Nonmonotonic Upper Probabilities and Quantum Entanglement

Patrick Suppes Stanford University

Abstract

A well-known property of quantum entanglement phenomena is that random variables representing the observables in a given experiment do not have a joint probability distribution. The main point of this lecture is to show how a generalized distribution, which is a nonmonotonic upper probability distribution, can be used for all the observables in two important entanglement cases: the four random variables or observables used in Bell-type experiments and the six correlated spin observables in three-particle GHZ-type experiments. Whether or not such upper probabilities can play a significant role in the conceptual foundations of quantum entanglement will be discussed.

Definition 1 Let Ω be a nonempty set, \mathcal{F} a Boolean algebra on Ω, and P^{*} a realvalued function on \mathcal{F}. Then $\boldsymbol{\Omega}=\left(\Omega, \mathcal{F}, P^{*}\right)$ is an upper probability space if and only if for every A and B in \mathcal{F}
$1.0 \leq P^{*}(A) \leq 1$;
2. $P^{*}(\emptyset)=0$ and $P^{*}(\Omega)=1$;
3. If $A \cap B=\emptyset$, then $P^{*}(A \cup B) \leq P^{*}(A)+$ $P^{*}(B)$.
Moreover, P^{*} is monotonic if and only if whenever $A \subseteq B$

$$
P^{*}(A) \leq P^{*}(B)
$$

Theorem 1 Joint Distribution Theorem. Let \mathbf{X}, \mathbf{Y}, and \mathbf{Z} be random variables with possible values 1 and -1 , and with

$$
E(\mathbf{X})=E(\mathbf{Y})=E(\mathbf{Z})=0
$$

Then a necessary and sufficient condition for the existence of a joint probability distribution of the three random variables is that the following two inequalities be satisfied.

$$
\begin{aligned}
& -1 \leq E(\mathbf{X Y})+E(\mathbf{Y Z})+E(\mathbf{X Z}) \leq 1 \\
& +2 \min \{E(\mathbf{X Y}), E(\mathbf{Y Z}), E(\mathbf{X Z})\} .
\end{aligned}
$$

Corollary 1 In the symmetric case, where

$$
E(\mathbf{X Y})=E(\mathbf{Y Z})=E(\mathbf{X Z})
$$

the inequalities simplify to

$$
-\frac{1}{3} \leq E(\mathbf{X Y}) \leq 1
$$

Consider three random variables \mathbf{X}_{1}, $\mathbf{X}_{2}, \mathbf{X}_{3}$ with values ± 1 and expectations

$$
\begin{aligned}
& E\left(\mathbf{X}_{1}\right)=E\left(\mathbf{X}_{2}\right)=E\left(\mathbf{X}_{3}\right)=0 \\
& \quad \operatorname{Cov}\left(\mathbf{X}_{i}, \mathbf{X}_{j}\right)=-1, \quad i \neq j
\end{aligned}
$$

We use the notation

$$
p_{i \bar{j}}=P\left(\mathbf{X}_{i}=1, \mathbf{X}_{j}=-1\right), \text { etc. }
$$

So

$$
\begin{array}{r}
p_{i \bar{j}}=p_{\bar{i} j}=\frac{1}{2}, \quad i \neq j \\
p_{i j}=p_{\overline{i j}}=0 .
\end{array}
$$

This implies, to fit the correlations,

$$
\begin{aligned}
& p_{i \bar{j}}^{*}=\frac{1}{2}, p_{\overline{i j}}^{*}=\frac{1}{2} \\
& p_{i j}^{*}=0, p_{\overline{i j}}^{*}=0 .
\end{aligned}
$$

Note that

$$
p_{i \bar{j}}^{*}=P^{*}\left(\mathbf{X}_{i}=1, \mathbf{X}_{j}=-1\right)
$$

Since "mixed" $i \bar{j}$ or $\bar{i} j$ never occur in p_{123}^{*} or $p \frac{*}{123}$, we may set

$$
p_{123}^{*}=p_{123}^{*}=0
$$

By symmetry and to satisfy subadditivitye.g., $p_{1 \overline{2}}^{*} \leq p_{1 \overline{2} 3}^{*}+p_{12 \overline{3}}^{*}$, since

$$
p_{i \bar{j}}^{*}=p_{\bar{i} j}^{*}=\frac{1}{2}, \quad \text { for } \quad i \neq j
$$

we set the remaining 6 triples at $\frac{1}{4}$:
$p_{12 \overline{3}}^{*}=p_{1 \overline{2} 3}^{*}=p_{\overline{1} 23}^{*}=p_{1 \overline{23}}^{*}=p_{\overline{1} 2 \overline{3}}^{*}=p_{\overline{12} 3}^{*}=\frac{1}{4}$.
Notice that P^{*} is nonmonotonic for $p_{12 \overline{3}}^{*}>$ $p_{12}=0$.

Theorem 2 Theorem on Common Causes. Let $\mathbf{X}_{1} \ldots \mathbf{X}_{n}$ be two-valued random variables. Then a necessary and sufficient condition that there is a random variable $\boldsymbol{\lambda}$ such that $\mathbf{X}_{1} \ldots \mathbf{X}_{n}$ are conditionally independent given $\boldsymbol{\lambda}$ is that there exists a joint probability distribution of $\mathbf{X}_{1} \ldots \mathbf{X}_{n}$. The random variable $\boldsymbol{\lambda}$ would be called a hidden variable in quantum mechanics.

$$
\text { Let } \boldsymbol{\Omega}=\left(\Omega, \mathcal{F}, P^{*}\right) \text { be an upper proba- }
$$ bility space and let λ be a function from Ω to $R e^{k}$ such that for every vector $\left(b_{1}, \ldots, b_{k}\right)$ the set

$$
\left\{\omega: \omega \in \Omega \& \lambda_{i}(\omega) \leq b_{i},=1, \ldots, k\right\}
$$

is in \mathcal{F}. Then λ is a generalized random variable (with respect to $\boldsymbol{\Omega}$).

Theorem 3 Generalized Common Causes. Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ be two-valued (± 1) random variables whose common domain is a space Ω with an algebra \mathcal{F} of events that includes the subalgebra \mathcal{F}^{*} of cylinder sets of dimension n defined above. Also, let pairwise probability functions $P_{i j}, 1 \leq i<j$ $\leq n$, compatible with the single functions $P_{i}, 1 \leq i \leq n$, be given. Then there exists an upper probability space $\boldsymbol{\Omega}=\left(\Omega, \mathcal{F}^{*}, P^{*}\right)$, and a generalized random variable λ on Ω to the set of n-dimensional vectors whose components are ± 1 such that for $1 \leq i<$ $j \leq n$ and every value λ of $\boldsymbol{\lambda}$:
(i) $P^{*}\left(\mathbf{X}_{i}= \pm 1, \mathbf{X}_{j}= \pm 1\right)=P_{i j}\left(\mathbf{X}_{i}=\right.$ $\left.\pm 1, \mathbf{X}_{j}= \pm 1\right)$;
(ii) $P^{*}\left(\mathbf{X}_{1}=\lambda_{1}, \ldots, \mathbf{X}_{n}=\lambda_{n}\right)=P^{*}\left(\boldsymbol{\lambda}_{1}=\right.$ $\left.\lambda_{1}, \ldots, \boldsymbol{\lambda}_{n}=\lambda_{n}\right) ;$
(iii) $\boldsymbol{\lambda}$ is deterministic, i.e.,

$$
P\left(\mathbf{X}_{i}=1 \mid \boldsymbol{\lambda}_{i}=1\right)=1
$$

and

$$
P\left(\mathbf{X}_{i}=-1 \mid \boldsymbol{\lambda}_{i}=-1\right)=1
$$

(iv)

$$
\begin{aligned}
& E\left(X_{i} X_{j} \mid \boldsymbol{\lambda}=\lambda\right) \\
& \quad=E\left(X_{i} \mid \boldsymbol{\lambda}=\lambda\right) E\left(X_{i} \mid \boldsymbol{\lambda}=\lambda\right) .
\end{aligned}
$$

Theorem 4 Monotonicity Implies Probability. Let $\mathbf{X}_{1}, \mathbf{X}_{2}$ and \mathbf{X}_{3} be two-valued ± 1 random variables with $E\left(\mathbf{X}_{i}\right)=0, i=$ $1,2,3$, such that there is a monotonic upper probability function compatible with the given correlations $E\left(\mathbf{X}_{i}, \mathbf{X}_{j}\right), 1 \leq i<j \leq 3$. Then there exists a joint probability distribution of $\mathbf{X}_{1}, \mathbf{X}_{2}$ and \mathbf{X}_{3} compatible with the given means and correlations.

Theorem 5 Nonmonotonicity. Let \mathbf{X}_{1}, \mathbf{X}_{2} and \mathbf{X}_{3} be two-valued (± 1) random variables with $E\left(X_{i}\right)=0, i=1,2,3$, such that there is no joint probability distribution compatible with the correlations $E\left(\mathbf{X}_{i}, \mathbf{X}_{j}\right), 1 \leq i<j \leq 3$. Then any upper measure P^{*} compatible with the given means and correlations cannot satisfy the axiom of monotonicity.

Theorem 6 Let $\left(\Omega, \mathcal{F}, P^{*}\right)$ be an upper probability space such that P^{*} is nonmonotonic. Then the lower probability defined by

$$
P_{*}(A)=1-P^{*}(A)
$$

is not superadditive. So P^{*} is not a proper lower probability.

Quantum Mechanics
 Measuring Apparatus

A
B

> singlet source
> angle $\angle \mathbf{A B}=\theta$

The results may be most easily discussed in terms of a system of two spin- $\frac{1}{2}$ particles initially in the singlet state.

Qualitative Axioms Assumed about Measurements and Hidden Variables

1. Axial symmetry. For any direction of the measuring apparatus the expected spin is 0 , where spin is measured by +1 and -1 for spin $+\frac{1}{2}$ and spin $-\frac{1}{2}$, respectively. Further, the expected product of the spin measurements is the same for different orientations of the measuring apparatuses, as long as the angle between the measuring apparatuses remains the same.
2. Opposite measurement for same orientation. The correlation between the spin measurements is -1 if the two measuring apparatuses ahve the same orientation.
3. Independence of $\boldsymbol{\lambda}$. The expectation of any function of λ is independent of the orientation of the measuring apparatus.
4. Locality. The spin measurement obtained with one apparatus is independent of the orientation of the other measuring apparatus.
5. Determinism. Given $\boldsymbol{\lambda}$ and the orientation of the measuring apparatus, the results of the two spin measurements are conditionally statistically independent.

For example of Axiom 5. Conditional statistical independence

$$
E(A B \mid \lambda)=E(A \mid \lambda) E(B \mid \lambda) .
$$

Quantum Mechanics

$$
\text { Covariance }(\mathbf{A B})=\mathbf{A B}=-\cos \theta
$$

where θ is angle difference of orientation of \mathbf{A} and \mathbf{B}.

Bell Inequalities

$$
\begin{aligned}
-2 & \leq \mathbf{A B}+\mathbf{A} \mathbf{B}^{\prime}+\mathbf{A}^{\prime} \mathbf{B}-\mathbf{A}^{\prime} \mathbf{B}^{\prime} \leq 2 \\
-2 & \leq \mathbf{A B}+\mathbf{A} \mathbf{B}^{\prime}-\mathbf{A}^{\prime} \mathbf{B}+\mathbf{A}^{\prime} \mathbf{B}^{\prime} \leq 2 \\
-2 & \leq \mathbf{A B}-\mathbf{A} \mathbf{B}^{\prime}+\mathbf{A}^{\prime} \mathbf{B}+\mathbf{A}^{\prime} \mathbf{B}^{\prime} \leq 2 \\
-2 & \leq-\mathbf{A B}+\mathbf{A} \mathbf{B}^{\prime}+\mathbf{A}^{\prime} \mathbf{B}+\mathbf{A}^{\prime} \mathbf{B}^{\prime} \leq 2
\end{aligned}
$$

Theorem 7 Bell's inequalities in the above Clauser, Horn, Shimony and Holt (1969) form are necessary and sufficient for the random variables $\mathbf{A}, \mathbf{A}^{\prime}, \mathbf{B}$ and \mathbf{B}^{\prime} to have a joint probability distribution compatible with the given covariances.

Quantum mechanics does not satisfy these inequalities in general. To illustrate ideas, we take as a particular case the following:

$$
\mathbf{A B}-\mathbf{A} \mathbf{B}^{\prime}+\mathbf{A}^{\prime} \mathbf{B}+\mathbf{A}^{\prime} \mathbf{B}^{\prime}<-2
$$

We choose

$$
\begin{gathered}
\mathbf{A B}=\mathbf{A}^{\prime} \mathbf{B}^{\prime}=-\cos 30^{\circ}=-\frac{\sqrt{3}}{2} \\
\mathbf{A B}^{\prime}=-\cos 60^{\circ}=-\frac{1}{2} \\
\mathbf{A}^{\prime} \mathbf{B}=-\cos 0^{\circ}=-1
\end{gathered}
$$

So

$$
-\frac{\sqrt{3}}{2}+\frac{1}{2}-1-\frac{\sqrt{3}}{2}<-2 .
$$

Theorem 8 Existence of Hidden Variables. Let $\mathbf{A B}, \mathbf{A B}^{\prime}, \mathbf{A}^{\prime} \mathbf{B}$ and $\mathbf{A}^{\prime} \mathbf{B}^{\prime}$ be any four quantum mechanical covariances, which will in general not satisfy the Bell inequalities. Then there is an upper probability P^{*} consistent with the given covariances and a generalized hidden variable $\boldsymbol{\lambda}$ with P^{*} such that, for every value λ of $\boldsymbol{\lambda}$,

$$
E(\mathbf{A B} \mid \boldsymbol{\lambda}=\lambda)=E(\mathbf{A} \mid \boldsymbol{\lambda}=\lambda) E(\mathbf{B} \mid \boldsymbol{\lambda}=\lambda)
$$

and similarly for $\mathbf{A B}^{\prime}, \mathbf{A}^{\prime} \mathbf{B}$ and $\mathbf{A}^{\prime} \mathbf{B}^{\prime}$.

Theorem 9 Monotonicity Implies Bell Inequalities. Let $\mathbf{A}, \mathbf{A}^{\prime}, \mathbf{B}$, and \mathbf{B}^{\prime} be twovalued (± 1) random variables with expectation $E(\mathbf{A})=E\left(\mathbf{A}^{\prime}\right)=E(\mathbf{B})=E\left(\mathbf{B}^{\prime}\right)=$ 0 such that there is a monotonic upper probability function compatible with the given correlations $\mathbf{A B}, \mathbf{A B}^{\prime}, \mathbf{A}^{\prime} \mathbf{B}$, and $\mathbf{A}^{\prime} \mathbf{B}^{\prime}$. Then the given covariances satisfy the Bell inequalities.

Three-particle Entanglement

But first some pure probability.
Theorem 10 Let A, B and \mathbf{C} be random variables with values ± 1. Then there is no probability distribution to support the following expectations:

$$
\begin{aligned}
& \text { (i) } E(\mathbf{A})=E(\mathbf{B})=E(\mathbf{C})=1, \\
& \text { (ii) } E(A B C)=-1
\end{aligned}
$$

But there is a nonmonotonic upper probability P^{*} that does.
Sketch of Proof:

$$
E(\mathbf{A})=p(a . .)-p(\bar{a} . .)
$$

Similarly for $E(B)$ and $E(C)$.
Notation $p(a)=p(a .$.$) , etc.$
So we set:

$$
\begin{aligned}
& p(a)=p(b)=p(c)=1 \\
& p(\bar{a})=p(\bar{b})=p(\bar{c})=0
\end{aligned}
$$

$$
\begin{aligned}
p(a) & \leq p^{*}(a b)+p^{*}(a \bar{b}) \\
& \leq\left(p^{*}(a b c)+p^{*}(a b \bar{c})\right)+\left(p^{*}(a \overline{a b c})+p^{*}(a \overline{b c})\right) \\
1 & \quad\left(1+\frac{1}{3}\right)+\left(\frac{1}{3}+0\right)
\end{aligned}
$$

Simplifying notation further:

$$
a b c=p^{*}(a b c), \text { etc. }
$$

$$
\begin{aligned}
E(A B C)= & (a b c+a \overline{b c}+\bar{a} b \bar{c}+\overline{a b} c) \\
& (1+0+0+0) \\
& -(\overline{a b c}+a b \bar{c}+a \bar{b} c+\bar{a} b c) \\
& -\left(1+\frac{1}{3}+; \frac{1}{3}+\frac{1}{3}\right) \\
= & -1
\end{aligned}
$$

Note strong nonmonotonicity:

$$
p^{*}(\bar{a})=0<1=p^{*}(\overline{a b c})
$$

FIG. 1

Fig. 1. Scheme for the Innsbruck GHZ experiment. The GHZ correlations are obtained when all detectors T, D_{1}, D_{2}, and D_{3} register a photon within the same window of time.

GHZ

$$
\begin{array}{r}
|\psi\rangle=\frac{1}{\sqrt{2}}(|+++\rangle+|---\rangle), \\
\hat{A}|\psi\rangle=\hat{\sigma}_{1 x} \hat{\sigma}_{2 y} \hat{\sigma}_{3 y}|\psi\rangle=|\psi,\rangle \\
\hat{B}|\psi\rangle=\hat{\sigma}_{1 y} \hat{\sigma}_{2 x} \hat{\sigma}_{3 y}|\psi\rangle=|\psi,\rangle \\
\hat{C}|\psi\rangle=\hat{\sigma}_{1 y} \hat{\sigma}_{2 y} \hat{\sigma}_{3 x}|\psi\rangle=|\psi,\rangle \\
\hat{D}|\psi\rangle=\hat{\sigma}_{1 x} \hat{\sigma}_{2 x} \hat{\sigma}_{3 x}|\psi\rangle=-|\psi,\rangle \tag{5}
\end{array}
$$

From equations (2)-(5) we have at once that

$$
\begin{equation*}
E(\hat{A})=E(\hat{B})=E(\hat{C})=1 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
E(A B C)=E(\hat{D})=-1 \tag{7}
\end{equation*}
$$

Good reference on above derivation: Mermin, N. D. (1990) Physical Review Letters, 65, 1838.

GHZ Inequalities

$$
\begin{aligned}
& -2 \leq E(\mathbf{A})+E(\mathbf{B})+E(\mathbf{C})-E(\mathbf{A B C}) \leq 2 \\
& -2 \leq-E(\mathbf{A})+E(\mathbf{B})+E(\mathbf{C})+E(\mathbf{A B C}) \leq 2 \\
& -2 \leq E(\mathbf{A})-E(\mathbf{B})+E(\mathbf{C})+E(\mathbf{A B C}) \leq 2 \\
& -2 \leq E(\mathbf{A})+E(\mathbf{B})-E(\mathbf{C})+E(\mathbf{A B C}) \leq 2
\end{aligned}
$$

de Barros, J. A. and Suppes, P. (2000) Inequalities for dealing with detector inefficiencies in Greenberger-Horne-Zeilinger-type experiments. Physical Review Letters, 84, 793-797.

Theorem 11 Let \mathbf{X}_{i} and $\mathbf{Y}_{i}, 1 \leq i \leq$ 3 , be six ± 1 random variables such that $E\left(\mathbf{X}_{i}\right)=E\left(\mathbf{Y}_{i}\right)=0$. Then, there exists a joint probability distribution for all six random variables if and only if the following inequalities are satisfied:

$$
\begin{aligned}
-2 & \leq E\left(\mathbf{X}_{1} \mathbf{Y}_{2} \mathbf{Y}_{3}\right)+E\left(\mathbf{Y}_{1} \mathbf{X}_{2} \mathbf{Y}_{3}\right) \\
& +E\left(\mathbf{Y}_{1} \mathbf{Y}_{2} \mathbf{X}_{3}\right)-E\left(\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{3}\right) \leq 2 \\
- & \leq E\left(\mathbf{X}_{1} \mathbf{Y}_{2} \mathbf{Y}_{3}\right)+E\left(\mathbf{Y}_{1} \mathbf{X}_{2} \mathbf{Y}_{3}\right) \\
& -E\left(\mathbf{Y}_{1} \mathbf{Y}_{2} \mathbf{X}_{3}\right)+E\left(\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{3}\right) \leq 2 \\
-2 & \leq E\left(\mathbf{X}_{1} \mathbf{Y}_{2} \mathbf{Y}_{3}\right)-E\left(\mathbf{Y}_{1} \mathbf{X}_{2} \mathbf{Y}_{3}\right) \\
& +E\left(\mathbf{Y}_{1} \mathbf{Y}_{2} \mathbf{X}_{3}\right)+E\left(\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{3}\right) \leq 2 \\
-2 & \leq-E\left(\mathbf{X}_{1} \mathbf{Y}_{2} \mathbf{Y}_{3}\right)+E\left(\mathbf{Y}_{1} \mathbf{X}_{2} \mathbf{Y}_{3}\right) \\
& +E\left(\mathbf{Y}_{1} \mathbf{Y}_{2} \mathbf{X}_{3}\right)+E\left(\mathbf{X}_{1} \mathbf{X}_{2} \mathbf{X}_{3}\right) \leq 2
\end{aligned}
$$

References

Bell, J. S. (1964) On the Einstein-Podolsky-Rosen paradox. Physics, 1, 195-200.

Clauser, J. F., Horne, M. A., Shimony, A., and Holt, R. A. (1969) Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23, 880-884.
de Barros, J. A. and Suppes, P. (2000) Inequalities for dealing with detector inefficiencies in Greenberger-Horne-Zeilinger-type experiments. Physical Review Letters, 97, 8738-8743.
de Barros, J. A. and Suppes, P. (2001) Probabilistic results for six detectors in a three-particle GHZ experiment. In J. Bricmont, D. Durr, M. C. Galavotti, G. Ghirardi, F. Petruccione and N. Zanghi (Eds.), Chance in Physics: Foundations and Perspectives. Berlin: Springer, 213-223.
de Barros, J. A. and Suppes, P. (to appear) Some conceptual issues involving probability in quantum mechanics. In The Fine Conference Volume. Chicago: University of Chicago Press.

Fine, A. (1982) Hidden variables, joint probability, and the Bell inequalities. Physical Review Letters, 48, 291-295.

Suppes, P. and Zanotti, M. (1976) On the determinism of hidden variable theories with strict correlation and conditional statistical independence of observables. In P. Suppes (Ed.), Logic and Probability in Quantum Mechanics. Dordrecht: Reidel, 445-455.

Suppes, P. and Zanotti, M. (1981) When are probabilistic explanations probable? Synthese, 48, 191—199.

Suppes, P. and Zanotti, M. (1991) Existence of hidden variables having only upper probabilities. Foundations of Physics, 21, 1479-1499.

Wigner, E. P. (1970) On hidden variables and quantum mechanical probabilities. American Journal of Physics, 38, 1005-1009.

