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Abstract

We characterize binary relations (defined on an arbi-
trary family E of unconditional events) that are repre-
sentable by a coherent conditional probability defined
on E × (E \ ∅), and those that are representable by
a weakly decomposable conditional measure. Both
these relations are locally “additive”.
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1 Introduction

In decision problems, uncertain knowledge may be
represented by a probability measure. However, when
information is partial and not easily summarizable by
a reliable numerical evaluation, then the natural tool
for dealing with uncertain knowledge is comparative
(or qualitative) probability (for the possible use of
comparative probability in expert system see, for in-
stance [7], [8], [3], [4]). In this approach, one (the
decision maker, the field expert, ...) merely states his
preferences (or his degrees of belief) on a set of propo-
sitions (events) without any quantification, but only
through an ordinal relation.

The main problem, for an ordinal relation expressing
a comparative degree of belief, is the setting up of a
system of rules assuring coherence of the relation with
respect to the idea that it intends to convey (such as
“no less probable than”, “no less believable than” and
so on). Usually such a problem amounts to the con-
sistency of the ordinal relation with some (numerical)
theoretical model.

More precisely, given a numerical framework (prob-
ability, belief functions, lower probability, etc.) one
finds the properties which are necessary and those
which are sufficient for the existence of a numerical
assessment (probability, or belief, etc.) on the events,
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agreeing – in some way – with the ordinal relation.

Let E be any set of events: denote by � a binary
relation in E and with ≺ and ∼ the strict relation
and the equivalence relation, respectively. If we give
the sentence “agreeing with �” the meaning of “rep-
resenting �”, that is “being strictly monotone with
�”, then for any choice of a capacity function as nu-
merical framework of reference, it is necessary that an
extension of � to the algebra A spanned by E exists,
satisfying the following conditions:

(c1) ∅ � E for every E ∈ A, and ∅ ≺ Ω;
(c2) � is a total preorder;
(c3) for every E, F ∈ A , E ⊂ F ⇒ E � F ,

where ∅ and Ω are, respectively, the impossible and
the certain event.

When we specialize the capacity function (probability,
belief, plausibility, and so on) representing � , then we
need adding to the above axioms a specific relevant
condition, which essentially expresses a (more or less
strong) sort of “qualitative additivity”. The first (and
the most known) additivity axiom (de Finetti [13],
Koopman [19]) is the following

(p) for every E, F, H ∈ A , with E ∧H = F ∧H = ∅ ,
both the following implications hold:

E � F ⇒ E ∨H � F ∨H
E ≺ F ⇒ E ∨H ≺ F ∨H .

In fact the above axiom is necessary for the repre-
sentability of � with any additive function with val-
ues in a totally ordered set (also, for instance, the set
IR∗ of nonstandard real numbers).

If we refer instead to more general measures of uncer-
tainty, such as belief functions, plausibilities and so
on, then it is easy to see that (p) can be violated.
Nevertheless, also in this case a weaker additivity ax-
iom is necessary; see, for this aspect, the following
condition (b) introduced in [24], characterizing rela-
tions representable by a belief function, and condi-
tions (pl), (l), (u) introduced in [1], characterizing



relations representable by a plausibility, a lower prob-
ability, an upper probability, respectively:

(b) ∀E, F, H ∈ A , with E ⊆ F and F ∧H = ∅ ,
E ≺ F ⇒ E ∨H ≺ F ∨H

(pl) ∀E, F, H ∈ A , with E ⊆ F and F ∧H = ∅ ,
E ∼ F ⇒ E ∨H ∼ F ∨H

(l) ∀E, F ∈ A , with E ∧ F = ∅ ,
∅ ≺ E ⇒ F ≺ F ∨ E

(u) ∀E, F ∈ A , with E ∧ F = ∅ ,
∅ ∼ E ⇒ F ∼ E ∨ F .

As proved in [24] and [1], for a binary relation de-
fined on a finite set of events satisfying (c1) − (c3),
conditions (b), (pl), (l) and (u) are also sufficient for
the representability of � by a belief, a plausibility, a
lower or an upper probability, respectively.
We note that none of the above conditions requires
that either of the two implications in (p) be satisfied.
In fact all of them involve only events related by in-
clusion relations (E ⊆ F or ∅ ⊆ E).

On the contrary, notice that the binary relation in-
duced by a conditional probability by putting:

E ∼ F if P (E|E ∨ F ) = P (F |E ∨ F )
E ≺ F if P (E|E ∨ F ) < P (F |E ∨ F )

satisfies the first implication of (p), while the second
one can be violated when P (E ∨ F |E ∨ F ∨H) = 0.

The main aim of this paper is to characterize binary
relations “locally representable” (see below) by a con-
ditional probability P . We will study this problem in
a completely general context, i.e. for a binary relation
defined on an arbitrary set of events and not necessar-
ily complete. Our numerical framework of reference
will be the theory of coherent conditional probabili-
ties and their characterizations in terms of families of
probabilities (see for instance [5, 10]).

More precisely, if E is an arbitrary set of events Ei,
and � a (possibly partial) binary relation, we find
necessary and sufficient conditions for the existence
of a coherent conditional probability, defined on the
following subset of E × E

E∗ = {E|E ∨ F : E � F or F � E} ,
representing �, that is such that:

(∗) E � F ⇒ P (E|E ∨ F ) ≤ P (F |E ∨ F )
E ≺ F ⇒ P (E|E ∨ F ) < P (F |E ∨ F ) .

We characterize also comparative relations repre-
sentable by more general conditional measures: we
find necessary and sufficient conditions for the ex-
istence of a weakly (⊕,�)-decomposable measure ϕ
satisfying condition (∗) with ϕ in place of P , where
⊕ and � are arbitrary operations on [0, 1]2 satisfying
suitable properties on particular sets.

2 The numerical model of reference
What is usually emphasized in the literature – when a
conditional probability P (E|H) is taken into account
– is only the fact that P (·|H) is a probability for any
given H: this is a very restrictive (and misleading)
view of conditional probability, corresponding triv-
ially to just a modification of the so-called “sample
space” Ω.

It is instead essential – for a correct handling of the
subtle and delicate problems concerning the use of
conditional probability – to regard the conditioning
event H as a “variable”, i.e. the “status” of H in E|H
is not just that of something representing a given fact,
but that of an (uncertain) event (like E) for which
the knowledge of its truth value is not required (this
means, using a terminology due to Koopman [19], that
H must be looked on – even if asserted – as being
contemplated : similar terms are, respectively, acquired
versus assumed).

We generalize (or better, in a sense, we give up) the
idea of de Finetti of looking at a conditional event
E|H, with H 6= ∅, as a 3–valued logical entity (true
when both E and H are true, false when H is true
and E is false, “undetermined” when H is false) by
letting the third value suitably depend on the given or-
dered pair (E, H) and not being just an undetermined
common value for all pairs: it turns out (as explained
in detail in [11], [12]) that this function is a measure
of the degree of belief in the conditional event E|H,
which under suitable (and natural) conditions is the
conditional probability P (E|H) (in its most general
sense related to the concept of coherence, and satis-
fying the classic axioms as given by de Finetti [14],
Rényi [22], Dubins [15]), or, more generally, a decom-
posable conditional measure (see below).

A peculiarity (which entails a large flexibility in the
management of any kind of uncertainty) of this con-
cept of coherent conditional probability is that, due
to its direct assignment as a whole, the knowledge
(or the assessment) of the “joint” and “marginal” un-
conditional probabilities P (E ∧ H) and P (H) is not
required; moreover, the conditioning event H (which
must be a possible event) may have zero probability.

The classic axioms for conditional probability (given a
set C = G ×Bo of conditional events E|H such that G
is a Boolean algebra and B ⊆ G is closed with respect
to (finite) logical sums, and putting Bo = B \ {∅} )
are:

(i) P (H|H) = 1, for every H ∈ Bo ,

(ii) P (·|H) is a (finitely additive) probability on G for
any given H ∈ Bo ,

(iii) P
(

(E ∧ A)|H
)

= P (E|H) · P
(

A|(E ∧ H)
)

, for



every E, A ∈ G and E, E ∧H ∈ Bo.

A conditional probability P is defined on G × Bo :
however it is possible, through the concept of coher-
ence, to handle also those situations where we need
to assess P on an arbitrary set of conditional events
C = {E1|H1, . . . , En|Hn}.

Definition 1 - The assessment P (·|·) on C is coher-
ent if, given C′ ⊃ C, with C′ = G × Bo, it can be
extended from C to C′ as a conditional probability.

A characterization of coherence is given by the follow-
ing theorem (see, e.g., [5], [10], [11]).

Theorem 1 - Let C be an arbitrary finite family of
conditional events and Ao denote the set of atoms
Ar generated by the events E1,H1, . . . , En, Hn. For
a real function P on C the following two statements
are equivalent:

(i) P is a coherent conditional probability on C;

(ii) there exists (at least) a class of probabilities
{P0, P1, . . . Pk}, each probability Pα being defined on a
suitable subset Aα ⊆ A0, such that for any Ei|Hi ∈ C
there is a unique Pα with

∑

r
Ar⊆Hi

Pα(Ar) > 0 , P (Ei|Hi) =

∑

r
Ar⊆Ei∧Hi

Pα(Ar)
∑

r
Ar⊆Hi

Pα(Ar)
;

moreover Aα′ ⊂ Aα” for α′ > α” and Pα”(Ar) = 0 if
Ar ∈ Aα′ .

Any class {Pα} singled-out by the condition (ii) is
said to agree with the conditional probability P .

The proof of the equivalence between conditions (i)
and (ii) gives rise to an algorithm to test the coher-
ence of the assessment P , based on the equivalence
between condition (ii) and the compatibility of a se-
quence of systems (Sα) with unknowns Pα(Ar) ≥ 0,
Ar ∈ Aα,

(Sα)































∑

r
Ar⊆Ei∧Hi

Pα(Ar) = P (Ei|Hi)
∑

r
Ar⊆Hi

Pα(Ar)

[

if Pα−1(Hi) = 0
]

,
∑

r
Ar⊆Hα

0

Pα(Ar) = 1

where P−1(Hi) = 0 for all Hi’s, and Hα
o denotes, for

α ≥ 0, the union of the Hi’s such that Pα−1(Hi) = 0;
so, in particular, Ho

o = Ho = H1 ∨ . . . ∨Hn .

As proved in the aforementioned papers, conditions
(i) and (ii) are equivalent also to the following de
Finetti’s coherence (as expressed, for example, in
[21]), where pi = P (Ei|Hi):

(iii) for any choice of the real numbers λ1, ..., λn

sup
Ar∧Ho

n
∑

i=1

λiHi(Ei − pi) ≥ 0 ,

where Ho =
n
∨

i=1

Hi.

The random quantity

G =
n

∑

i=1

λiHi(Ei − pi)

can be interpreted as the gain corresponding to a
combination of n bets of amounts λ1p1, . . . , λnpn on
E1|H1, . . . , En|Hn, with arbitrary stakes λ1, . . . , λn.

The previous theory has been extended in [12] to gen-
eral (decomposable) conditional measures; we recall
here some definitions and results:

Definition 2 - Given a boolean algebra E, a weakly
⊕–decomposable measure ϕ : E → [0, 1] is a capacity
such that there exists an operation ⊕ from ϕ(E)×ϕ(E)
to IR+ satisfying the following condition: for every
Ei, Ej ∈ E, with Ei ∧ Ej = ∅ ,

ϕ(Ei ∨ Ej) = ϕ(Ei)⊕ ϕ(Ej) .

It is easily seen that, with respect to the elements of
the following subset of ϕ(E)× ϕ(E)

K = {(ϕ(Ei), ϕ(Ej)) : Ei, Ej ∈ E , Ei ∧ Ej = ∅} ,

the operation ⊕ is commutative, associative, increas-
ing and admits 0 as neutral element. Nevertheless, as
proved by Example 2 of [12], it need not be extensible
to a function defined on the whole ϕ(E)×ϕ(E) (and so
neither on [0, 1]2) and satisfying the same properties.

Definition 3 - Given a family C = E ×H0 of condi-
tional events, where E is a boolean algebra, H an addi-
tive set, with H ⊆ E and H0 = H\{∅}, a real function
ϕ defined on C is a weakly (⊕,�)–decomposable con-
ditional measure if

(γ1) ϕ(E|H) = ϕ(E ∧ H|H), for every E ∈ E and
H ∈ Ho ,

(γ2) there exists an operation ⊕ : ϕ(C)×ϕ(C) → ϕ(C)
whose restriction to the set

∆ = {(ϕ(Ei|H), ϕ(Ej |H)) : Ei, Ej ∈ E , H ∈ H0},

with Ei ∧ Ej ∧ H = ∅ , is (commutative, associative
and) increasing, admits 0 as neutral element, and is
such that, for any given H ∈ Ho , ϕ(·|H) is a weakly
⊕–decomposable measure,

(γ3) there exists an operation � : ϕ(C)×ϕ(C) → ϕ(C)
whose restriction to the set



Γ = {(ϕ(E|H), ϕ(A|E∧H)) : A ∈ E , E,H, E∧H ∈ Ho}
is (commutative, associative and) increasing, admits 1
as neutral element and is such that, for any A, E ∈ E
and E, E ∧H ∈ Ho,

ϕ
(

(E ∧A)|H
)

= ϕ(E|H)� ϕ
(

A|(E ∧H)
)

,

(γ4) The operation � is distributive over ⊕ for rela-
tions of the kind

ϕ(H|K)�
(

ϕ(E|H ∧K)⊕ ϕ(F |H ∧K)
)

,
with K, H ∧K ∈ H0 , E ∧ F ∧H ∧K = ∅ .

Definition 4 - E is a finite Boolean algebra, H an
additive set, with H ⊆ E and H0 = H \ {∅}, and
A = {Ar}r=1,2,...,m is the set of atoms of E. Let {Aα}
be a class of subsets of atoms, with Aα” ⊂ Aα′ for
α” > α′ , A0 = A, and, given two operations ⊕ and
� from IR+×IR+ to IR+, let {ϕ0, ϕ1, . . .} be a relevant
class of ⊕–decomposable measures defined on E such
that, for any α, the equation

(1) ϕα(EiHi) = x� ϕα(Hi) .

has a solution x ∈ [0, 1]. Moreover ϕα”(Ar) = 0 for
every Ar ∈ A\Aα” , and an atom Ar belongs to Aα”,
with α” ≥ 1 , if and only if there exists Hi ∈ H0, with
Ar ⊆ Hi, such that, for every α < α” , there exists
Ei ∈ E for which there is not a unique solution of
equation (1).

The elements of the class {ϕ0, ϕ1, . . . , ϕk} , with
k ≤ m, will be called almost generating measures. If
� is distributive over ⊕, they will be called generating
measures.

In [12] a general result related to characterization of
weakly (⊕,�)–decomposable conditional measures is
proved: we state here a theorem which is a corollary
of that one.

Theorem 2 - Let C = E × H0, with E a boolean al-
gebra, H an additive set, H ⊆ E and H0 = H\ {∅}, a
finite family of conditional events, and let A = {Ar}
denote the set of atoms of E. Let ϕ be a real func-
tion defined on C, and ⊕ ,� two operations from
ϕ(C) × ϕ(C) to IR+. Then the following two state-
ments are equivalent:

(a) ϕ is a weakly (⊕ , �)–decomposable conditional
measure on C, with ⊕ and � strictly increasing on
∆ and Γ respectively and � distributive over ⊕;

(b) there exists a (unique) class of generating ⊕–
decomposable measures such that, for any Ei|Hi ∈ C,
there is a unique α such that x = ϕ(Ei|Hi) is the
unique solution of the equation

(2)
⊕

Ar⊆EiHi

ϕα(Ar) = x�
⊕

Ar⊆Hi

ϕα(Ar) .

3 Some Examples

We discuss now some example to introduce the rele-
vant topics.

Example 1 - Given an experiment consisting of two
tosses of a coin, consider the following events:

A1 = “In the first toss the coin stands up (or is lost)
and in the second toss it shows heads”,

A2 = “In the first toss the coin stands up (or is lost)
and in the second toss it shows tails”,

A3 = “In both tosses the coin shows heads”.

Certainly, if we have a very low degree of belief in the
coin standing up (or being lost), the most reasonable
ordinal relation � expressing the comparative degree
of belief on the occurrence of the above events, is the
following:

∅ ≺ A1 ∼ A2 ≺ A1 ∨A2 ≺ A3 ∼ A1 ∨A3 ∼
∼ A2 ∨A3 ∼ A1 ∨A2 ∨A3.

The next example takes in consideration the case that
the expert, or the decision maker, orders with respect
to his degree of belief some (possibly, a finite num-
ber) events picked out from a necessarily infinite class
constituting the model of the problem.

Example 2 - Consider the process of recording the rain
quantity fallen on New York during June. The data
base consists of ten numbers x1, . . . , xn, xi 6= xj for
i 6= j, representing the rain quantities of the last ten
years. Let now x0 be a quantity different from all
the previous ones and, putting X=“rain quantity in
New York in the next month of June”, consider the
following events:

B1 = {X = x0}, B2 =
10
∨

i=1

{X = xi},

B3 = {X < 1
2min{xi}},

B4 = {min{xi} < X < max{xi}, X 6= xi}.

One possible “natural” relation expressing the degrees
of belief on the occurrence of the given events is the
following:

∅ ≺ B1 ≺ B2 ≺ B1∨B2 ≺ B3 ∼ B1∨B3 ∼ B2∨B3 ∼
∼ B1 ∨B2 ∨B3 ≺ B4 ∼ B1 ∨B2 ∨B4 ≺

≺ B4 ∨B3 ∼ B4 ∨B1 ∨B2 ∨B3 .

Going back to Example 1 and taking into account that
A1∧A3 = (A1∨A2)∧A3 = ∅ and A1 ⊂ A1∨A2, then
the relations A1 ≺ A1∨A2 and A1∨A3 ∼ A1∨A2∨A3

imply that there exists neither an additive nor a belief
function representing � .

With similar considerations, we can conclude that also
in Example 2 there is neither an additive nor a belief



function representing � . Yet, there exists a plausi-
bility (and so an upper probability) representing the
comparative structures of Examples 1 and 2.

Nevertheless, we notice that both comparative assess-
ments satisfy a condition stronger than (pl). In fact
they satisfy the first implication of condition (p), and
moreover they are locally representable by a coherent
conditional probability. In particular, the compara-
tive structure of Example 1 can be locally represented
by the following conditional probability (i = 1, 2):

P (Ai|A1 ∨A2) = 1/2 ,

P (Ai|Ai ∨A3) = P (Ai|A1 ∨A2 ∨A3) =
P (A1 ∨A2|A1 ∨A2 ∨A3) = 0 ,

P (A3|Ai ∨A3) = P (A3|A1 ∨A2 ∨A3) =
= P (A1∨A2|A1∨A2) = P (A3∨Ai|A1∨A2∨A3) = 1 .

Analogously, the comparative structure of Example 2
can be locally represented by a conditional probabil-
ity, which is the additive extension of the following
assessment:

P (B1|B1 ∨B2) = 1
3 , P (B2|B1 ∨B2) = 2

3 ,

P (Bi|H) = P (Bi|K) = 0 , P (B3|H) = P (B4|K) = 1 ,
with H ⊇ Bi ∨B3, K ⊇ Bi ∨B4, i = 1, 2 ;

P (Bj |B1 ∨B2 ∨Bj) = 1, j = 3, 4 ,

P (B3|W ) = 1
4 , P (B4|W ) = 3

4 , for W ⊇ B3 ∨B4 .

4 Local representation as a tool to
manage partial knowledge

A comparative structure “local representable” by a
conditional probability can be also a good model for
comparative degrees of belief between default rules.

Example 3 - Consider the rule: A= “Typically, birds
can fly”, and the following comparative structure

∅ ≺ ¬A ≺ A ∼ A ∨ ¬A .
The conditional probability P such that

P (∅|¬A ∨ ∅) = P (¬A|¬A ∨A) = 0 ;

P (¬A|¬A ∨ ∅) = P (A|A ∨ ¬A) =
= P (A ∨ ¬A|A ∨ ¬A) = 1.

locally represents this binary relation.

We consider now a situation arising in inferential
(Bayesian) statistics, concerning the so–called “im-
proper” distributions: we recall the notion of pseudo-
density introduced in [23].

Definition 5 - Given a comparative probability �
on a set C of atoms, let X be a random variable (a
map from C to Θ ⊆ IR). A pseudodensity α of X is
a function defined on IR, positive on Θ, representing
� , i.e., given x, y ∈ Θ and putting X−1(x) = Cx,

α(x) ≤ α(y) ⇐⇒ Cx � Cy.

Trivial examples are the following: (i) Let X be a
discrete random variable with values in Θ ⊆ IR and
with a discrete (everywhere positive) probability dis-
tribution P (X = x) > 0 for every x ∈ Θ: clearly,
the function α(x) = P (X = x) is a pseudodensity of
X. (ii) If X is a continuous random variable with
probability density f(x) (> 0 for x ∈ Θ), then f is a
pseudodensity of X.

Notice that every point x of the support Θ of α cor-
responds to the atom Cx = {X = x}. The function
defined on C = {Cx|Cx ∨ Cy} by putting, for x 6= y,

P (Cx|Cx ∨ Cy) =
α(x)

α(x) + α(y)

is a coherent conditional probability, as can be easily
proved using Theorem 5 of [10] (for a direct proof, see
[18]). It locally represents � , that in general may not
be representable by a (non–conditional) probability.

Consider the comparative probability on the set of
atoms C = {Cx : x ∈ [0, 1]}, defined as follows:
∅ ≺ Cx and Cx ∼ Cy for every x, y ∈ [0, 1]. This
ordinal relation is represented by the class of con-
stant pseudodensities α(x) = k for every x ∈ [0, 1],
with k > 0. Hence, � is locally represented by the
conditional probability

P (Cx|Cx ∨ Cy) =
1
2

for every pair of atoms Cx, Cy ∈ C. Notice that for
k = 1 the pseudodensity α(x) = k can be seen also
as a uniform density on the bounded interval [0, 1].
But when x belongs to an unbounded interval, or,
more generally, to an arbitrary subset of IR, α is not
a density: in the statistical literature it is dubbed
as an “improper” distributions (because its integral
is not finite). Nevertheless, in our framework α is a
proper tool, since it is just a point function, with no
underlying measure. The pseudodensity α(x) = k for
every x ∈ Θ (arbitrary subset of IR, bounded or not,
measurable or not) is called uniform pseudodensity.

5 Weak local coherence

We consider now a comparative probability (possibly
partial, and translating the idea of not more proba-
ble than) on a set of (unconditional) events E . Let
≺ denote the strict relation (i.e., less probable than)
and let ∼ be the equivalence relation (i.e., equally
probable as).

Let S = {(E, F ) : E ≺ F} , E = {(E, F ) : E ∼ F} ,
T = {(E,F ) : E � F}. We have S ∩ E = ∅ and
S∪E ⊂ T, where the inclusion can be strict, if there is
some pair (E, F ) such that E is judged not more prob-
able than F , but there is no information (at present)
that allows to be more specific.



Definition 6 - A weakly locally coherent compara-
tive probability � is a comparative probability satis-
fying (c3) and the following axioms:
(c1′) ∅ ≺ E for every E ∈ E , E 6= ∅
(c2′) � has no intransitive cycles.
(cp) for every E, F, H,E∨H, F∨H ∈ E with E∧H =
F ∧H = ∅

E � F ⇒ ¬(F ∨H ≺ E ∨H)
moreover, if F ≺ F ∨H or F ∼ H, then

E ≺ F ⇒ ¬(F ∨H � E ∨H).

The above system of axioms, introduced in [6], is the
natural generalization of that proposed in [9], which
referes to a complete binary relation defined on an al-
gebra of events. These axioms are (c1′), (c2), (c3) and
the following:
(C4) for every E, F, H ∈ E , with H ∧ (E ∨ F ) = ∅ ,
if F ≺ F ∨H or F ∼ H, then

E ≺ F ⇔ (E ∨H ≺ F ∨H).
The axioms of Definition 6 in fact are necessary to ex-
tend � to a complete relation on a Boolean algebra
satisfying the axioms given in [9], and they are suffi-
cient if (cp) is required on the transitive closure (i.e.,
the smallest, with respect to ⊆ , transitive relation
extending � ). In this case, we call almost complete
the comparative probability � .

We just note that, by (c1’), for a weakly locally
coherent comparative probability, any possible event
is strictly “more probable” than the impossible one.
This intuitive axiom (that was already in de Finetti
[13]) has been later weakened, essentially in order
to represent � by a (non–conditional) probability.
Moreover, axiom (cp) is an actual weakening of axiom
(p); in fact it requires the additivity only for events
E, F of the “same order of probability”, in the follow-
ing sense.

For a comparative structure (E ,�), with � a weak
locally coherent comparative probability, we can asso-
ciate to every event E the family A(E) of the events
“infinitely less probable” than E, and then the fam-
ily B(E) of the events which are of the “same order
of probability” as E, with respect to the comparative
probability � . So we define:

A(E) = {F ∈ E : ∃Ei ∼ Fi � E, Fi ⊂ Ei} ,

with i = 1, . . . , n, and F ⊆
n
∨

i=1

(Ei ∧ F c
i ) .

We note that if � is complete, satisfies (B1) − (B4)
and E is an algebra, then for every E ∈ E the set A(E)
coincides with the set AE , whose definition clearly
intends to express the meaning as a class of events
“infinitely less probable than E”:

AE = {F ∈ E : E ∼ E ∨ F ∼ E ∧ F c}.

The proof that A(E) ⊇ AE is immediate, considering
E1 = E ∨ F and F1 = E ∧ F c. We prove now that
A(E) ⊆ AE . First notice that if G ⊆ F and F ∈ AE ,
then, by definition of AE , using (cp), we have that
G ∈ AE . Therefore it is sufficient to prove that any
F ∈ A(E), with F =

∨n
i=1(Ei ∧ F c

i ), is an element
of AE . Putting Ki = (Ei ∧ F c

i ), taking into account
the definition of A(E) and axiom (cp), for every i =
1, . . . n we have

E ∼ Ei = Fi ∨Ki ∼ E ∨Ki ,

E ∼ Fi = Fi ∧Kc
i ∼ E ∧Kc

i .

By (cp) and (c1) we get E ∼ E ∨ F ∼ E ∧ F c.

We can now define the set of events with the same
order of probability of E

B(E) = {F ∈ E : F 6∈ A(E) and E 6∈ A(F )} .

If � is complete, satisfies (c1′), (c2), (c3) and (cp),
and E is an algebra, the sets AE and B(E) satisfy
many structural properties, as proved in the quoted
paper [9].

We only recall here that {B(E) : E ∈ E} is a parti-
tion of E (independently of the logical structure of E).
Moreover, we note that for every E,F ∈ E , putting
G = max�{E, F}, we have E ∨ F ∈ B(G).

Finally, we notice that if, in particular, (p) holds, then
for every E ∈ E the set A(E) is empty: in fact in this
case all the events are element of B(Ω).

Consider now the problem of the local representabil-
ity of a comparative probability � . We first note
that if a comparative probability � , satisfying axiom
(c1′), is representable by a (strictly positive) coherent
probability, then � is obviously locally representable
by a (coherent) conditional probability. Using the ex-
amples of Section 3, it is immediate to see that the
converse is not true. The following Proposition, whose
proof is straightforward, gives a necessary condition
for the local representability.

Proposition - Let � be a comparative probability
defined on an arbitrary family of events E, contain-
ing the impossible event ∅. If there exists a coherent
conditional probability P , defined on F ⊆ E ×E0, rep-
resenting �, then � is a weakly locally coherent com-
parative probability.

The converse is not true, that is axioms
(c1′), (c2′), (c3), (cp) are not sufficient to guar-
antee the existence of a conditional probability
locally representing a comparative probability �,
even if the latter is a complete relation and E is an
algebra. Consider in fact the well known example,
given in [20], consisting of an algebra spanned by
five atoms, and a comparative probability satisfying



axioms (c1)′, (c2), (c3), (p), but not representable by
any additive function.

Clearly, in this case, since (p) holds, the existence of
a conditional probability locally representing � coin-
cides with the existence of a (strictly positive) prob-
ability representing � . Nevertheless, we can give a
characterization of weakly locally coherent compara-
tive probabilities in terms of weak decomposable con-
ditional measures.

Theorem 3 - Let E be a finite family of events con-
taining ∅, and A = {Ar} the set of atoms generated
by E. If A∗ is the algebra spanned by A, for a com-
parative probability � in E the following statements
are equivalent:
(i) � is an almost complete weakly locally coherent
comparative probability;
(ii) there exists a class of subsets of atoms {Aα} (with
Aα′′ ⊂ Aα′ for α′′ > α′ and A0 = A) and a rele-
vant class of weakly ⊕α–decomposable measures ϕα,
with ⊕α strictly increasing, defined on A∗ and such
that for every E � F ∈ E [E ≺ F ∈ E ] there ex-
ists a unique α with ϕα(F ) > 0 and ϕα(E) ≤ ϕα(F )
[ϕα(E) < ϕα(F )]. Moreover ϕα”(Ar) = 0 for every
Ar ∈ A \ Aα” , and an atom Ar belongs to Aα”, with
α” ≥ 1 , iff Ar ∈ Aα”−1 and ϕα”−1(Ar) = 0.
(iii) there exists a weakly (⊕,�)–decomposable con-
ditional measure ϕ, with ⊕ and � strictly increasing
on ∆ and Γ respectively and � distributive over ⊕ ,
locally representing � .

Proof - We prove implication (i)⇒ (ii). We denote by
the same symbol � any complete relation extending
� in A and satisfying (c1′), (c2′), (c3), (cp). Let E0 be
a maximal element of E with respect to � (i.e., E0

is such that there exists no E ∈ E with E0 ≺ E).
We consider on E the relation �0, defined by putting:
Ei �0 Fi if Ei � Fi and Fi ∈ B(E0) , and Ek ∼0 ∅
if Ek ∈ A(E0). Since �0 is a total preorder and A∗
is finite, then there exists a function ϕ0 representing
�0 . By axiom (c1’) it follows that ϕ0 is positive for
all the events in B(E0), and by axiom (c2) we have
that ϕ0 is monotone with respect to ⊆ . Define now
⊕0 by putting, for every E, F such that E ∧ F = ∅ ,
ϕ0(E ∨F ) = ϕ0(E)⊕0 ϕ0(F ). It is easy to prove that
ϕ0 is strictly monotone, symmetric, associative and
admits 0 as neutral element in K. Let E1 = A(E0) and
A1 the relevant set of atoms (and letA∗1 be the algebra
spanned by it). Denote by E1 a maximal element of
E1, and define in E1 the relation �1 by putting:
Ei �1 Fi if Ei � Fi and Fi ∈ B(E1)
Ek ∼1 ∅ if Ek ∈ A(E1).
By the same considerations made for �0 , we obtain
a capacity ϕ1 : A∗1 → [0, 1] representing �1 and ⊕1.
In a finite number n of steps we get that En contains

only the impossible event ∅.
We prove now the implication (ii) ⇒ (iii). Define ⊕
by putting, for every Ei, Fi ∈ K, with Ei � Fi,

Ei ⊕ Fi = Ei ⊕α Fi ,

where α is the index such that ϕα(Fi) > 0. Since
{B(E) : E ∈ E} is a partition and ⊕α has 0 as neu-
tral element for every α, the operation ⊕ is well de-
fined. Consider now an arbitrary operation � defined
on {ϕ(E|H) : E,H ∈ A∗,H 6= ∅}, commutative, dis-
tributive over ⊕ and whose restriction to ∆ is asso-
ciative, strictly monotone and admits 1 as neutral el-
ement, and put, for every E,F ∈ A∗,

ϕ(E|F ) = ϕα(E ∧ F )� ϕα(F ) ,

where ϕα is the relevant ⊕–decomposable mea-
sure, with ϕα(F ) > 0. By Theorem 2, ϕ is a
weakly (⊕ , �)–decomposable conditional measure,
and, since � is strictly monotone, we have, for ev-
ery Ei � Fi,

ϕ(Ei|Ei ∨ Fi) ≤ ϕ(Fi|Ei ∨ Fi)

and similarly for the strict inequalities.
The proof of implication (iii) ⇒ (i) is straightforward.

Remark - We notice that Example 2 of [12] shows
that it is impossible to prove that ⊕ is extensible to
a symmetric, strictly increasing and associative oper-
ation on the whole ϕ(E) × ϕ(E) (and so neither on
[0, 1]2). This leads to some comments concerning a
well-known result by Fine ([17], Chapter II, Theorem
4): in fact, if, in particular, (p) holds, then (in a fi-
nite setting) the assumptions of the latter theorem
and those of our Theorem 3 coincide, but Fine’s the-
orem asserts that ⊕ is commutative, associative and
strictly increasing on [0, 1]2, even if his proof (given in
the Appendix of [17]) actually shows that ⊕ is com-
mutative, associative and strictly increasing only for
pairs belonging to K.

In [12] we mentioned that also J. Halpern has noticed
a flaw in Fine’s theorem.

6 Local coherence

We give now a condition of local coherence (already
introduced in [6] and generalizing the coherence condi-
tion given in [2]), which is necessary and sufficient for
the existence of a coherent probability representing
a not necessarily complete comparative probability.
Condition (lc) is stated in terms of sums of indicator
functions, then it is essentially an algebraic condition.

Definition 7 - We say that a binary relation �, de-
fined on a set of events E is a locally coherent compar-
ative probability if it satisfies the following condition



(lc) for every n ∈ N, Ei, Fi ∈ E , ci > 0,

if Ei � Ei and sup
∑

i ci(IFi − IEi) ≤ 0 ,

then either of the following conditions hold

(a) Ei ∼ Fi, for every i,
(b) if Ei ≺ Fi for some i, then there exists j 6= i ,
with j ∈ {1, . . . , n}, such that Fi ∈ A(Fj) .

It is possible to give an interpretation of (lc) in terms
of coherent bets. In fact we may regard ci(IFi−IEi) as
an exchange between a bookie and a gambler, which
yields an amount ci to the bookie if Fi happens, and
the same amount ci to the gambler if Ei happens.
This is betting even money on Fi versus Ei. Suppose
to have this rule: if Ei � Fi for i = 1, . . . n, the bookie
should accept any combination of bets, with ci > 0,
on Fi versus Ei. The relation � is incoherent if there
exists one of these combinations, with a surely not
positive gain and at least a pair of events Ei ≺ Fi not
infinitely less probable than some other.

The following Proposition, whose proof is direct, stud-
ies connections between “local coherence” and “weak
local coherence”.

Proposition - Let � be a comparative probability de-
fined in an arbitrary family of events E. If � is not
trivial and (lc) holds, then � satisfies (c1), (c2), (c3)
and (cp).

Notice that condition (lc) does not imply axiom (c1′),
but only a weak form of it.

7 Extending locally coherent
comparative probability

The following theorem deals with extensibility of a
locally coherent assessment. The proof follows the line
of similar theorems in [2] and is inspired by classic de
Finetti–extension theorem for coherent probabilities.

Theorem 4 - Let E be a family of events and � a
corresponding comparative assessment; then there ex-
ists a (possibly not unique) total locally coherent ex-
tension �∗ of � to an arbitrary family G of events,
with G ⊇ E, if and only if � is locally coherent on E.
In particular, if G = E ∨ {G}, there exists a unique
suitable partition of E in families E1, E2, E3, E4 such
that locally coherent extensions of � are all relations
with G ≺ E for every E ∈ E1, G ∼ F for every
F ∈ E2, H ≺ G for every H ∈ E3.

Proof - For the sake of brevity, we give only the proof
of the second part (from which the first one follows
in the usual way). Let us consider the following sets:
E1 is the set of events E of E such that there ex-
ist αi > 0, Ei � Fi (i = 1, . . .m), E1 ≺ F1, and

Fi ∈ B(
∨m

2 Fi) such that

sup
∑

i

[αi(IFi − IEi) + (IE − IG)] ≤ 0 ;

E2 is the set of events F ∈ E such that there ex-
ist βj > 0, Ej � Fj (j = 1, . . . r), E1 ≺ F1, and
F1, F ∈ B(

∨r
2 Fj) such that

sup
∑

j

[βj(IFj − IEj ) + (IG − IF )] ≤ 0 ;

E3 is the set of events H ∈ E such that there exist
δk > 0, Ek ∼ Fk (k = 1, . . . s) and H ∈ B(

∨s
1 Fk)

such that

sup
∑

k

[δk(IFk − IEk) + (IH − IG)] ≤ 0 .

Notice that if we have the latter inequality, we have
also a similar inequality with (IG − IH) in place of
(IH − IG). We prove now that for every E ∈ E1 ,
F ∈ E2 , H ∈ E3 , we have F ≺ H ≺ E. Suppose
H ≺ F . Then by definition of E2 and E3 we have

sup[
∑

k

δk(IFk−IEk)+
∑

j

βj(IFj−IEj )+(IH−IF )] ≤ 0

contrary to the hypothesis of local coherence of � .
The proof of the second inequality is similar. Now
we can proceed to assign the following relations: for
every E ∈ E1, put G ≺ E; for every F ∈ E2, put
F ∼ G; for every H ∈ E3, put H ≺ G. Moreover, for
every K ∈ E \ (E1 ∨ E2 ∨ E3) any relation is locally
coherent.

We give now a theorem characterizing local coherence.

Theorem 5 - Let E be a finite family of events con-
taining ∅, E∗ = {E|E ∨ F : E � F or F � E} ,
and � a comparative probability in E. The following
statements are equivalent:
(i) � satisfies (c1′) and (lc);
(ii) there exists a coherent (conditional) probability
P : E∗ → [0, 1] locally representing � .

Proof - In the proof of the implication (i) ⇒ (ii) we
actually build a coherent conditional P , locally rep-
resenting � , by a suitable set of probability distribu-
tions on relevant families of atoms satisfying condition
(ii) of Theorem 1. Let �0 be as in Theorem 3. We
first note that the unique locally coherent extension
of � (and so of �0) to the pairs E1 ∧ Ec

k, E1 ∨ Ek is
E1 ∧Ec

k ∼ E1 ∨Ek (and so E1 ∧Ec
k ∼0 E1 ∨Ek). Let

A the set of atoms generated by E and consider the
following linear system S0, where the unknown is the
m-vector W0 = (w0

1, . . . , w
0
m) (m is the cardinality of

the set A0 = A) and IG denotes the indicator vector

(S0)















(IFi − IEi)W0 > 0 if Ei ≺0 Fi
(IFj − IEj )W0 ≥ 0 if Ej �0 Fj

IEkW0 = 0 if Ek ∼0 ∅
W0 ≥ 0 .



Such a system is equivalent to the following

(S′0)















(IFi − IEi)W0 > 0 if Ei ≺0 Fi

I(Fj − IEj )W0 ≥ 0 if Ej �0 Fj

(IE1∧Ec
k
− IE1∨Ek)W0 = 0 if Ek ∼0 ∅

W0 ≥ 0 .

By using a well known theorem of alternative (see,
for instance [16]), it is easy to prove that S′0 has a
solution if (and only if) the following system T ′0 (where
E′

k = E1 ∧ Ec
k and Ek” = E1 ∨ Ek) has no solution

(we put Gi = IFi − IEi)

(T ′0)
{ ∑

λiGi +
∑

µjGj +
∑

ξk(E′
k − Ek”) ≤ 0

λi, µj , ξk ≥ 0,
∑

λi > 0 .

It is easy to see that (T ′0) has a solution if (and only
if) � does not satisfy condition (lc). The function
P0 : A0 → [0, 1] defined by putting, for any Ak ∈ A0,

P0(Ak) =
w0

k
∑n

1 w0
i

is a probability distribution, and its (coherent) exten-
sion on the events Ei represents �0 , since it satisfies
system S0. Let �1 be as in Theorem 3. Going on by
the same procedure as that followed for �0 , we ob-
tain a probability distribution P1 : A1 → [0, 1], whose
extension represents �1 ; and so on. After a finite
number n of steps, we get that En contains only the
impossible event ∅. Now, for every E|E ∨ F ∈ E∗, we
define

P (E|E ∨ F ) =
Pk(E)

Pk(E ∨ F )
,

where k is such that E ∨ F ∈ B(Ek). By Theorem 2
it follows that P is a coherent conditional probability.
It is immediate to prove that P locally represents �.
We prove now the implication (ii) ⇒ (i). By Theorem
2 we have that there exist P0, . . . , Pk such that P0 =
P (·|

∨

E∈E E) represents the restriction of � to the set
C0 of the pairs Ei � Fi with P0(Fi) > 0, and give the
same probability (P0(Fj) = P0(Ej) = 0) to the pairs
Ej � Fj with P0(Fj) = 0. So P0 is solution of system
S0. On the other hand, P1(·) = P (·|

∨

E:P0(E)=0 E)
represents the restriction of � to the relevant set C1
and is zero elsewhere, therefore is the solution of sys-
tem (S1), and so on. The conclusion follows, since by
the theorem of alternative all the systems S0, . . . , Sk

can have solution if (and only if) � satisfy (lc).
To prove that � satisfy (c1′) it is sufficient to recall
that P (∅|E) = 0 and P (E|E) = 1 for every E.

8 Strong local coherence

For infinite set of events, condition (lc) is not suf-
ficient to assure that there exists a coherent condi-
tional probability P representing � . We introduce
now a condition of strong local coherence (slc)

Definition 8 - A binary relation � , defined on a set
of events E, is a strongly locally coherent comparative
probability if it satisfies the following condition
(slc) for every Ei � Fi there exists δi ≥ 0 , with
δi > 0 for Ei ≺ Fi, such that for every n ∈ N,
Ei, Fi ∈ E , ci > 0, one has that

Ei � Fi and sup
∑

i ci(IFi − IEi − δiIEi∨Fi) ≤ 0

imply either of the following conditions

(a) Ei ∼ Fi, for every i,
(b) if Ei ≺ Fi for some i, then there exists j 6= i ,
with j ∈ {1, . . . , n}, such that Fi ∈ A(Fj) .

It is possible to give an interpretation of (slc) (in
terms of coherent bets) similar to that for condition
(lc), by regarding δi as a penalty that one must pay
to bet on a more probable event.

It is immediate to prove the following result.

Proposition - Let � be a comparative probability
defined in an arbitrary family of events E . If � satis-
fies (slc), then � satisfies (lc)

A result very similar to that of Theorem 4 can be
proved in the case of strong local coherence.

Local strong coherence characterizes comparative
probabilities locally representable by coherent condi-
tional probability on an arbitrary set of events:

Theorem 6 - Let E be an arbitrary family of events
containing ∅, A the set of relevant atoms, and �
a comparative probability in E. The following state-
ments are equivalent:
(i) � satisfies (c1′) and (slc);
(ii) there exists a coherent conditional probability
P : E∗ → [0, 1] locally representing � .

The theorem can be proved by using a compactifica-
tion theorem and the following

Lemma - Let E be an arbitrary family of events con-
taining ∅ and � a comparative probability in E. The
following statements are equivalent:
(i) � satisfies (c1′) and (slc);
(ii) for every finite set F contained in E, there ex-
ists a coherent conditional probability PF defined on
F∗ = {E|E ∨ F : E, F ∈ F , E � F or F � E} , lo-
cally representing the restriction of � to F and such
that, for every Ei, Fi ∈ F with Ei ≺ Fi , we have
PF (Fi)− PF (Ei) ≥ δi .
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non archimedee e realizzabilitá. Riv. Mat. Sci.
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