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Abstract

The problem of inferring dependency structures from
random samples is a very fundamental topic in artifi-
cial intelligence and statistics. This paper reviews an
early result from Chow and Liu on the approxima-
tion of unknown multinomial distributions by tree-
dependency distributions, at the light of imprecise
probabilities. Imprecision, arising here from Walley’s
imprecise Dirichlet model, generally makes many tree
structures be plausible given the data. This paper fo-
cuses on the inference of the substructure common to
all the possible trees. Such common pattern is a set
of reliable dependencies. The problem of identifying
the common pattern is abstracted and solved here in
the general context of graph algorithms. On this basis,
an algorithm is developed that infers reliable depen-
dencies in time O(k3), from a set of k binary random
variables, that converge to a tree as the sample grows.
The algorithm works by computing bounds on the so-
lutions of global optimization problems. There are a
number of reasons why trees are a very important spe-
cial case of dependence graphs. This work appears as
a significant step in the direction of discovering de-
pendency structures under the realistic assumption of
imprecise knowledge.

1 Introduction

This paper deals with the following problem. We are
given a random sample of N observations, which are
jointly categorized according to a set of k£ binary vari-
ables X,Y, Z, etc. The dependency between two vari-
ables is measured by the information-theoretic sym-
metric index called mutual information [13]. If the
chances 6 of all instances defined by the co-occurrence
of X =x,Y =vy,Z = z, etc., were known, it would
be possible to approximate the distribution by an-
other, for which all the dependences are bivariate and
can graphically be represented as an undirected tree
T, that is the optimal approximating tree-dependency

distribution. This result is due to Chow and Liu [4],
who use Kullback-Leiber’s divergence [14] as a mea-
sure of the closeness of two distributions.

Since only a sample is available, the joint distribution
0 is unknown and an inferential approach is necessary.
Prior uncertainty about the vector @ is described by
the imprecise Dirichlet model (IDM) [20], which re-
sults in posterior uncertainty about €, the mutual
information and the tree T. It follows that a set S
of plausible trees is generally consistent with the evi-
dence. The paper aims at making inferences about T',
more precisely to identify which set of edges belongs
to T'. This can be realized by identifying the set of
edges common to all the trees in S, which is called
the common pattern.

The present work describes Chow and Liu’s approach
in more detail in Section 2, where the basic issues
to be addressed for the extension are also discussed.
The rest of the paper is organized in two conceptually
disjoint parts. Sections 3 and 4 abstract the problem
of determining the common pattern and solve it in
the general context of graph algorithms. This part
is independent on the specific application of recover-
ing reliable dependences and aims at determining the
common edges of a set of graphs. The following part,
in Sections 5 and 6, develops tools to compute approx-
imated lower and upper expectations of mutual infor-
mation under the IDM, by formulating the computa-
tion as problems of global optimization. When these
values are used together with the preceding graph al-
gorithm, the overall procedure infers, in time O(k?),
a set of reliable dependences that belong to the com-
mon pattern, as explained in Section 2. As the sample
grows, these dependences converge to a tree.

There are many reasons to focus on the special case
of tree-dependency structures, apart from the opti-
mality of Chow and Liu’s method. Trees (in their
directed version, see Section 2) have been shown to
provide a very good approximation to the more gen-
eral structures of polytrees [6], whose discovery is NP-



hard, whereas Chow and Liu’s algorithm works in
time O(k?). On the application side, trees seem to
be on the edge of models with a very good balance
of representational power and ease of inference, with
many successful applications. For example, trees con-
stitute the underlying structure of the tree-augmented
naive classifiers, which are the state-of-the-art classi-
fication models in the machine learning literature [7],
and of mixture-of-trees, another promising classifica-
tion model [16]. Also, tree-recovery algorithms are the
basis of algorithms for the discovery of more complex
structures [3].

However, it is important to infer tree dependences
that are robust. Focusing on the common pattern is a
way to do that. Robustness is needed because depen-
dency structures are very fundamental to synthesize
a domain and to improve the effectiveness of the re-
lated models, which can take advantage of the sparse-
ness of the dependence relations. To my knowledge,
literature only reports two other attempts to infer ro-
bust structures of dependence. Bernard [1] describes a
method to build, from a multivariate binary database,
a directed graph, the arcs of which are interpreted as
implications. The method develops an inductive step
based on the IDM and is based on Bayesian implica-
tive analysis. It is not immediately clear whether the
graphical structure can be directly interpreted as a
set of probabilistic dependences or not. The second
approach is due to Kleiter [10]. The author uses confi-
dence intervals on the mutual information to robustly
measure the degree of dependence between random
variables. In this case, unlike in Bernard’s proposal,
imprecision is neglected. Most of other methods are
descriptive in nature and hence are not robust.

2 Technical introduction

In this paper a tree is an undirected connected graph
with k nodes and k—1 edges. Trees are acyclic graphs,
i.e. they do not admit closed paths (see [18], Propo-
sition 2). When a tree is regarded as a dependency
structure, nodes are interpreted as random variables
and edges as symmetric dependences between the con-
nected variables. Note that trees can also be used as
models of asymmetric dependences; it is sufficient to
arbitrarily orient the arrows of the undirected tree,
in a way that each node has a single predecessor at
most. In fact, all the directed trees that share the
same undirected structure are equivalent models of
dependence [19].

Chow and Liu’s original algorithm works by comput-
ing, from the sample, the descriptive values of mutual
information (see Section 5.1) between pairs of random
variables. These values are used as weights for the

edges in a fully connected graph. The sought graph is
then the tree for which the sum of the weights of its
edges is maximum. (There can be several maximum
trees, if there are equal weights on different edges,
among which the choice is arbitrary.) In the literature
of mathematical programming, the general version of
the last problem is called the mazimum spanning tree
([18], p. 271). Tts construction takes O(k?) time.
This is also the computational complexity of Chow
and Liu’s procedure.

By adopting the IDM as inferential tool, we obtain
lower and upper expectations of mutual information.
This fact makes a big difference as far as the original
procedure of Chow and Liu is concerned: the max-
imum spanning tree problem assumes that the edge
weights satisfy a relationship of total order. Now we
can only rely on a partial order, i.e. not all the pairs
of edges can be compared. Two basic questions follow
from such considerations: (i) what should the gener-
alization of the maximum spanning tree problem be,
when only a partial order on the edge weights is avail-
able? (ii) By which method should the weights be
computed and compared by the IDM?

Note that question (i) is formulated independently on
the specific application and so it is addressed in the
general case in Sections 3 and 4. Sections 5 and 6
address question (ii). The result of the latter part
produces a partial order on the edges that can directly
be used to feed the algorithm provided in the former
sections, in a way that the overall procedure infers
reliable dependences.

3 Identifying the common pattern

Let G =< V, E > be a connected undirected graph
with &k = |V| nodes, where E C V x V is the set of
edges; and (v,v) ¢ E for each v € V. I assume that
each edge is associated with a set of real numbers
called weights. For example, a set of weights might
be specified as an interval of the real line. (The in-
terpretation of trees as dependency structures is not
needed in this and in the following section; here the
problem is abstracted from the specific application,
on which the attention will be focused later.)

Under these conditions, we obtain a partial ordered
on the edges. In the following we say that an edge e
is greater than another (or dominates), €', if it is not
possible that a weight of ¢’ is greater than or equal to
a weight of e. I also assume that all the total orders
consistent with the given partial order are admissible:
i.e. for each total order extending the partial order,
there are weights, one for each edge, in the related
sets whose order relationship is the given total order.



For each extension of the partial order to a total order,
there is a unique maximum spanning tree T" of G (this
follows from Kruskal’s algorithm that only needs the
total order on the edges to build the maximum span-
ning tree [11]). T is a connected graph, spanning all
the nodes of G, with a set of k — 1 edges that is max-
imum according to the total order. More precisely, a
tree is maximum when the sum of its edge weights is
maximum for any choice of weights in the related sets
that is consistent with the total order.

Let S be the set of maximum spanning trees T' ob-
tained when all the possible extensions of the partial
order to a total order are considered. Define the com-
mon pattern of G as the graph whose edges are the
elements of F that are common to all the trees in S.
The common pattern can be identified by the follow-
ing result.

Theorem 1 An edge e of G is in the common pattern
iff in each cycle that contains e there is an edge €’
dominated by e.

Proof.

(<) By contradiction, assume that there is a tree T
in S that does not contain e. By adding e to T we
create a cycle ([18], Proposition 2). By hypothesis, in
such a cycle there must exist an edge ¢’ dominated by
e. Removing ¢/, we obtain a new tree that improves
upon 7', which then cannot be optimal.

(=) By contradiction, assume that there is a cycle C
in G where e does not dominate any edge. So we can
consider a total order, extending the partial order on
the edges of G, for which e is less than any other edge
in C. Call T the related tree. By removing e from T’
we create two subtrees, say 7" and T”. One of these
can possibly be a degenerate tree composed by a single
node. Now consider that there must be an edge ec of
C that connects T/ and T”. In fact, if there was not,
C could not be a cycle passing through e. The graph
composed by T”, T” and ec has k — 1 edges, spans
all the nodes of G, and therefore it is a tree ([18§],
Proposition 2). It improves upon T, because e is less
than ec, so that T' cannot be optimal. ll

Let us stress that the maximum spanning tree prob-
lem with set-based (or imprecise) weights, as pre-
sented here, does not seem to have been addressed
in the literature of graph algorithms, also if it is pos-
sible to find a variant of the spanning tree problem
obtained by considering fuzzy weights [18, 8, 2].

4 Pattern detection algorithms

Theorem 1 directly leads to a procedure that deter-
mines whether a given edge e is in the common pat-

tern or not. It suffices to consider the graph G’ ob-
tained by removing the edges dominated by e from
G. The edge e is in the common pattern iff there is no
cycle in G’ that contains e. Unfortunately, testing the
last condition demands O(k?) time and, by repeating
it for all the edges e € E, the overall procedure re-
quires O(k*) steps. We can reduce the computational
complexity to O(k3) by requiring that only a subset
of edges in the common pattern be determined, as
follows.

Consider algorithm 2, outlined in a pseudo program-
ming language in the points 1-5 below. It takes as
input a fully connected graph G =< V,E >. In
the algorithm, a tree with a number of nodes in
{2,...,k—1} is called subtree.

Algorithm 2
1. LET CP = .
2. FOR allv eV

(a) IF there is a node v’ € V such that (v,v') ¢
CP and it dominates (v, v”) for each v” € V,
v # v THEN
i. add (v,v’) to CP.

(b) END TF.

3. END FOR.
4. IF there is a subtree in C'P THEN

(a) make it the current subtree.

(b) Consider the set of edges E’ C E with one
endpoint in the nodes of the current subtree
and the other outside.

(c) IF there is an edge €’ € E’ that dominates
all the other edges in E/ THEN

1. add €’ to C'P and to the current subtree.
7. GO TO 4b.
(d) ELSE
i. IF there is another subtree in C'P not
considered yet THEN
A. GO TO A4a.
7. ELSE output CP.
1i. END IF.
(e) END IF.

5. END IF.

The following proposition shows that algorithm 2 is
sound.

Proposition 3 CP is a subset of the edges of the
common pattern of G.
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Figure 1: A graph with vertices {A,B,C,D} whose
edge weights can be intervals. The partial order on
the edges induced by the intervals permits to decide
that the common pattern is {(A,B)}.
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Figure 2: The partial order on the edges of the graph
in the preceding figure. Here an arrow from e to e’
means that e dominates €’.

Proof.

Consider the first possible insertion in step 2(a)i. The
cycles that encompass (v,v’) must pass through the
set of edges {(v,v”) : v" € V,v" # v'}. Since (v,v’)
dominates all the edges in the preceding set, for each
cycle passing through (v,v’) there is an edge in the
cycle that is dominated by (v,v’), so that (v,v’) is in
the common pattern, by Theorem 1.

The algorithm can insert an edge in C'P also in step
4(c)i. Recall that each subtree is a connected acyclic
graph. It is clear that any cycle that contains ¢ must
pass through an edge €” that has one endpoint in the
nodes of the subtree and the other outside. But ¢’
dominates e” by step 4c. This holds for all the cycles,
so €’ is in the common pattern by Theorem 1. ll

As outlined at the start of the section, algorithm 2
is not complete, i.e. it does not generally identify all
the edges in the common pattern. For example, con-
sider the graph in Figure 1. The graph is made by
four vertices: A, B, C and D. The sets of weights are
expressed as intervals, e.g., the set of the edge (A,B)
is given by the interval [10,20] C R; the set of (A,C)
is {3}. The imprecise specification of the weights orig-
inates the partial order, by defining that the interval
[, B] dominates [o, 3] iff & > 3, given in Fig. 2.

By Theorem 1, we obtain that only (A,B) is in the
common pattern; but algorithm 2 cannot determine

this fact.

Thus, algorithm 2 is the result of a trade-off between
computational complexity (that is O(k?), as shown in
the next section) and the capability to fully detect the
common pattern. This choice does not seem critical
to the specific extent of discovering tree-dependency
structures. In fact, if the edges are totally ordered,
algorithm 2 produces the maximum spanning tree.
Since the knowledge of the mutual information in-
creases with the sample size, eventually determining
a total order on the edges (if edges with approzimately
equal weights are ordered arbitrarily), CP is anyway
guaranteed to converge to the sought tree. Of course,
the algorithm must be tested in practice to under-
stand, in common situations, how many edges are pre-
vented from being recovered by the above limitation.

4.1 Computational complexity

The assumption behind the following analysis is that
the comparison of two edges can be done in constant
time. In this case, given a set E’ of edges, there is a
procedure that determines in time O(|E’|) if there is
an edge ¢/ € E’ that dominates all the others. The
first step of the procedure selects an edge that is can-
didate to be dominant. This is made by doing pair-
wise comparisons of edges and by always discarding
the non-dominant edge (or edges) in the comparison.
After at most |E’| — 1 comparisons, it is possible to
know whether there is a candidate or not. If there is,
the second step of the procedure compares such can-
didate e’ with all the other edges, so deciding if €’
dominates all the others. This requires |E’| — 1 com-
parisons. The two steps of the procedure then take
O(|E’|) time.

Let us now focus on algorithm 2. The loop 2-3 is
repeated k = |V| times. Each time the test 2a decides
whether there is a dominant edge out of k — 1 edges
(each node is connected to all the others). By the
previous result, such task takes O(k) time. Then the
loop requires O(k?) time.

Now consider the two nested loops made by the in-
structions 4a, 4b, 4(c)ii, and 4(d)iA. Each time the
instruction of jump 4(c)ii is executed, a new edge has
been added to CP. Each time 4(d)iA is executed, a
new subtree is considered. Since CP can have k — 1
edges at most and k is also an upper bound on the
number of different subtrees, the two loops can jointly
require 2k — 1 iterations at most. Each such itera-
tion executes the test 4c. By using k% as an upper
bound on |E’|, we need O(k?) time to detect whether
the dominant edge exists. So that the overall time
required by the loops is O(k3). This is also the com-
putational complexity of the entire procedure.



5 The expected value of mutual
information under the IDM

Algorithm 2 is based on the comparison of edge
weights. In the specific application, the edge weights
measure the mutual information between pairs of ran-
dom variables. The following subsections define the
mutual information and show that under the IDM the
partial knowledge arising from a finite sample can only
provide us with a set of possible expectations of the
mutual information. Section 6 will then exploit the
values in such a set to define a method to partially
compare the edges of the graph.

5.1 Definition of mutual information

Let X and Y be discrete random variables taking val-
ues in the finite sets X and ), respectively. The
generic elements of these sets will be denoted by =z
and y. Assume that the joint distribution of (X,Y)
is multinomial with unknown chances 6,,. Define the
mutual information [5] between X and Y as the real
number

MIX,Y)=Y <9my In 935’ y) : (1)

z,y

where 6, = Zy 0zy and 6, = > 0,,. Expression

(1) can be applied also when some chances are zero, if
0

we take 0., In .~ = 0 when 0, = 0, as it is natural
Y 0101/ Y )
: : Ony
simce hmgry_,o sz In m =0.

The mutual information is a non-negative
information-theoretic measure that is frequently
used, especially in the artificial intelligence field, as a
degree of dependence between random variables. It is

zero iff the variables are independent.

5.2 Inferences about mutual information

The IDM models uncertainty about the unknown
chances of a multinomial distribution by a set of prior
densities [20]. These are combined with the likelihood
function to produce the following posterior density
function:

m(@nxy) H9:§y+8tw71- (2)

Yy

Here 0 denotes the vector of the unknown chances
and nyxy the vector of the data counts. The generic
element of nxy is the observed frequency of (x,y), i.e.
Ngy. The hyperparameter s is a positive real number,
representing a degree of caution of the inferences, that
Walley suggests to choose in the interval [1,2]. The
hyperparameters t,, take on all the possible values in

the open unit simplex defined by the constraints:

Dty =1 (3)
z,Y
tey >0 Vz,y. 4)

The vector of the t-hyperparameters is denoted by
txy.

Inferences by the IDM on the mutual information
of two variables can be made by considering the ex-
pected value of the mutual information with respect
to m(@|nxy ). Unfortunately, to the best of my knowl-
edge, it is not known either a closed form of the
expected value of the mutual information under a
Dirichlet density ([17], p. 25), or a bounded-error
approximation. Kleiter addresses this problem by pro-
viding a chi-square approximation to the distribution
of the mutual information, based on empirical consid-
erations [10]. The expected value that he proposes is
similar to the one I give below. The expected value
of the mutual information is approximated by replac-
ing the multinomial chances in (1) by their expected
values under a Dirichlet posterior:

G
/J,(X,Y‘HXY,tXY) = Z <9xy ln/é /g ) ; (5)

Y “3-64!
where 0, = E[0ynxy,txy] = 7”1’\;:_55’, N be-
ing the number of units in the random sample,
and 0, = E[em.|nXY>tXY} = Zyemyy 93/ =

Elf ynxy, txy] =3, a'vy Note that each instance
of the t-hyperparameters produces a possible value of
the approximate expected value of the mutual infor-
mation.

6 Comparing edges

The edges in the graph are compared on the basis of
expression (5). Section 6.1 addresses the case of the
comparison of two edges that share a node. Section 6.2
deals with the case of two edges without a common
node. Both cases reduce to coping with non-linear
global optimization problems. These do not appear
easy to be tackled exactly, so I propose to compute
lower and upper bounds. The case of binary random
variables is fully developed by providing a constant-
time procedure to compute such bounds.

6.1 One node in common

Let us focus on three generic random variables:
X, Y, Z. We want to compare the edge (X,Y) with the
edge (Y, Z). Under complete knowledge of the chances
of the multinomial distribution, the pair of variables
(X,Y) should be preferred to (Y,2) if MI(X,Y) >



MI(Y,Z). Since we have only a partial knowledge
of the mutual information, and with reference to the
proposed approximation, we say that (X,Y) domi-
nates (Z,Y) if the inequality p(X,Y |nxy,txy) >
w(Z,Y |nzy,tzy) holds for all the possible values of
the vectors txy and tzy. (Observe that the crite-
rion only produces a partial order, since it may be
the case that (X,Y) and (Y, Z) are mutually undom-
inated.) This is equivalent to solving the following
optimization problem:

inf [W(X, Y nxy, txy) — u(Z,Yngy, tzyv)] (6)

S ey =1 (7)
oty =1 (8)
D tay =ty Wy (9)

toy,tzy >0 Va,y, 2. (10)

If the optimal value is positive, the dominance holds.
Note the constraints (9), which maintain the consis-
tency between the vectors txy and tzy that are log-
ically dependent because of Y.

Let us rewrite p(X,Y |nxy,txy) by using (5):

w(X,Y |nxy,txy)

Ny +8tay,
_ Z Ny + St:ty In J}V-&-s ;
- N+ s ng tsty, Nytsty

x,y N+s N+s
1 Ny + St
- T e \ o -
N—&-smzy[(ners y)nnm_—&—stm_}Jr

1 Ny + sty
_N+s; {(n_y—&-st_y)ln T ] :

with the obvious meanings for n,, t;, n, and .
By rewriting u(Z,Y |nzy,tzy) analogously, and by
defining

- Ngy + Slay
_ Nazy + Stay
f(tZY) = ; {(nzy + Stzy) In m] s (12)

we obtain the new form of the objective function (i.e.,
the function to optimize):

w(X,Ynxy,txy) — u(Z,Y|ngy, tzy)
1 1

—f(t ——f(t .

N-‘rsf( xv) N-i—Sf( zy)

In the subsequent development, the constraints (9)
will be relaxed in order to simplify the problem that

otherwise does not seem easy to solve. The weaker
version of the problem can be decomposed in two
problems that, respectively, compute the infimum of
ﬁf(tXY) and the supremum of ﬁf(tZY)- The
overall optimum in the larger domain is the difference
of these two values. Of course, this will generally be
a lower bound on the optimal value of the original
problem. The bound is originated by the assumption,
implied by the relaxation of the constraints (9), that
knowing the mutual information on one edge does not
constrain the possible values of mutual information on
the other, which is generally false.

6.1.1 Optimization of f(-)

The previous arguments allow us to focus on the fol-
lowing problem (the maximization of f(tzy) is anal-
ogous):

min f(txy) (13)
Dty =1 (14)
tg;y >0 Va,y. (15)

Note that the variables are allowed to be zero.
This is possible by extending f(-) to the closed do-
main, by an analogous observation to that in Sec-
tion 5.1: the generic term of the sum in (11), ie.
(Nay + Stzy) In %:j%iil, is defined to be zero when
Ngy + Stgy = 0. ' '

Geometrically, the constraints of the problem define
a polytope. This is composed of the inner part, where
all the variables are positive, and the border, where at
least one variable is zero. The border is made by a set
of faces: each face can be identified by the particular
set of variables that are equal to zero on it. In the
following, the task of searching for the global mini-
mum in the polytope will be split into the subtasks of
searching the global minima of f(-) over the inner part
of the polytope and its faces. Each time f(-) will be
considered as function of the non-zero variables only.

I address such global optimization problems by apply-
ing Karush-Kuhn-Tucker’s first-order necessary con-
ditions [12]. These allow us to restrict the set of
points that contain the minimum, by constrain-
ing the gradient of f(-). Let us consider the par-
tial derivative of f(-) with respect to a generic
variable t;,, which is positive over the consid-
ered portion of the domain. Define the set & =
{(@',y') € X x Y| nyy + sty >0} The function
f(+) is rewritten as the sum of three terms:

Ngy + Slay
Ng. + St

[(nmy/ + stgy ) In

(Ngy + Stzy) In

>

(z,y") €D,y #y

(f1)

Ny + Slay

Ng. + Sty.

(f2)



Mgy + Stmly
Nyt + Styr

>

[(nmzy + styry)In
(',y") €D,z #x,

] ()

recalling that for a generic 2’ € X, ty, =7y sy
We have immediately that 0fs (txy) /Otzy = 0. We
have also

Ofi (bxy) _ (1 My + Slay

o ey + stmy)

Oty Ng. + Sty Ng + Sty
and
df2 (txy) s
_— = —_—— zy’ tm ’
Otay Ng. + Sty Z(n v+ stey)
Yy #y
Ny, + Sta:. — Ngy — Sta:y
= s
Ny, + Sty
_ (1 n M) _
Ng. + Sto.
Finally, we obtain
f(XY):Slnny+8 Y = sln =2, (16)
Oty Ng, + Stz 0.

The first-order necessary condition for a problem with
linear constraints of equality states that for a point
txy to be a local optimum there must exist a vec-
tor A of real numbers such that Vf (txy) = AT,
where AT is the transposed constraints matrix ([15],
pp. 314-316). In the current problem, the matrix
is made by the unique equality constraint (14), so

A=11,1,...,1] and A € R. The necessary condition
then becomes:
of (t
9f (txv) =X VY(z,y):ty >0.
Oty

That is, in order for txy to be a local optimum, all
the partial derivatives of the function must have the
same value in such point. By (16), this is:

~

Oy = a@m_ V(z,y) : tay >0, (17)

where o € R is a constant. The value of a can
be determined as follows. First, note that o # 0
otherwise it would be t,, = 0. Second, consider

that 3, 0sy = 0. for all € X. This holds iff

Zy:t1y>0 99-“'!/ + Zy:tmyzo 95”'!/ = 99-“-7 WhiCh, by (17)7
holds iff a@x_ym + v, = ar Here v, is equal to
D yitsy=0 ary and v, is a constant denoting the num-
ber of elements y of Y for which ¢, > 0. v, is a
constant for the problem, too, because it does not de-
pend on any positive variable t,,. We obtain

Vo : 3y :tyy >0 (18)

6.1.2 The case of binary random variables

This section applies (18) and (17) to derive a proce-
dure that solves problem (13) with constraints (14)
and (15) when the random variables are binary, i.e.:
X = {z1,22} and Y = {y1,92}. In this case there
are 4 t-variables in the problem: t,4,, tz,yss tasy
and t,,,,; and there are 2% — 1 = 15 different ways
to assign zeroes to them—excluding the assignment
of 4 zeroes that is not allowed by (14), but including
the assignment of no zero. Therefore the domain of
the optimization problem is a polytope that can be
represented as the partition made by the 14 faces and
the inner part.

Below the necessary condition of the first order is spe-
cialized on the elements of the partition. Each el-
ement is identified by the set of variables that are
positive on it (indicated in parentheses).

e Face 1 (the positive variables are ¢, , tz,y, and
tz,y,; i this case we have v, = 2, vy, =1
and v, = 0, by definition). a is a constant
for all x € X for which there exists y € )
such that t,, > 0. In the particular case, this

implies the equality (Eml - fyml) / (le/éml.) =

(9@_ - %2) / (yxex) ie. 0./ (29961_) -
(Exz_ - %2) /B2, which holds iff 6, = 1—2v,.

Note that since 6,,. and 0,, are positive on the
current face, the cases v,, = 0 and y,, = 1/2 are
not allowed.

e Face 2 (tftlywtrlyzvtftzyz; Vg, = 27V:t2 = 177:31 =

0). Analogously to the preceding case, /émll =
1- 2ryx27 ’sz # 0 and 71‘2 # 1/2

o Face 3 (tz,y,stesysr tavyss Vo, = Ve, = 2,7, =
0). By similar arguments to the preceding cases,

Or,. = 274,, Vo, 7 0and v, #1/2.
e Face 4 (t$1y27t1‘2y17t$2y2; Ve, = 1, vg, = 27»}/:[2 —

0). Analogously to the preceding case, /émll =
Y2, Vo, # 0 and v, #1/2.

o Face 5 (tey teiys; Vo, = 2,V = 0,7, = 0).

We have ny 02y = 1, which is also 0, +7,, =
1, or 5m]_ =1—1,,

o Face 6 (ty,y,stuny,; Vo, = L,vg, = 1). By (18)
we have (aftl - ’Y:rl)/eﬂfl- = (9;32 - 79:2) /sz
If ¥4, = Yz, = 0, the equation is an identity;
from (18) we have @ = 1 and from (11) we have

that f is constantly equal to zero on the present
face. When both v, and v, are positive, the

equation holds iff gml_ = Yo,/ (Va, +Va,)- (When



only one constant between v, and v, is zero,
the equation has no solution.)

o Face 7 (tz,ysstasy; Vo, = 1,vz, = 1). This case
has exactly the same solution as face 6.

o Face 8 (ta,y,stayys; Vo, = 1,vz, = 1). This case
has exactly the same solution as face 6.

o Face 9 (ty,ysstanys; Vo, = 1, Vg, = 1). This case
has exactly the same solution as face 6.

v, =27, = 0).
Analogously to face 5, 0,,. =1 —1,, .

o Face 10 (tuyy, ) tasys; Vay = 0, Va,

o Face 11 (ty,y,; Vo, = 1,v4, = 0). From (14), it
follows ¢ =1

T1Y1

o Face 12 (ty,4,; Vo, = 1,Vz, = 0). Analogously to
face 11, tg,y, = 1.

o Face 13 (tz,y,; Vo, = 0,v5, = 1). Analogously to
face 11, tg,y, = 1.

o Face 14 (t3,y,; Yz, = 0,v5, = 1). Analogously to
face 11, t4,y, = 1.

o Inner part (tu,y,, teiyss tosyrs Cosys;
2,vz, = 2,7, = 0,7, = 0). In this case it
is possible that more than one point satisfies the
first-order necessary condition. By ny Opy =1

and (17) we have > af, = 1 and hence
a = 1/2. This, together with (17) and (11), im-
plies that the value of f(-) is the same for all the
points that satisfy (17), i.e.: (N + s)In(1/2). In
order to cope with the minimization on the in-
ner part of the polytope, it is sufficient to test
whether there is at least one point that satisfies
(17). Proposition 4 realizes such a test.

le -

Proposition 4 The first-order necessary condition
holds for at least one point in the inner part of the

polytope iff |n.y, —ny,| < s.

Proof.

When dealing with the inner part of the polytope,
condition (17) is equivalent to the system of linear
equalities below,

Mgy, T Slayy, = Nayy, + Stayy,
nftzyl + Stﬂ-‘zyl = nﬂ-‘zyz + Stftzyz'

Call 6 = gy, + Nasys — Nasy, — Nayy, = Ny — Ny, -
From the system and from (14), we get ty, 4, +tusy, =
(s+06)/(2s) and ty,y, + tayy, = (s —06)/(2s). If 6
did not belong to the interval (—s, s), there could not
be a point in the domain satisfying (17), because the

constraints »-,  tuy = 1 and tyy > 0 (for all z,y)

could not be met. Conversely, when § € (—s,s), we
have t4,4, + tayy, € (0,1), tayyy + tusy, € (0,1) and
> ey tzy = 1. The thesis follows by choosing t;,,, =
tftzyl = (S+n-yz 777’-1/1)/(48) and tfth = tftzyz =
(s =my, +1ny,)/(4s) B

This proposition makes it trivial to verify the exis-
tence of a point in the inner part of the polytope
that satisfies the necessary condition. Furthermore,
note that the necessary condition is always satisfied
by one point as far as the faces 11-14 are concerned.
The test related to the remaining faces is carried out
by verifying the equalities (17) given (18) and the
ar_—values provided by the points above (recall that
Op,. 4+ 0, = 1).

The overall procedure then reduces to verify the nec-
essary condition 15 times and to compute the value of
f(-) on the set of points that satisfy it. This needs to
be done 15 times at most. The minimum value of f(-)
among those computed is the sought global optimum.

6.2 No node in common

Let us develop the comparison of two edges that
do not share a node. Consider four different ran-
dom variables: XY, W,Z. We must compare the
edge (X,Y) with the edge (W, Z). Similarly to Sec-
tion 6.1, we say that (X,Y") dominates (W, Z) if the
inequality /L(X,Y|nxy,txy) > ,LL(VV, Z|nwz,th)
holds for all the values of the vectors txy and
tw,z. By letting u(X,Y|nxy) denote the mini-
mum of M(X,Y|nX5_/,th) over the unit simplex
for txy, and by (W, Znw,z) the maximum of
w(W, Z|nw,z,tw,z) over the unit simplex for ty, z,
the preceding inequality holds iff u(X,Y|nxy) >
(W, Z|nw,z).

Let us focus on u(X,Y|nxy) (the remaining case is
analogous). This is the result of the following opti-
mization problem:

min p(X, Y |nxy, txy) (19)
D ey =1 (20)
z,y

tay >0 v, y. (21)

As for the previously addressed problems, also this
optimization can hardly be computed exactly. For
this reason, the objective function is firstly rewrit-

ten as Zry (@myln %—:L) — Zy (gylngy) Then
the two summations are optimized separately by
minimizing the first and maximizing the second,
so that their difference provides us with a lower
bound on p(X,Y|nxy). (Note that the procedure
can be applied also by expanding the objective as



'~

0.y 3 1.7 ).
er,y (Gry In @_;J) — Zy (Gx_ In Gm_), and the approx-
imation can be improved by taking the maximum of

the two lower bounds.)

The minimization of the first term has already been
tackled in Sections 6.1.1 and 6.1.2, so here I will focus

on the maximization of g(ty) = >_, (/G\y ln/H\_y), ie.

on the problem

maxz (ny + sty 1 Ty + st,y> (22)
y

N+ s N+ s

Zt.y =1 (23)

ty >0 Vy. (24)

Following the same procedure used in past sections,
we have that a%g(ty) = N (1 +1In G_y) by assum-
ing t, > 0. Karush-Kuhn-Tucker’s first-order neces-
sary condition states that the partial derivatives must

have the same value in the stationary points (see Sec-
tion 6.1.1). This implies

0,=a Vt,>0, (25)

where o € RT is the common value of the derivatives.
Define v = Zy;t_y:o 6., and let v denote the number
of variables ¢, that are zero on a given subset of the

unit simplex. It is easily obtained a = (1 —7)/v.

In order to solve problem (22) with constraints (23)
and (24), it therefore suffices to follow a method sim-
ilar to that in Section 6.1.1. The unit simplex is con-
sidered as the partition made by the faces of the poly-
tope and its inner part. g(-), as function of the positive
variables only, is maximized over each element of the
partition. The global maximum is the largest value
among those obtained over the elements of the parti-
tion. Note that for each element there can be at most
one point that satisfies (25).

7 Conclusions

This work proposes a robust procedure to infer tree-
dependency structures from a multinomial sample.
The basic tool used is Walley’s imprecise Dirichlet
model. This makes several structures be plausible,
given the data, that converge to a single tree as the
sample relative frequencies approach the underlying
chances. This work focuses on the inference about the
structure common to all the dependency trees.

The considered task is difficult. I have proposed sev-
eral approximations to make it viable. The greatest
part of these simply add an excess of caution to the

inferences, due to the current limited ability to ex-
actly solve some problems efficiently. This is the case
of the bounds computed in Sections 6.1 and 6.2, and
of algorithm 2 that cannot generally detect the en-
tire common pattern. This is also the case of the
assumption that all the total orders consistent with
the given partial order are admissible, in Section 3,
which is not necessarily verified by the partial or-
der produced by the mutual information (there may
be restrictions of this type due to the logical depen-
dence of the values of mutual information on different
edges). On another side, the proposed approximation
to the expected value of the mutual information un-
der the IDM, in Section 5.2, is due to a seemingly
missing method, in the literature, to approximate the
distribution of mutual information under a Dirichlet
density for the unknown chances. It is important for
future work to provide the error of the approxima-
tion: the proposed procedures can be easily modified
to take it into account.

Note that these problems are not shared by the discov-
ery algorithms that neglect imprecision. Choosing an
ideally precise approach removes all of them and helps
creating much simpler algorithms. But the problems
are not actually avoided, they are simply transferred
to the output of the algorithms that can be unreliable
and whose usefulness is thus questionable.

There are many improvements of the present work
that should be pursued, as relaxing the constraint
of dealing with binary random variables or studying
new ways to compute bounds on the values of the
optimization problems. Reducing the computational
complexity of the discovery algorithm would be very
useful for data analysis applications. Extending the
approach to incomplete samples is another important
issue. Previous work on missing data might be ex-
ploited to this extent [21]. Moreover, experimental
analyses are needed to verify in practice the capabil-
ity of the proposed algorithm to infer tree structures,
with special emphasis on the relationship between the
sample size and the fraction of structure recovered.

Some other extensions might be worth trying. Ro-
bustness might be emphasized by computing credibil-
ity intervals for mutual information under the IDM
[20] instead of expectations. This would involve ex-
tending Section 5 and the followings, in order to pro-
duce the partial order on the edges under the new
conditions. It would not require modifying the first
part of the paper, concerned with the general prob-
lem of the common pattern, given that it works for a
general partial order. Some of the ideas in this paper
might also apply to the problem of recovering depen-
dence structures when dependency indexes different
from mutual information were used, such as the sta-



tistical coefficient ¢? ([9], pp. 556-561). The advan-
tage of focusing on optimal structures would be lost,
though, unless a proof similar to Chow and Liu’s one
were available.

In summary, the task of inferring reliable dependences
is difficult, but it is possible, as shown in this paper,
to act on the relationship between caution and com-
plexity to develop practicable algorithms: by adding
an excess of caution it is often possible to reduce the
complexity of the problems. This can lead to efficient
algorithms while avoiding overconfident methods.
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