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Abstract

Coherent lower previsions and exact cooperative
games are mathematically essentially the same. We
investigate in this paper the smallest class containing
these functionals resp. games. This class will be de-
noted to consist of exact functionals which coincide
with coherent lower previsions up to normalization.
We investigate the exact functionals from a functional
analytic point of view, i.e. we characterize this class
by a norm, present a Hahn-Banach type theorem, a
powerful construction method and adopt the concept
of the core resp. o-core from cooperative game theory.

Keywords. exact functionals, coherent lower previ-
sions, exact cooperative games, core.

1 Introduction

Coherent lower previsions have turned out to be “suf-
ficiently general” to model various kinds of uncer-
tainty, partial information and ignorance. Mathe-
matically, there are considerable similarities between
this class and exact cooperative games but in con-
trast to cooperative game theory, lower previsions are
normalized, i.e. I'(1) = 1 holds for a lower prevision
I". Therefore in this paper we enlarge the class of
coherent lower previsions by dropping this normaliza-
tion condition to cover exact games and denote this
class to contain exact functionals taking over the lan-
guage of cooperative game theory. Analogously, we
generalize previsions avoiding sure loss to exactifiable
functionals which cover balanced games.

The class of exact functionals contains amongst other
things the classes of

e coherent lower previsions [13]
e cxact cooperative games [11]
e coherent risk measures [1], [3]

e maxmin expected utility functionals [6].

The class of exactifiable functionals generalizes the
classes of

e previsions avoiding sure loss [13]

e balanced cooperative games [11].

Since normalized exact functionals will be proved to
be coherent lower previsions we do not generalize the
concept of prevision. We show that not only struc-
tural assumptions on the domain (e.g. in cooperative
game theory by supposing the domain to be an al-
gebra) but also the normalization condition (e.g. in
the theory of imprecise previsions) are mathemati-
cally not relevant for the results obtained.

This article is organized as follows. In Section 2 ex-
act and exactifiable functionals are defined and each
characterized by a norm. We also formulate an ex-
tension theorem of Hahn-Banach type. Relations to
some theories mentioned above, especially to that of
coherent lower previsions, are established in Section 3.
Exact functionals will also be proved to be inter-
pretable as a generalization of superadditive Choquet
integrals where comonotonic additivity is relaxed to
constant additivity. In Section 4 we provide a power-
ful construction method for exact functionals.

In the central Section 5 we introduce the core and
o-core for functionals, a concept mainly known from
cooperative game theory. The core of a functional
allows us to analyze exact and exactifiable function-
als with methods from functional analysis as well as
measure and integration theory.

2 Definitions and basic properties

Throughout the paper, 2 denotes a non-empty set,
2 the power set of 2, A an algebra in 22, B(A)
the Banach space spanned by the characteristic func-
tions {14]4 € A} with the sup norm || - ||oc and M
a non-empty subset of B(2). A real functional I'
on a linear space S C B(2%) is called superlinear if



it is superadditive and positively homogeneous. It
is called constant additive or translation invariant, if
D(f+¢)=T(f)+T(c) for all ¢, f € S, ¢ constant.

Definition 2.1 Let ' : M — R be the restriction of
a monotone, constant additive, superlinear functional
I : B(2®) — R. Then T is called exact and T an
ezact extension of .

LetT': M — R be a functional that can be dominated
by an exact functional T’ : B(2?) — R on M. Then
T is called exactifiable and T’ an exactification of T.

Obviously, exact functionals in particular are exacti-
fiable functionals. It is easy to prove that monotone
linear functionals as well as the infimum are exact.
Due to the one-to-one correspondence between sets
and their characteristic functions we identify set func-
tions with functionals on characteristic functions. By
this means, we will call a set function exact if the
corresponding functional on the set of characteristic
functions is exact.

We now define two norm-type functions (norms for
short) closely related to the class of exact and exac-
tifiable functionals. The first one is a generalization
of a norm introduced by Schmeidler for cooperative
games in [11]. Each norm will be proved in Theorem
2.3 to characterize either class of functionals intro-
duced in Definition 2.1. For an arbitrary real func-
tional I' : M — R we define

T = SUP{Z/\iF(fz‘) > Nifi <1,
i=1 i=1
HGN,/\iZO,fiGM}(l)
It = inf{cER+ YneN >0,
Ao ER7f7fi e M:
= Z)\ifi+)\0
i=1

= I'(f) > Z NL(fi) + AOC} (2)

Both norms are extended real valued, nonnegative,
zero if I' = 0, positively homogeneous and subaddi-

tive, i.e. the classes of functionals with finite |- |- resp.
| - |[-norm are convex cones. Additionally, |T|| = 0
implies I' = 0 and the | - |-norm is monotone, i.e.

'y < Ts implies T'y| < |T'3|. For a real functional T’
and an extension I : B(2?) — R of T we obviously
have |T'| < || resp. ||IT|| < |IT’]] and |T'| < ||T]|. By an
indirect proof one can show that ||T'|| is contained in

the set on the right of Equation (2) and this implies
that Equation (4) holds when replacing ', by T.

We now show that for an exact functional in most
interesting cases both norms are equivalent and coin-
cide with the operator norm if M is a linear space.
This result holds on condition that 1 € M which is
met e.g. in game theory (€ corresponds to 1) or in
(non-linear) functional analysis when functionals are
defined on a linear space B(A).

Proposition 2.2 For an ezact functionalT' : M — R
with 1 € M we have

LA
ey 1 llso” (3)

[Tl = [T = T(1) =

Proof. By definition of the norms, |T'|| > |T'| > T'(1).
Let I : B(2®) — R be an exact extension of I'. Then
forall \; >0, R, f, fi e M, f> Z?:l)‘lf1+>‘0

T(f) =T/ Aifi+X0) = Y AT(fi) + AoT(1),

=1

ie. ||T] <T'(1) < o0, hence ||T'|| = |T'| =T'(1). Obvi-
ously, I'(1) < supj .20 % For every f € M with

oo

IIf|lso # 0, by exactness of T’

ITOI _ | < f >‘
I (L) < ().
£l £l
This proves the last equation in (3). O

The following theorem characterizes, by means of our
two norms, the class of exact and exactifiable func-
tionals and provides a method for extending exact
functionals (cf. [9]).

Theorem 2.3 Let I' be a real functional on a non-
empty set M.

(a) Equivalent are
o I is exact.
o [T < oo.
e The functional T, : B(2}) — R defined by

Lu(f) = SUP{Z)\iF(fi) + Aol[T| ‘
i=1

ZA1f1+AOSf7n€N7

i=1

/\OER,/\iEOandfieM}(él)

is an exact extension of T' with ||Tx|| = ||T].



(b) Equivalent are
o T is exactifiable.
o |I'| <oo.
o The functional T'y : B(2?) — R defined by

n

To(f) := sup { Z AL(fi) + XolT|

i=1

n

Z)\ifi+)\0 <f,neN,

i=1

)\OGR,)\iEO andeEM}(S)

is an exactification of T' with |Te| = |T|.

The first equivalence relation in Theorem 2.3 (a)
shows that the definition of exactness does not rely on
structural assumption on the domain (which seems to
be the case when defining exactness via functionals on
a linear space) but only on the relations between the
values of the functionals (when calculating the || - ||-
norm).

Theorem 2.3 (a) is of Hahn-Bach type (and can be
proved in an analogous way) because it says that every
real functional with finite || - ||-norm can be extended
maintaining the norm.

The following corollary summarizes important results
implied by Proposition 2.2 and Theorem 2.3 and
shows that the definitions of the norms |- | and || - ||
as well as those of the functionals I'y and I', are quite
natural.

Corollary 2.4 Let T' be a real functional on M.
Then

(a) Ty =inf {I": B2%) — R | T ezact,
M >T, ) = [T}

(b) |I0|| =inf {T'(1) | T’ : B(2%) — R ezact,
I'|M =T}.

(¢) Te =inf {I": B(2?) = R | I exact,
M > T, [I'| = 1|}

(d) |T| =inf {IV(1) | I": B(2*) - R ezact,
I'|M >T}.

At this point we have to stress that for an exact set
function p neither the exact extension p, nor the ex-
actification pe (each restricted to 2) coincides with
the inner set function or the inner measure known in
(non-additive) measure theory. But in all cases we
have a sort of “inner extensions” of a given set func-
tion resp. functional.

The functionals I', resp. I'y are of great importance in
the following analysis of exact resp. exactifiable func-
tionals T' because they are closely related to T' (cf.
Theorem 2.3 and Corollary 2.4) and have a domain
with more structure than I'. This allows us to demon-
strate some properties of the two classes of function-
als examined in the present paper by investigating
I, resp. I'y particularly using functional analytical
methods. Hence these functionals will be denoted as
follows.

Definition 2.5 For an exact functional I' : M — R,
Iy is called the natural extension of T'.

For an exactifiable functional T’ : M — R, Iy is called
the natural exactification of T'.

The following example shows that if there is not any
positive constant contained in the domain M it can
happen that |I'| # ||T|| even for an exact functional
I' defined on M. Therefore the exact extension not
necessarily coincides with the exactification.

Example 2.6 Let Q = {1,2}, M = {113} and I':
M — R be defined by I'(=141y) := —0.5. Then |[I'| =0
and ||T'|| = 0.5, i.e. T is exact by Theorem 2.3. The
natural extension then is I'v(f) = 0.5 -inf f for all
f € B(29).

The natural extension can be used for proving bound-
edness of the values and Lipschitz-continuity of exact
functionals (cf. [9]), i.e. for all f,g € M we have

IT[[inf f <T(f) < [T sup f, (6)
L) =TI < T 11 = glloo- (7)

3 Relations to other theories

In this section we prove the classes of coherent lower
previsions, exact cooperative games and Choquet in-
tegrals w.r.t. supermodular set functions to be con-
tained in the class of exact functionals. Analogous
results for exactifiable functionals are also stated.

First the relation of our classes of functionals to the
theory of imprecise probabilities is investigated.
Walley examined in [13] mainly two classes of func-
tionals on an arbitrary non-empty subset of B(2%)
to model rational behaviour in decision situations.
These are the lower previsions avoiding sure loss and
the coherent lower previsions.

A real functional T' on a non-empty subset M of B(2¢)
is called a lower prevision avoiding sure loss (cf. [13,
Definition 2.4.1 and Lemma 2.4.4]) if for all n € N,
A >0, fz eM

sup > Aifi > Y AT(fi). 8)
i=1 i=1



A real functional T on a non-empty subset M of B(2)
is called a coherent lower prevision (cf. [13, Definition
2.5.1 and Lemma 2.5.4]) if for all n € N, A\g, \; > 0,
Jo, fie M

sup (Z Aifi = Aofo) > Z AL(fi) = Aol'(fo)- (9)

i=1

Proposition 3.1 Let T be a real functional on a non-
empty subset M of B(2).

(a) T is a lower prevision avoiding sure loss iff it is
ezactifiable and there exists an exactification T
of T with ||T|| = 1.

(b) T is a coherent lower prevision iff it is exact
and there exists an exact extension of T' with
I} = 1.

Proof. First, observe that the natural extension E
for a real functional I' : M — R defined by Walley in
[13] coincides with the natural extension introduced
in Definition 2.1 iff ||E|| = 1 (cf. [13, Definition 3.1.1
and Lemma 3.1.3 (b)]). Since it is well-known that T’
is a prevision avoiding sure loss iff E is real valued (cf.
[13, p. 123]) we obtain (a) using Theorem 2.3 (b).

Another well-known result is that I' is a coherent lower
prevision iff E extends I' (cf. [13, Proposition 3.1.2
and Lemma 3.1.3]). Analogously to (a), the assertion
holds using Theorem 2.3 (a). a

Corollary 3.2 Let I' be a real functional on a non-
empty subset M of B(2%). T is exact iff there exists
a X > 0 and a coherent lower prevision I'' : M — R
such that T'= AI'.

To emphasize the difference between coherent lower
previsions and exact functionals we consider again
the situation given in Example 2.6. In this case T’
obviously is a coherent lower prevision. Since ||I'|| =
IT«|| = 0.5 but |E|| = 1 we obtain that E is not a
natural extension when considering a coherent lower
prevision as an element of the class of exact func-
tionals. E coincides with T', if there exist a positive
constant in the domain, i.e. in most interesting cases.

We now demonstrate the relation between exact resp.
exactifiable functionals and cooperative game the-
ory. A cooperative game v is a bounded, nonnegative,
real valued set function on an algebra A in §2, map-
ping the empty set to 0. Two classes of cooperative
games are of special interest here, the balanced games
and the exact games.

A cooperative game v is called a balanced game if for
alln € N, /\120,1416./4

> Aila, <l = ) Aw(4) <v(Q).  (10)
=1 1=1

Obviously, a game v is balanced iff v(2) = |v|. Equa-
tion (10) implies |v| < oo since v(§2) < co. Therefore
balanced games are a subclass of the exactifiable func-
tionals.

A cooperative game v is called an ezxact game if for
allneN Ao, \; >0, 4, A, €A

zn:)\ilAi — X <1y

i=1

= > Aw(A) = Aglo <w(4).  (11)
i=1

Obviously, exact cooperative games are balanced.
Thus |v| < oo and by definition of | - | the above im-
plication remains true when admitting negative Ag.
Applying Proposition 2.2 a game v is exact iff it is
exact in the sense of Definition 2.1. Therefore exact
games are a subclass of the exact functionals.

Comparing the relations between exact function-
als, coherent lower previsions and exact cooperative
games we obtain that the intersection of the classes
of exact games and coherent lower previsions consists
of all exact games satisfying v(2) = 1. Hence both
classes are mathematically essentially equal. The dif-
ferences consist only in the restriction on the domain
(cf. exact games) and the restriction to normalized
functionals (cf. coherent lower previsions).

We now can give another characterization of exact
functionals in terms of coherent lower previsions and
exact cooperative games.

Proposition 3.3 The class of exact functionals is
the smallest convex cone containing coherent lower
previsions and exact games.

Proof. Corollary 3.2 together with positive homo-
geneity and subadditivity of ||-|| imply that the convex
cone induced by coherent lower previsions consists of
all exact functionals. Since we proved exact coopera-
tive games to be exact in the sense of Definition 2.1
we obtain the assertion. a

Finally, the relation between exact functionals and
non-additive measure and integration theory
is outlined. The next proposition being essentially a
reformulation of one by Schmeidler (cf. [12, Theorem
and Proposition 3]) shows that the main difference be-
tween exact functionals and Choquet integrals is the
additivity property and that superadditive Choquet
integrals build up a subclass of exact functionals.

Proposition 3.4 An exact functional T' on B(A) is
representable as a Choquet integral iff it is comono-
tonic additive. A Choquet integral w.r.t. a set func-
tion p is exact iff p is supermodular.



As an easy consequence of Proposition 3.4 finite su-
permodular set functions turn out to be exact. Fur-
thermore the functionals inf : B(2) — R as well as
liminf : RY — R are exact as Choquet integrals w.r.t.
supermodular set functions.

Supermodular set functions are important exact set
functions because their natural extension can be
proved to coincide with their corresponding Choquet
integral (cf. [9]).

Another class of functionals closely related to ex-
act functionals are the coherent risk measures. In
[8] it has been proved that coherent risk measures
are the negatives of coherent lower previsions, i.e.
I' : B(A) — R is exact with |I'|| = 1 iff —T is a
coherent risk measure.

4 Construction of exact functionals

We focus now on the “space” of exact functionals
and present in Proposition 4.1 a powerful construc-
tion method. Almost all operations on a set of exact
functionals are only valid if the latter have the same
I |l-norm. Hence exact functionals with this property
will be called equinormed.

Proposition 4.1 Let {T';};cr be a non-empty in-
dexed set of equinormed exact functionals on M C
B(2%) and T : B(2') — R be exact. Then the func-
tional

M—-R, f—=T@—Tf)) (12)

is exact. Additionally, if T is linear then the condition
of equinormation can be dropped.

Proof. The function defined in (12) is well-defined
because the function ¢ — T';(f) is bounded for every
f € M. Exactness is easily verified for the functional
B(29?) = R, f + T(i — (I';).(f)), and therefore for
the function defined in (12). O

Since exact cooperative games are a subclass of exact
functionals which are only characterized by restric-
tions on the domain, the constructed functional in
Proposition 4.1 is an exact game if all I'; are.

For exact Choquet integrals I'; and I' the resulting
functional in (12) is not a Choquet integral in general
since, as we will see in the following section, every
exact functional has a representation of Choquet in-
tegrals of the form of (12) (cf. Corollary 5.4 (b)).

The subsequent corollary summarizes some theorems
and proposition proved individually until now e.g. for
coherent lower previsions (cf. [13, 2.6.3 - 2.6.7]).

Corollary 4.2 Let {I';};cr be a non-empty indexed
set of equinormed exact functionals on M C B(2%).

Then

(a) Convex combinations of some T'; are exact.

(b) The lower envelope inf;c; T'; is exact.
If I =N then

(¢) The limit inferior iminf, ., T'; is exact.

(d) If the sequence (T';) is pointwise convergent then
the limit lim;_, . I'; is exact.

(e) If the sequence (I';) is increasing then the supre-
mum sup;_, ., L'; 45 ezact.

5 The core of functionals

In this section we adopt the core concept from co-
operative game theory to our theory of functionals
on arbitrary subsets of B(2%). Similar concepts are
known in all theories mentioned in the introduction.
The core allows us to analyze exact functionals with
methods from functional analysis as well as measure
and integration theory.

Throughout the remaining part of the paper we iden-
tify B*(A) with the space of bounded additive set
functions on A, ba(A), due to the existence of a nat-
ural isometric isomorphism between these spaces (cf.
[6, Theorem IV.5.1]), i.e. linear functionals are some-
times interpreted as additive set functions and vice
versa. Another important space used in this section
is the space of bounded countably additive set func-
tions on A, ca(A). For a set function pu : A — Ry
denote I, f the Choquet integral [ fdp w.r.t. p for all
f e B(A).

Definition 5.1 Let ' : M — R be a functional and
A an algebra satisfying M C B(A). Then

car) = {AeBA ’ A[M >T,
A monotone, |A| = |F|} (13)

is called the A-core of I'. If no confusion about the
algebra used is possible we will call the A-core just
core and denote it by C(T").

Due to our identification of B*(.A) with ba(.A) we have
car) = {reba(a ‘ LM >T,
AZ0AQ) =T} (14)

since additivity and non-negativity of A imply exact-
ness of A, hence A\(Q) = || and |I] = |)|.



For a cooperative game v on an algebra A our def-
inition of the core coincides with the one in cooper-
ative game theory. The core of a cooperative game
v: A — Ry is defined by

core(v) == {X € ba(A) | A > v, A(Q) =v(Q)}. (15)

The definitions (14) and (15) of the core coincide.
This is obvious if v(2) = |v], i.e. v is balanced. If v is
not balanced then on the one hand A\(Q) = |A\| > |[v| >
v(Q) for all additive A dominating v, i.e. core(v) = 0,
and on the other hand |v| = ||v|| = oo because v is
not exact, i.e. C4(v) =0

In Corollary 5.5 we will obtain that the core of a func-
tional is non-empty iff it is exactifiable. This implies
the well-known result that a cooperative game has a
non-empty core iff it is balanced.

There is concept similar to the 2%-core in the theory
of imprecise previsions. For a real functional I" on M
Walley uses in [13] a set M representable as

{Ae B(29) | A|M >T, A monotone, |A| = 1}. (16)

Analogously to the definition of the natural extension,
the norm of M is “arbitrarily” fixed to 1 which shows
that implicitly 1 € M and I'(1) = 1 is assumed due
to the probabilistic point of view.

We now show that on the one hand the core of a func-
tional and its exactification and on the other hand the
different cores of a functional are essentially identical.
The reason why we therefore do not restrict the defi-
nition of the core to the 2%-core will be answered after
the definition of the o-core.

Proposition 5.2 Let T' be a real functional on M
and Ai, Ay two algebras satisfying M C B(A;) C
B(Asz). Then

(a) Ca,(T) = {A|B(A1) | A € Cya(Ts)}
(b) Cay(T) = {A[B(A1) | A € Ca (D)}

Proof. (a) To prove the “C”-part, we observe that
every A € C 4, (T") is exact with |A| = 1, hence

A(F) =D NA) + XolA = D AT (fi) + Ao[T)
=1 =1

for every f > S0 Nifi+ X with n € N, A € R,
Xi > 0and f,f; € B(Ai). Thus A > T'\|B(A).
Using the Hahn-Banach Theorem, A can be extended
to an element of C4,(T'). The reverse implication is
almost trivial.

(b) The assertion follows from (a) by replacing C.4,
in (1) by {A|B(As) | A € Cn(Tw)}. 0

The subsequent theorem is essential to adopt results
from (o-)additive measure and integration theory to
the theory of exact functionals like for example con-
vergence theorems (cf. Theorem 5.7). Special versions
have been proved e.g. by Walley [13, Theorem 3.6.1]
and by Huber [7, Proposition 10.2.1]. A more general
version has already been proved by Bonsall in 1954
(cf. [2, Lemma 6 and Theorem 11]).

Theorem 5.3 There is a one-to-one correspondence
between exact functionals on B(A) and non-empty
convex weak®-compact sets C C B*(A) of equinormed
functionals, determined by the identities

I(f) = min A(f)

min resp. C=C(T). (17)
Proof. We only outline the central part of the proof,
non-emptyness of the core and I' = minpcery A Let
fo € B(A) be arbitrary and the linear functional
A’ on the linear space spanned by the functions 1
and fo, sp(1, fo), be defined by A’(1) := T'(1) and
AN (fo) := T'(fo). Then A’ > Tsp(1, fo) because of
N(=fo) = —=N(fo) = —T'(fo) > T(fo). Using the
Hahn-Banach Theorem we can extend A’ to B(A)
such that this extension is contained in C(T"). O

The following corollaries establish the relationship of
exact (exactifiable) functionals with the natural ex-
tension (natural exactification) w.r.t. the core. Anal-
ogous results appear in the theory of imprecise previ-
sions (cf. [13, Theorem 3.3.3 and 3.4.1]) and in game
theory (cf. [11, Corollary 2.4 and 2.6]).

Corollary 5.4 LetT': M — R be a functional.

(a) IfT is ezactifiable then I's = minpcc,, ) A-
(b) If T is exact then

P(f) = min {A(f) | A € BE®), AJM > T,
A monotone, |A| = ||T||}.

(¢) If T is a coherent lower prevision then
E(f) =min {A(f) | A€ B(2%),AIM >T,

A monotone, |[A| = 1}.

As another easy consequence of Theorem 5.3 we ob-
tain an equivalent condition for non-emptyness of the
core which is well-known in game theory.

Corollary 5.5 The core of a functional ' : M — R
is non-empty iff it is exactifiable.

Corollary 5.5 remains true if the condition |[A| = |T|
in Definition 5.1 is omitted: For every monotone



A € B*(A) with A|M > T we have |A| > |T'|. Hence
exactifiability is necessary for non-emptyness of the
core. The previous corollary says that this condition
is already sufficient.

We now investigate some continuity properties of ex-
act functionals. For this, we define the o-core for real
functionals like in game theory.

Definition 5.6 Let I' : M — R be a functional, Ay
the o-algebra generated by the upper level sets of M,
i.e. Ay = A{f >a}, f € M,a €R). Then

co(r) = {XecaAy) ‘ LM >T,

AZ0AQ) =[Tl} (18)
is called the o-core of T'.

Comparing the definitions of the core and the o-core,
a unique “small” algebra Ay, is used in the latter be-
cause the elements of the o-core cannot be extended
to o-additive measures on greater domains in general
(cf. [10, Example 1]) in contrast to the elements of the
core (cf. Proposition 5.2). Due to the close connection
between exact functionals and their core the continu-
ity properties of exact functionals correspond directly
to those of the elements of the Aj,-core like in game
theory (cf. [11, Theorem 3.2 and Proposition 3.15]).
The proof of the subsequent Monotone Convergence
Theorem is a simple generalization of that given by
Parker for exact games in [10].

Theorem 5.7 LetT': M — R be an exact functional
satisfying C(T') = C°(T") and (fn)nen @ monotone se-
quence in M such that f, converges pointwise to a
function f € M. Then

lim T(f,) = T(/). (19)

n—00

Fatou’s Lemma and Lebesgue’s Dominated Conver-
gence Theorem can be deduced from the Monotone
Convergence Theorem analogously to integration the-
ory.

6 Summary and Conclusions

Two classes of functionals have been presented which
slightly generalize the coherent lower previsions resp.
previsions avoiding sure loss. This is done to build
a common mathematical basis for the theory of im-
precise previsions and cooperative game theory which
provides with the core concept a well-developed ana-
lyzing method for the presented theory. Additionally,
this generalization allows us to apply functional an-
alytic methods like the Hahn-Banach type extension
or the construction method presented in section 4.
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