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Abstract

A well-known property of quantum entanglement 
phenomena is that random variables representing 
the observables in a given experiment do not have 
a joint probability distribution. The main point of 
this lecture is to show how a generalized 
distribution, which is a nonmonotonic upper 
probability distribution, can be used for all the 
observables in two important entanglement cases: 
the four random variables or observables used in 
Bell-type experiments and the six correlated spin 
observables in three-particle GHZ-type 
experiments. Whether or not such upper 
probabilities can play a significant role in the 
conceptual foundations of quantum entanglement 
will be discussed. 



De�nition � Let � be a nonempty set�
F a Boolean algebra on �� and P � a real�
valued function onF � Then� � ���F � P ��
is an upper probability space if and only if
for every A and B in F

�� � � P ��A� � �	


� P ���� � � and P ���� � �	

�� IfA�B � �� then P ��A�B� � P ��A��
P ��B��

Moreover� P � is monotonic if and only if
whenever A � B

P ��A� � P ��B��

�



Theorem � Joint Distribution Theorem�
Let X�Y� and Z be random variables with
possible values � and ��� and with

E�X� � E�Y� � E�Z� � �

Then a necessary and su�cient condition
for the existence of a joint probability dis�
tribution of the three random variables is
that the following two inequalities be satis�
	ed�

�� � E�XY� 
 E�YZ� 
 E�XZ� � �


�minfE�XY�� E�YZ�� E�XZ�g�

Corollary � In the symmetric case� where

E�XY� � E�YZ� � E�XZ��

the inequalities simplify to

�
�

�
� E�XY� � ��

�



Consider three random variables X��

X��X� with values �� and expectations

E�X�� � E�X�� � E�X�� � �

Cov�Xi�Xj� � ��� i �� j�

We use the notation

p
ij
� P �Xi � ��Xj � ���� etc�

So

p
ij
� p

ij
�

�

�
� i �� j

pij � p
ij
� ��

This implies� to �t the correlations�

p�
ij
� �

�
� p�

ij
� �

�

p�ij � �� p�
ij
� ��

�



Note that

p�
ij

� P ��Xi � ��Xj � ����

Since �mixed� ij or ij never occur in p�
���

or p�
���

� we may set

p���� � p�
���

� ��

By symmetry and to satisfy subadditivity�
e	g	� p�

��
� p�

���

 p�

���
� since

p�
ij

� p�
ij

�
�

�
� for i �� j

we set the remaining � triples at �

�


p�
���

� p�
���

� p�
���

� p�
���

� p�
���

� p�
���

�
�

�
�

Notice that P � is nonmonotonic for p�
���

�

p�� � ��

�



Theorem � Theorem on CommonCauses�

Let X� � � �Xn be two�valued random vari�

ables� Then a necessary and su�cient con�

dition that there is a random variable �

such thatX� � � �Xn are conditionally inde�

pendent given � is that there exists a joint

probability distribution of X� � � �Xn�

The random variable � would be called a

hidden variable in quantum mechanics�

�



Let � � ���F � P �� be an upper proba�
bility space and let � be a function from �
toRek such that for every vector �b�� � � � � bk�
the set

f� � � � � � �i��� � bi�� �� � � � � kg

is in F � Then � is a generalized random

variable �with respect to ���

�



Theorem � Generalized Common Causes�
Let X�� � � � �Xn be two�valued ���� ran�
dom variables whose common domain is a
space � with an algebraF of events that in�
cludes the subalgebra F� of cylinder sets of
dimension n de�ned above� Also� let pair�
wise probability functions Pij� � � i � j

� n� compatible with the single functions
Pi� � � i � n� be given� Then there exists
an upper probability space�� ���F�� P ���
and a generalized random variable � on �
to the set of n�dimensional vectors whose
components are �� such that for � � i �

j � n and every value � of �	

�i� P ��Xi � ���Xj � ��� � Pij�Xi �
���Xj � ���


�ii� P ��X� � ��� � � � �Xn � �n� � P ���� �
��� � � � ��n � �n�


�



�iii� � is deterministic� i�e��

P �Xi � �j�i � �� � �

and

P �Xi � ��j�i � ��� � �

�iv�

E�XiXjj� � ��

� E�Xij� � ��E�Xij� � ���

�



Theorem � Monotonicity Implies Prob�
ability� Let X��X� and X� be two�valued
�� random variables with E�Xi� � �� i �
�� �� �� such that there is a monotonic upper
probability function compatible with the given
correlations E�Xi�Xj�� � � i � j � ��
Then there exists a joint probability distri�
bution of X��X� and X� compatible with
the given means and correlations�

�



Theorem � Nonmonotonicity� Let X��

X� and X� be two�valued ���� random
variables with E�Xi� � �� i � �� �� �� such
that there is no joint probability distribu�
tion compatible with the correlations
E�Xi�Xj�� � � i � j � �� Then any up�
per measure P � compatible with the given
means and correlations cannot satisfy the
axiom of monotonicity�

��



Theorem � Let ���F � P �� be an upper
probability space such that P � is nonmono�
tonic� Then the lower probability de�ned
by

P��A� � �� P ��A�

is not superadditive� So P � is not a proper
lower probability�

��



Quantum Mechanics

Measuring Apparatus

A B

singlet source

angle � AB � �

The results may be most easily discussed

in terms of a system of two spin��
�
particles

initially in the singlet state�

��



Qualitative Axioms Assumed about

Measurements and Hidden Variables

�� Axial symmetry� For any direction of

the measuring apparatus the expected

spin is �� where spin is measured by ��

and �� for spin ��

�
and spin ��

�
� respec�

tively� Further� the expected product

of the spin measurements is the same

for di�erent orientations of the measur�

ing apparatuses� as long as the angle be�

tween the measuring apparatuses remains

the same�

�� Opposite measurement for same ori�

entation� The correlation between the

spin measurements is �� if the two mea�

suring apparatuses ahve the same orien�

tation�

��



�� Independence of �� The expectation of
any function of � is independent of the
orientation of the measuring apparatus�

�� Locality� The spin measurement obtained
with one apparatus is independent of the
orientation of the other measuring appa�
ratus�

�� Determinism� Given � and the orien�
tation of the measuring apparatus� the
results of the two spin measurements are
conditionally statistically independent�

For example of Axiom �� Conditional sta�
tistical independence

E�ABj�� � E�Aj��E�Bj���

��



Quantum Mechanics

Covariance�AB� � AB � � cos �

where � is angle di�erence of orientation of
A and B�

Bell Inequalities

�� � AB �AB� �A�
B�A�

B
� � �

�� � AB �AB� �A�
B �A�

B
� � �

�� � AB�AB� �A�
B �A�

B
� � �

�� � �AB �AB� �A�
B �A�

B
� � �

��



Theorem � Bell�s inequalities in the
above Clauser� Horn� Shimony and Holt ������
form are necessary and su�cient for the
random variables A�A

�
�B and B� to have

a joint probability distribution compatible
with the given covariances�

��



Quantummechanics does not satisfy these

inequalities in general� To illustrate ideas�

we take as a particular case the following�

AB�AB
� �A�

B �A�
B

�
� ���

We choose

AB � A�
B

� � � cos ��� � �

p
�

�

AB
� � � cos ��� � �

	

�
A

�
B � � cos �� � �	�

So

�
p
�

�
�

	

�
� 	�

p
�

�
� ���

��



Theorem � Existence of Hidden Vari�
ables� Let AB�AB

�� A�
B and A�

B
� be

any four quantum mechanical covariances�
which will in general not satisfy the Bell
inequalities� Then there is an upper prob�
ability P � consistent with the given covari�
ances and a generalized hidden variable �
with P � such that� for every value � of ��

E�ABj�����E�Aj����E�Bj����

and similarly for AB��A�
B and A�

B
��

��



Theorem � Monotonicity Implies Bell
Inequalities� Let A�A

�
�B� and B� be two�

valued ���� random variables with expec�
tationE�A� � E�A�� � E�B� � E�B�� �
� such that there is a monotonic upper prob�
ability function compatible with the given
correlationsAB�AB��A�

B� andA�
B

�� Then
the given covariances satisfy the Bell in�
equalities�

��



Three�particle Entanglement

But �rst some pure probability�

Theorem �� Let A�B and C be random
variables with values ��� Then there is no
probability distribution to support the fol�
lowing expectations�

�i� E�A� � E�B� � E�C� � ��

�ii� E�ABC� � ���

But there is a nonmonotonic upper proba�
bility P � that does�

Sketch of Proof�

E�A� � p�a���� p�a���

Similarly for E�B� and E�C��
Notation p�a� � p�a���� etc�
So we set�

p�a� � p�b� � p�c� � �

p�a� � p�b� � p�c� � �
��



p�a� � p��ab� � p��ab�

� �p��abc� � p��abc�� � �p��abc� � p��abc��

� �� �
�

�
� � �

�

�
� ��

Simplifying notation further�

abc � p��abc�� etc�

E�ABC� � �abc � abc � abc � abc�

� � � � � � � ��

��abc � abc � abc � abc�

��� �
�

�
�	

�

�
�

�

�
�

� ��

Note strong nonmonotonicity�

p��a� � � � � � p��abc�

��





Fig� �� Scheme for the Innsbruck GHZ ex�

periment� The GHZ correlations are ob�

tained when all detectors T�D�� D�� and

D� register a photon within the same win�

dow of time�

��



GHZ

j�i � �p
�
�j � ��i � j � ��i�� ���

�Aj�i � ���x���y���yj�i � j�� i ���

�Bj�i � ���y���x���yj�i � j�� i ���

�Cj�i � ���y���y���xj�i � j�� i ���

�Dj�i � ���x���x���xj�i � �j�� i �	�

��



From equations ������� we have at once
that

E� �A� � E� �B� � E� �C� � � ���

and
E�ABC� � E� �D� � ��� �	�

Good reference on above derivation
 Mer�
min� N D ������ Physical Review Let�

ters� ��� ����

��



GHZ Inequalities

�� � E�A� � E�B� � E�C��E�ABC� � ��

�� � �E�A� � E�B� �E�C� � E�ABC� � ��

�� � E�A�� E�B� � E�C� �E�ABC� � ��

�� � E�A� � E�B�� E�C� �E�ABC� � ��

de Barros� J� A� and Suppes� P� ������ In�
equalities for dealing with detector ine��
ciencies in Greenberger�Horne�Zeilinger�type
experiments� Physical Review Letters� ���
	
��	
	�

��



Theorem �� Let Xi and Yi� � � i �

�� be six �� random variables such that
E�Xi� � E�Yi� � �� Then� there exists a
joint probability distribution for all six ran�
dom variables if and only if the following
inequalities are satis	ed


�� � E�X�Y�Y�� � E�Y�X�Y��

�E�Y�Y�X��� E�X�X�X�� � ��

�� � E�X�Y�Y�� � E�Y�X�Y��

�E�Y�Y�X�� � E�X�X�X�� � ��

�� � E�X�Y�Y��� E�Y�X�Y��

�E�Y�Y�X�� � E�X�X�X�� � ��

�� � �E�X�Y�Y�� � E�Y�X�Y��

�E�Y�Y�X�� � E�X�X�X�� � ��

��
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