic
as a function of the actions available to the decision
maker.


4 Portfolio Investment


A typical simplified portfolio investment problem re-
quires the decision maker to choose the dollar amount
to buy or sell for each of a number of options, where
the future values of these options are uncertain. If the
(unknown) future unit value of the ith option is ui and
the dollar amount purchased or sold is qi (positive for
purchase, negative for sale), then the net change in
the worth of the portfolio after the transaction is:


R(q, u) =
N


∑


i=1


qiui = qT u (20)


The question is how to choose the investment vector
q given uncertainty in the future option-value vector
u, as well as constraints such as budget limitations.
Furthermore, one may be able to consider alternative
investment portfolios: different sets of options with
different uncertainties. How does one assess the rela-
tive riskiness of such investment alternatives?


Uncertainty model. For a given investment sce-
nario we know the nominal future values of the op-
tions, ũ1, . . . , ũN , which we combine in a nominal
vector ũ. Furthermore, we may have information indi-


cating the relative degree of variability of the options,
and we may also have information on the propensity
for correlated or anti-correlated variation. We can
use this information to formulate an ellipsoid-bound
info-gap model for the uncertain variation of the op-
tion values. Let W be a real, symmetric, positive
definite matrix. If we know only the relative propen-
sities for variation of the options, without correlation
data, then we choose W to be diagonal and the ith
diagonal element, wii, is greater or less than unity in
proportion to the tendency for the ith option to vary
less or more than the norm. If we have data on the
correlations between the options then we choose the
eigen-structure of W to tilt the ellipsoid so as to re-
flect this information. In any case, an info-gap model
of uncertainty is less informative than an probabilistic
model (so its use is motivated by severe uncertainty)
since it entails no information about likelihood or fre-
quency of occurrence of u-vectors.


The ellipsoid-bound info-gap model for uncertain vari-
ation of the actual option-value vector u around the
nominal value vector ũ is the following family of
nested sets:


U(α, ũ) =
{


u = ũ + v : vT Wv ≤ α2} , α ≥ 0 (21)


Robustness function. The decision vector q is
chosen to guarantee that the change in the portfo-
lio worth, R(q, u), is no less than a minimum critical
reward rc, often called a minimum attractive rate of
return (MARR) [9]. The robustness of the portfolio
investment q for critical reward rc is the greatest value
of the uncertainty parameter α such that any vector
u in U(α, ũ) results in a net worth R(q, u) which is no
less than rc. This is precisely the robustness in eq.(8).
The least reward up to uncertainty α is readily found
to be:


min
u∈U(α,ũ)


qT u = qT ũ− α
√


qT W−1q (22)


Equating this minimum reward to the critical value rc


and solving for the uncertainty parameter α results in
the robustness:


α̂(q, rc) =
qT ũ− rc


√


qT W−1q
(23)


if this expression is non-negative. The robustness is
zero otherwise.


Robust-optimal investment. The robustness-
strategy for choosing the investment portfolio is to
select q to maximize α̂(q, rc). The choice of the port-
folio is subject to many different possible constraints.
For instance, some options may be accessible only if
some other options are purchased as well. Or, the







quantity of an option sold may be limited by the deci-
sion maker’s holdings. In addition, overall budgetary
constraints may limit the total purchasing power. For
simplicity, we will consider only the last constraint.
Let Q, the set of feasible investment vectors, be the
set of all q-vectors which exactly meet the budget, Q:


N
∑


i=1


qi = Q (24)


where qi is negative if option i is sold, and positive
otherwise. To represent this constraint more conve-
niently let 1 denote the N -vector whose elements are
all ones. The budget constraint is:


qT 1 = Q (25)


The robust-optimal investment for critical reward rc


is the vector q which maximizes α̂(q, rc), as in eq.(17).


To simplify matters we will consider a special case:
the nominal values of all the options are the same,
though of course their uncertainties may be different.
That is, the nominal vector ũ is:


ũ = uo1 (26)


where uo is a known constant. With this simplifica-
tion, the robustness in eq.(23) becomes:


α̂(q, rc) =
uoqT 1− rc
√


qT W−1q
(27)


=
uoQ− rc


√


qT W−1q
(28)


where in eq.(28) we have employed the budget con-
straint of eq.(25).


Examining eq.(28) we see that the robust-optimal in-
vestment q̂c, which maximizes α̂(q, rc), is the vector
which minimizes qT W−1q subject to the constraint
in eq.(25). Using Lagrange optimization one readily
finds the robust optimal investment vector to be:


q̂c =
Q


1T W1
W1 (29)


This means that, when the nominal values of the op-
tions are equal but their uncertainties are possibly
different, the robust-optimal investment in the ith op-
tion is proportional to the sum of the ith row of the
uncertainty shape matrix W . The meaning of this be-
comes particularly transparent in the further special
case that W is diagonal, so that the investment in the
ith option becomes:


q̂c,i =
wii


∑N
j=1 wjj


Q (30)


The investment in an option is inversely proportional
to its relative propensity for variation. In both cases,
eq.(29) and (30), we see that the robust-optimal in-
vestment in options with equal nominal values is con-
trolled entirely by the info-gap uncertainty, and is in-
dependent of the demanded critical return rc.


Substituting the robust-optimal investment q̂c of
eq.(29) into the robustness function of eq.(28) we ob-
tain the maximal robustness:


α̂(q̂c, rc) =
(uoQ− rc)


√
1T W1


Q
(31)


(recalling that α̂(q̂c, rc) = 0 if the righthand side is
negative.) Eq.(31) shows that α̂(q̂c, rc) decreases as rc
increases. This shows the trade-off between immunity
to uncertainty (large α̂) and reward (large rc): the
decision maker can confidently demand great reward
only in exchange for low immunity against failure due
to uncertain fluctuations in the option values.


Comparing portfolios. Now consider the choice
between two different portfolios, each with its own
set of options, its own nominal values and its own
ellipsoid-bound info-gap model of uncertainty. The
two portfolios may contain different numbers of op-
tions. Assuming eq.(26) holds, separately, for each
set of options, let uo,1 be the nominal value of each
option in one portfolio and let uo,2 be the nominal
value of the options in the other. Likewise, let W1


and W2 be the shape matrices for the two uncertainty
models, whose dimensions match the number of op-
tions in the corresponding portfolio. The maximum-
robustness functions for the two portfolios are each
described by eq.(31), as shown schematically in fig. 2
versus the critical reward rc.
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Figure 2: Robustness functions for two different port-
folio investment alternatives.


Fig. 2 assists the decision maker to assess the rela-
tive riskiness of the two portfolios. Both robustness
functions vanish for critical rewards in excess of rc,2,
so neither portfolio is acceptable if rewards this large
are needed. For critical rewards between rc,1 and rc,2,
and especially in the vicinity of rc,1, the second port-







folio is the clear favorite over the first, since the sec-
ond portfolio has finite robustness while the first has
no immunity to uncertainty whatsoever. The risk-
iness of the two portfolios becomes equal when the
robustness curves cross, and if values of rc less than
the intersection point are acceptable then the first al-
ternative becomes increasingly preferable because it
affords greater immunity at the same level of guaran-
teed return.


Opportunity function. We now consider the op-
portunity function ̂β(q, rw), which is the least level of
uncertainty needed to sustain the possibility of reward
as large as rw, as expressed in eq.(9). The opportu-
nity function assesses the immunity to windfall gain
rw, so a small value of ̂β — low immunity to wind-
fall — is desirable, unlike the robustness function for
which a large value is needed to assure large immunity
to failure. Windfalling, upon which the opportunity
function is based, is different from satisficing which
underlies the robustness function, though on the sur-
face the mathematics looks quite similar.


To evaluate the opportunity function we need the
greatest possible reward up to uncertainty α, which
is found to be:


max
u∈U(α,ũ)


qT u = qT ũ + α
√


qT W−1q (32)


whose similarity to the minimum reward in eq.(22)
is evident. The opportunity function is obtained by
equating this maximum to the windfall reward rw and
solving for the uncertainty parameter α, leading to:


̂β(q, rw) =
rw − qT ũ


√


qT W−1q
(33)


(or zero if this expression is negative.) This rela-
tion displays the usual trade-off between opportunity
(small ̂β) and windfall reward (large rw): large wind-
fall is obtained only at the expense of accepting large
ambient uncertainty.


If we impose the budget constraint of eq.(25) and if, as
in eq.(26), we assume that the nominal option-values
are all equal, then the opportunity function becomes:


̂β(q, rw) =
rw − uoQ
√


qT W−1q
(34)


which is similar to the robustness function of eq.(28).


Because windfalling is different from satisficing, and
because opportunity is different from robustness, we
can now see that optimizing ̂β(q, rw) is very differ-
ent from optimizing α̂(q, rc). The opportunity func-
tion ̂β(q, rw) is minimized (optimized) by maximizing
qT W−1q, while the robustness is optimized (maxi-
mized) by minimizing this same quadratic term. First
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Figure 3: Schematic illustration of constrained opti-
mization of qT W−1q.


of all, we obviously cannot do both optimizations si-
multaneously. Furthermore, the first — optimizing
̂β(q, rw) — cannot be done at all if only the budget
constraint of eq.(25) is imposed. There simply is no
maximum of qT W−1q subject to qT 1 = Q. This is
illustrated in fig. 3. No matter how large we make
the quadratic term (which defines an ellipsoid) it still
intersects the plane defined by the constraint. This
is unlike the minimization of qT W−1q, which occurs
when any further constriction of the ellipsoid would
cause it to disconnect from the constraint plane.


In practice of course the budget limitation of eq.(25)
is not the only constraint. Additional constraints be-
come active as the investment vector q ranges further
from the origin: limitations in the supply of options
which can be purchased or constraints on the quan-
tity of holdings which can be sold. Nonetheless, this
example demonstrates some of the fundamental differ-
ences between windfalling with the opportunity func-
tion and satisficing with the robustness function.


Let us leave the attempt to optimize robustness and
opportunity, and note that any improvement in one
function is obtained at the expense of deteriorating
the other. Comparing the robustness and opportu-
nity functions in eqs.(28) and (34) we note that any
change in the investment vector q which increases one
will increase the other, and likewise any decrease in
one function will be accompanied by a decrease in the
other. However, “big is better” for α̂ while “big is
bad” for ̂β. These immunity functions are antago-
nistic: either immunity can be improved only at the
expense of the other. Tantalizingly, it can be proven
[6] (and examples can be found which show) that ro-
bustness and opportunity can be sympathetic rather
than antagonistic.


5 Hybrid Uncertainties


The goal of this paper has been to develop some
of the implications of info-gap uncertainty for deci-
sions with severe lack of information. We have exclu-
sively used info-gap models to represent uncertainty.
Nonetheless, one sometimes has information which is







amenable to probabilistic representation. Such infor-
mation is valuable and should be exploited. Often,
however, the probabilistic information is insufficient
to cover all facets of the problem, in which case one
can combine it with an info-gap model to create a hy-
brid decision algorithm. In this section we will very
briefly refer to several approaches to combining prob-
abilistic and info-gap models of uncertainty.


Three approaches have been studied in some depth
[8]. One concept which has proven quite fruitful is
to examine a Poisson process whose individual events
entail uncertainties which are represented by an info-
gap model [5, 10]. In this way we represent situations
in which complicated and incompletely understood
events recur Poisson-randomly in time. In a differ-
ent approach we reverse the situation and consider an
imperfectly known probability distribution embedded
in an info-gap model [1]. Finally, a third type of hy-
bridization is to let the info-gap uncertainty parame-
ter α be a random variable with a known probability
distribution [3].
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