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Abstract

In this paper we consider interval-valued conditional
probability assessments on finite families of condi-
tional events. Based on the coherence principle of
de Finetti, we give some preliminary results on pre-
cise and imprecise probability assessments, by recall-
ing the properties of avoiding uniform loss (AUL),
which coincides with the notion of g-coherence, and
of coherence introduced by Walley. Among other re-
sults, we generalize to interval-valued assessments a
connection property, obtained in a previous paper, for
the set Πn of precise coherent assessments on a fam-
ily Fn of n conditional events. More specifically, we
prove that, with any pair of AUL interval-valued as-
sessments X ′

n, X ′′
n on Fn, we can associate an infinite

class X of AUL interval-valued imprecise assessments
which are convex combination between X ′

n and X ′′
n

and connect them. Then, we examine the extension
of g-coherent imprecise assessments. We also give a
result on totally coherent imprecise assessments, by
examining its relationship with a necessary and suffi-
cient condition of total coherence for interval-valued
assessments.
Keywords: conditional events, g-coherence, avoid-
ing uniform loss, coherence, interval-valued probabil-
ity assessments, connection property, total coherence.

1 Introduction

The probabilistic treatment of uncertainty plays a rel-
evant role in many applications of Artificial Intelli-
gence, e.g. uncertain reasoning. In such applications
typically the set of uncertain quantities at hand has no
particular algebraic structure; moreover, the experts
may have a vague and partial information. Then, a
flexible approach can be obtained by using imprecise
probabilities, based on a suitable generalization of the
coherence principle of de Finetti, or on similar princi-
ples like that ones adopted for lower and upper prob-
abilities ([1], [3], [4], [5], [7], [10], [11], [12], [13]).

In this paper we examine interval-valued probability
assessments on finite families of conditional events.
We use a notion of generalized coherence which co-
incides with the property of avoiding uniform loss
(AUL) introduced by Walley ([12]). We also recall
how we can determine the coherent (in the sense of
Walley) interval-valued assessment associated with a
given AUL assessment (then, the theoretical results
obtained for g-coherent assessments can be suitably
adapted to coherent ones; in the paper we explic-
itly consider only the case of AUL, i.e. g-coherent,
interval-valued assessments).
We recall some recent results on precise probability
assessments ([2]). Then, we generalize such results to
interval-valued assessments; in particular, we consider
a connection property of the set Πn of precise coher-
ent assessments on a family Fn of n conditional events
and we generalize this property to interval-valued as-
sessments. More specifically, we prove that, with
any pair of AUL interval-valued assessments X ′

n, X ′′
n

on Fn, we can associate an infinite class X of AUL
interval-valued imprecise assessments which connects
X ′

n and X ′′
n . Then, based on such result, we exam-

ine the extension of g-coherent imprecise assessments.
We also give a result on totally coherent set-valued
probability assessments on Fn and we examine its re-
lationship with a necessary and sufficient condition of
total coherence for interval-valued assessments.
The paper is organized as follows. In Section 2 we
recall some preliminary notions and results. In par-
ticular, in sub-section 2.1 we consider the case of
precise probability assessments; in sub-section 2.2 we
consider the case of interval-valued probability assess-
ments. In Section 3 we make some remarks on avoid-
ing uniform loss and coherent interval-valued proba-
bility assessments. In Section 4 we give some theo-
retical results on interval-valued assessments; we also
construct some classes of AUL interval-valued prob-
ability assessments. In Section 5 we give a result on
totally coherent imprecise probability assessments, by
examining its relationship with a necessary and suf-



ficient condition of total coherence which holds for
interval-valued assessments. Finally, in Section 6 we
give some conclusions.

2 Preliminaries notions and results

We recall some notions and results on coherence and
generalized coherence of precise and imprecise condi-
tional probability assessments. For each integer n, we
set Jn = {1, 2, . . . , n}. We denote by Ac the negation
of A and by A∨B (resp., AB) the disjunction (resp.,
the conjunction) of A and B. We use the same symbol
to denote an event and its indicator.

2.1 Precise probability assessments

Given a real function P defined on an arbitrary family
of conditional events K, let Fn = {Ei|Hi, i ∈ Jn} be
a finite subfamily of K and Pn the vector (pi, i ∈
Jn), where pi = P (Ei|Hi). Then, let us consider the
disjunctive normal form obtained by expanding the
expression

(E1H1 ∨Ec
1H1 ∨Hc

1) ∧ · · · ∧ (EnHn ∨Ec
nHn ∨Hc

n) .

In such disjunctive normal form we eliminate all the
conjunctive terms which, due to the logical relation-
ships among the events E1, . . . , En,H1, . . . ,Hn, co-
incide with the impossible event. The remaining
conjunctive terms are the constituents generated by
Fn. We denote by C1, . . . , Cm the constituents con-
tained in Hn = H1 ∨ · · · ∨ Hn; moreover, we set
C0 = Hc

1 · · ·Hc
n (of course, it may be C0 = ∅). Notice

that m ≤ 3n − 1. Then, with the pair (Fn,Pn) we
associate the random gain Gn =

∑
i∈Jn

siHi(Ei−pi),
where s1, . . . , sn are arbitrary real numbers and Ei,Hi

denote the indicators of the corresponding events.
We denote by gh the value of Gn corresponding to
Ch and by Gn|Hn the restriction of Gn to Hn. Of
course, Gn|Hn ∈ {g1, . . . , gm}. Then, using the bet-
ting scheme of de Finetti, we recall the following

Definition 1. The function P is said coherent if and
only if

max Gn|Hn ≥ 0 , ∀n ≥ 1, ∀Fn ⊆ K, ∀ s1, . . . , sn ∈ R.

Given any vector (λr, r ∈ Jm), we denote by
∑

Hj
λr

(resp.,
∑

EjHj
λr) the sum of the λr’s such that

Cr ⊆ Hj (resp., Cr ⊆ EjHj). Then, given a prob-
ability assessment Pn = (pj , j ∈ Jn) on Fn, let S
be the following system, with vector of (nonnegative)
unknowns Λ = (λr, r ∈ Jm),{ ∑

EjHj
λr = pj

∑
Hj

λr , j ∈ Jn,∑
r∈Jm

λr = 1, λr ≥ 0, r ∈ Jm.
(1)

We set

Φj(Λ) =
∑

Hj
λr , j ∈ Jn ;

I0 = {j ∈ Jn : maxΛ∈SΦj(Λ) = 0}. (2)

Then, denoting by P0 the sub-assessment associated
with I0, we have ([7])

Theorem 1. The probability assessment Pn on Fn

is coherent if and only if the following conditions are
satisfied:
1. the system (1) is solvable;
2. if I0 6= ∅, then P0 is coherent.

We recall below some results obtained in ([2]). We set
Γ0 = Jn \ I0; then, we have

Theorem 2. Given a probability assessment Pn =
(pi, i ∈ Jn) on Fn = {Ei|Hi, i ∈ Jn}, assume that
system (1) is solvable. Then, there exists a solution
Λ of system (1) such that Φj(Λ) > 0 , ∀ j ∈ Γ0.

Theorem 3. Given a probability assessment Pn =
(pi, i ∈ Jn) on Fn = {Ei|Hi, i ∈ Jn}, assume that the
system (1) is solvable. Then, for every Γ ⊆ Γ0, the
sub-vector PΓ = (pi, i ∈ Γ) is a coherent probability
assessment on the sub-family FΓ.

We denote by Πn the set of coherent probability as-
sessments on Fn. Of course, Πn is a suitable sub-
set of the unitary hypercube of Rn and, in geo-
metrical terms, a conditional probability assessment
P = (pi, i ∈ Jn) on Fn is coherent if and only if P is
a ”point” of the set Πn. Given two points

P ′ = (p′i, i ∈ Jn) ∈ Πn , P ′′ = (p′′i , i ∈ Jn) ∈ Πn ,

we set

pm
i = min {p′i, p′′i } , pM

i = max {p′i, p′′i } ,
Pm = P ′ ∧ P ′′ = (pm

i , i ∈ Jn) ,
PM = P ′ ∨ P ′′ = (pM

i , i ∈ Jn) .
(3)

Moreover, given any pair of points

x = (xi, i ∈ Jn), y = (yi, i ∈ Jn) ,

we set x ≤ y if and only if xi ≤ yi, ∀ i ∈ Jn.
Then, Pm ≤ PM , for every P ′,P ′′.
Based on the ordinary topology of the space Rn, we
have

Theorem 4. Let P ′ = (p′i, i ∈ Jn), P ′′ = (p′′i , i ∈
Jn) be two coherent probability assessments defined
on Fn = {Ei|Hi, i ∈ Jn}. There exists a continuous
curve C with extreme points P ′,P ′′ such that:

(i) Pm ≤ P ≤ PM , ∀P ∈ C ; (ii) C ⊆ Πn .



Theorem 4 assures that, for every pair of coherent
assessments P ′,P ′′ on Fn, we can construct (at least)
a continuous curve C ⊆ Πn (from P ′ to P ′′) whose
points are intermediate coherent assessments between
P ′ and P ′′. We remark that in general the number of
such curves is infinite. By Theorem 4, we obtain

Corollary 1. Given any quantities

p1 , . . . , pi−1 , li ≤ ui , pi+1 , . . . , pn ,

let us define

P ′ = (p1, . . . , pi−1, li, pi+1, . . . , pn) ,
P ′′ = (p1, . . . , pi−1, ui, pi+1, . . . , pn) .

Moreover, let I = P ′P ′′ be the segment
{(p1, . . . , pi, . . . , pn) : li ≤ pi ≤ ui}, with set of ver-
tices V = {P ′,P ′′}. Then: I ⊆ Πn ⇐⇒ V ⊂ Πn.

2.2 Imprecise probability assessments

Given any interval-valued probability assessment
Xn = ([li, ui], i ∈ Jn) on a family Fn = {Ei|Hi, i ∈
Jn}, we use the following definition of generalized co-
herence (g-coherence) ([1]).

Definition 2. An interval-valued probability assess-
ment Xn = ([li, ui], i ∈ Jn), defined on a family
of n conditional events Fn = {Ei|Hi, i ∈ Jn}, is
g-coherent if there exists a coherent precise proba-
bility assessment Pn = (pi, i ∈ Jn) on Fn, with
pi = P (Ei|Hi), which is consistent with Xn, that is
such that li ≤ pi ≤ ui for each i ∈ Jn.

Generalizing the system (1) to the case of interval-
valued assessments, we obtain the following system

∑
EjHj

λr ≥ lj
∑

Hj
λr , j ∈ Jn,∑

EjHj
λr ≤ uj

∑
Hj

λr , j ∈ Jn,∑
r∈Jm

λr = 1, λr ≥ 0, r ∈ Jm.

(4)

We can suitably adapt to interval-valued assessments
the definition of the set I0 and of the functions
Φj(Λ), j ∈ Jn. We remark that, for each solution
Λ of system (4) it is∑

j∈Jn

Φj(Λ) =
∑
j∈Jn

∑
Hj

λr ≥
∑

r∈Jm

λr = 1 ,

hence Φj(Λ) > 0 for at least a subscript j; therefore I0

is a strict subset of Jn. Then, denoting by X0 the sub-
assessment associated with I0, in the next result we
generalize Theorem 1 to interval-valued assessments.

Theorem 5. The assessment Xn on Fn is g-coherent
if and only if the following conditions are verified:
1. The system (4) is solvable;
2. if I0 6= ∅, then X0 is g-coherent.

3 Some remarks on avoiding uniform
loss and coherent interval-valued
probability assessments

We recall that a lower probability P on a family of
conditional events K avoids uniform loss (AUL) if and
only if, for every Fn = {Ei|Hi, i ∈ Jn} ⊆ K and for
every σ1 ≥ 0, . . . , σn ≥ 0, denoting by Ln = (li, i ∈
Jn) the restriction of P to Fn, the random gain

Gn =
∑
i∈Jn

σiHi(Ei − li) ,

associated with the pair (Fn, Ln) satisfies the condi-
tion: maxGn|Hn ≥ 0.
Let A = (ahi) be a m × n−matrix. Moreover, de-
note by x and y, respectively, a row m−vector and
a column n−vector. The vector x = (x1, . . . , xm) is
said semi-positive if it is nonnegative and moreover
x1 + · · ·+ xm > 0. Then, we have ([6], Th. 2.10)

Theorem 6. Exactly one of the following alterna-
tives holds.
Either the inequality xA ≥ 0 has a semipositive so-
lution, or the inequality Ay < 0 has a nonnegative
solution.

By applying Theorem 6, with

xh = λh ≥ 0 , h ∈ Jm ,
∑

h∈Jm
λh = 1 ,

yk = σk ≥ 0 , k ∈ Jn ,

and with A = (ahi), where

ahi =

 1− li, Ch ⊆ EiHi,
−li, Ch ⊆ Ec

i Hi,
0, Ch ⊆ Hc

i ,

we have

Theorem 7. The condition maxGn|Hn ≥ 0 is satis-
fied if and only if the following system is solvable∑

EjHj
λr ≥ lj

∑
Hj

λr , j ∈ Jn ;∑
r∈Jm

λr = 1 ; λr ≥ 0 , r ∈ Jm .

We observe that the assessment P (E|H) ≤ u is equiv-
alent to P (Ec|H) ≥ 1 − u; hence, an interval-valued
assessment ([li, ui], i ∈ Jn) on {Ei|Hi, i ∈ Jn} can be
represented as a lower probability (li, 1 − ui, i ∈ Jn)
on {Ei|Hi, E

c
i |Hi, i ∈ Jn}. Therefore, Theorem 7

can be extended to the general case of interval-valued
assessments. In this sense, the notions of g-coherent
interval-valued assessments and AUL lower probabil-
ity are equivalent and in what follows we will use in-
terchangeably such terms.
We recall below two results which concern the prob-
lem of the g-coherent extension of interval-valued as-
sessments ([1]).



Theorem 8. Let be given a g-coherent interval-
valued assessment Xn = ([li, ui], i ∈ Jn) on Fn =
{Ei|Hi, i ∈ Jn} and a further conditional event
En+1|Hn+1. Then, there exists a suitable inter-
val [p◦, p◦] such that the interval-valued assessment
Xn+1 = ([li, ui], i ∈ Jn+1), with ln+1 = un+1 = pn+1,
on Fn+1 = {Ei|Hi, i ∈ Jn+1}, is g-coherent if and
only if pn+1 ∈ [p◦, p◦].

Theorem 9. Given a g-coherent interval-valued as-
sessment Xn = ([li, ui], i ∈ Jn) on Fn = {Ei|Hi, i ∈
Jn}, the extension [ln+1, un+1] of Xn to a condi-
tional event En+1|Hn+1 is g-coherent if and only if
[ln+1, un+1] ∩ [p◦, p◦] 6= ∅.

To determine the values p◦, p
◦, a suitable algorithm

has been given in [1].
By the same algorithm, starting with a g-coherent
assessment Xn on Fn, we can make its ”least-
committal” correction. In this way, we obtain the co-
herent (lower and upper) probability X∗

n on Fn which
would be produced by applying the natural exten-
sion principle given in [12]. To obtain X∗

n we can
apply n times this algorithm, by replacing each time
En+1|Hn+1 by Ej |Hj , j ∈ Jn, using as probabilistic
constraints the g-coherent assessment Xn.
We recall that a procedure to check coherence of
an interval-valued conditional probability assessment
and an algorithm for finding the best bounds for co-
herent extensions have been given in [11]. Moreover,
an algorithm for computing the least-committal co-
herent correction of an imprecise assessment, also use-
ful for inferential purposes, has been given in [10]. The
problems of checking coherence and of the extension of
lower-upper conditional probabilities have been stud-
ied also in [5]. Direct methods, which do not involve
sequences of linear programming problems, have been
proposed in [13].
As the above remarks suggest, each theoretical result
obtained for g-coherent assessments can be suitably
adapted to coherent ones.
In this paper we explicitly consider only the case of
AUL (i.e. g-coherent) interval-valued assessments.

4 Some results on interval-valued
assessments

In this section, among other results, we generalize
Theorems 2, 3, and 4 to the case of interval-valued
assessments. In the next result we prove that, if the
system (4) associated with a pair (Fn, Xn) is solvable,
then there exists solutions Λ’s of such system which
give positive values to the functions Φj(Λ) =

∑
Hj

λr

for every j ∈ Γ0 = Jn \ I0. This property will be
exploited when proving Theorem 12. We have

Theorem 10. Given an interval-valued probabil-
ity assessment Xn = ([li, ui], i ∈ Jn) on Fn =
{Ei|Hi, i ∈ Jn}, assume that system (4) is solvable.
Then, there exists a solution Λ = (λr, r ∈ Jm) of
system (4) such that Φj(Λ) > 0 , ∀ j ∈ Γ0.

Proof. For each i ∈ Γ0 it is max Φi > 0; hence there
exists a subset of the set of solutions S of system (4),
which we denote by {Λi = (λ(i)

r , r ∈ Jm), i ∈ Γ0},
such that Φi(Λi) > 0, i ∈ Γ0. Then, given any vector
Λ = (λr, r ∈ Jm) =

∑
i∈Γ0

xiΛi, with
∑

i∈Γ0
xi =

1, xi > 0, ∀ i ∈ Γ0, it is
∑

r∈Jm
λr = 1, λr ≥ 0, ∀ r ∈

Jm. Moreover, for each i ∈ Γ0 one has

lj
∑
Hj

λ(i)
r ≤

∑
EjHj

λ(i)
r ≤ uj

∑
Hj

λ(i)
r , j ∈ Jn ;

lj
∑
Hj

xiλ
(i)
r ≤

∑
EjHj

xiλ
(i)
r ≤ uj

∑
Hj

xiλ
(i)
r , j ∈ Jn ;

hence, for j ∈ Jn, it is∑
EjHj

(∑
i∈Γ0

xiλ
(i)
r

)
≥ lj

∑
Hj

(∑
i∈Γ0

xiλ
(i)
r

)
,

∑
EjHj

(∑
i∈Γ0

xiλ
(i)
r

)
≤ uj

∑
Hj

(∑
i∈Γ0

xiλ
(i)
r

)
,

that is

lj
∑
Hj

λr ≤
∑

EjHj

λr ≤ uj

∑
Hj

λr , j ∈ Jn,

so that Λ = (λr, r ∈ Jm) is a solution of system (4).
Moreover,

Φj(Λ) = Φj

(∑
i∈Γ0

xiΛi

)
=

=
∑

i∈Γ0
xiΦj(Λi) ≥ xjΦj(Λj) > 0 , ∀ j ∈ Γ0 .

(5)

In the next result we prove that the solvability of sys-
tem (4) implies, for each Γ ⊆ Γ0, the g-coherence of
the sub-assessment XΓ on FΓ. We have

Theorem 11. Given an interval-valued probabil-
ity assessment Xn = ([li, ui], i ∈ Jn) on Fn =
{Ei|Hi, i ∈ Jn}, assume that the system (4) is solv-
able. Then, for every Γ ⊆ Γ0, the sub-vector XΓ =
([li, ui], i ∈ Γ) is a g-coherent interval-valued assess-
ment on the sub-family FΓ.

Proof. Of course, g-coherence of XΓ0 implies g-
coherence of XΓ too; so we only need to prove g-
coherence of XΓ0 . We distinguish two cases:
(i) the sub-assessment X0 associated with I0 is g-
coherent;
(ii) the sub-assessment X0 associated with I0 is not
g-coherent.



In the first case, by Theorem 5, Xn is g-coherent and
hence XΓ0 is g-coherent too.
In the second case, given any g-coherent sub-
assessment X∗

0 = ([l∗i , u∗i ], i ∈ I0) on F0, by Theorem
5 the assessment

X∗
n = (XΓ0 , X

∗
0 ) = ([li, ui], i ∈ Γ0 ; [l∗i , u∗i ], i ∈ I0)

on Fn is g-coherent and hence XΓ0 is g-coherent too.

Given an assessment Xn on Fn and assuming system
(4) solvable, let S′ be a subset of the set S of solutions
of (4). Recalling that Φj(Λ) =

∑
Hj

λr, where Λ =
(λr, r ∈ Jm), we set

IS′ = {j ∈ Jn : Φj(Λ) = 0, ∀Λ ∈ S′} , ΓS′ = Jn\IS′ .

We denote by XΓS′ (resp., XIS′ ) the sub-assessment
of Xn associated with ΓS′ (resp., IS′). Obviously,
S′ ⊆ S implies ΓS′ ⊆ Γ0; hence, by Theorem 11, the
sub-assessment PΓS′ is g-coherent. Notice that, by re-
placing XIS′ with any sub-assessment X∗

IS′ , the set S′

is also a subset of the set of solutions of the system (4)
associated with the assessment X∗

n = (XΓS′ , X
∗
IS′ ).

Of course, the same remark holds in the particular
case S′ = {Λ}. Then, we have

Lemma 1. Given an interval-valued assessment Xn

on Fn, assume that system (4) is solvable. Then,
given any subset S′ ⊂ S and any g-coherent assess-
ment X∗

IS′ on the sub-family FIS′ , the assessment
X∗

n = (XΓS′ , X
∗
IS′ ) on Fn is g-coherent.

Proof. We observe that X∗
n is obtained by Xn by re-

placing XIS′ with X∗
IS′ and that S′ is also a subset

of the set of solutions of the system (4) associated
with X∗

n. Then, by applying Theorem 5 to the pair
(Fn, X∗

n), system (4) is solvable and I0 ⊆ IS′ . More-
over X0, being a sub-assessment of X∗

IS′ , is g-coherent
and hence X∗

n is g-coherent too.

By Lemma 1 it immediately follows that, if (4) is solv-
able and XIS′ is g-coherent, then Xn is g-coherent.
Given a vector ∆ = (δi, i ∈ Jn) ∈ [0, 1]n and two
interval-valued assessments

X ′
n = ([l′i, u

′
i], i ∈ Jn) , X ′′

n = ([l′′i , u′′i ], i ∈ Jn) ,

by the symbol X∆ we denote the interval-valued as-
sessment ([li, ui], i ∈ Jn) defined by

li = (1−δi)l′i +δil
′′
i , ui = (1−δi)u′i +δiu

′′
i , i ∈ Jn .

We set ∆0 = (0, 0, . . . , 0), ∆1 = (1, 1, . . . , 1); hence
X ′

n = X∆0 , X ′′
n = X∆1 . We denote by =n the set of

g-coherent interval-valued assessments on Fn. Then,

the result below generalizes Theorem 4 to interval-
valued assessments, by showing how to construct an
infinite class of interval-valued assessments which are
intermediate between X ′

n, X ′′
n , i.e. convex combina-

tions of them.
Theorem 12. Let be given two g-coherent interval-
valued assessments X ′

n = ([l′i, u
′
i], i ∈ Jn), X ′′

n =
([l′′i , u′′i ], i ∈ Jn), on the family Fn = {Ei|Hi, i ∈
Jn}. Then, we can construct an infinite class X of
interval-valued probability assessments on Fn such
that: (i) each Xn ∈ X is a convex combination be-
tween X ′

n, X ′′
n ; i.e., Xn = X∆ for some ∆ = (δi, i ∈

Jn) ∈ [0, 1]n; (ii) X ⊆ =n.

Proof. Using (2) adapted to imprecise assessments,
we denote by I ′0 and I ′′0 the subsets, associated respec-
tively with X ′

n and X ′′
n . From g-coherence of X ′

n, X ′′
n ,

recalling Theorem 10, there exist two vectors

Λ′0 = (λ′r, r ∈ Jm) , Λ′′0 = (λ′′r , r ∈ Jm) ,

such that: Φj(Λ′0) > 0 , ∀ j ∈ Γ′0 = Jn \ I ′0 , and
Φj(Λ′′0) > 0 , ∀ j ∈ Γ′′0 = Jn \ I ′′0 . Given any number
α0 ∈ (0, 1), let us consider the vector

Λ0 = (λr, r ∈ Jm) = (1− α0)Λ′0 + α0Λ′′0 . (6)

Of course, λr = (1− α0)λ′r + α0λ
′′
r , ∀ r ∈ Jm.

Defining I(0) = I ′0 ∩ I ′′0 , for each j ∈ Γ(0) = Γ′0 ∪Γ′′0 =
Jn \ I(0) we have

Φj(Λ0) = Φj [(1− α0)Λ′0 + α0Λ′′0 ] =

= (1− α0)Φj(Λ′0) + α0Φj(Λ′′0) > 0 ,

with Φj(Λ0) = 0, ∀ j ∈ I(0) = Jn \ Γ(0). Moreover,
from g-coherence of X ′

n, X ′′
n , for each i ∈ Jn we have

l′i
∑

Hi
λ′r ≤

∑
EiHi

λ′r ≤ u′i
∑

Hi
λ′r ,

l′′i
∑

Hi
λ′′r ≤

∑
EiHi

λ′′r ≤ u′′i
∑

Hi
λ′′r .

(7)

Now, let us consider the interval-valued assessment
XΓ(0) = ([li, ui], i ∈ Γ(0)), where

li = (1− δ0
i )l′i + δ0

i l′′i , ui = (1− δ0
i )u′i + δ0

i u′′i ,
(8)

δ0
i =

α0

∑
Hi

λ′′r
(1− α0)

∑
Hi

λ′r + α0

∑
Hi

λ′′r
=

α0

∑
Hi

λ′′r∑
Hi

λr
.

(9)
From (7) and (9), for each i ∈ Γ(0) we have∑

EiHi
λr =

∑
EiHi

[(1− α0)λ′r + α0λ
′′
r ] =

= (1− α0)
∑

EiHi
λ′r + α0

∑
EiHi

λ′′r ≥

≥ (1− α0)l′i
∑

Hi
λ′r + α0l

′′
i

∑
Hi

λ′′r =

=
[

(1−α0)
∑

Hi
λ′

r∑
Hi

λr
l′i +

α0
∑

Hi
λ′′

r∑
Hi

λr
l′′i

] ∑
Hi

λr =

= [(1− δ0
i )l′i + δ0

i l′′i ]
∑

Hi
λr = li

∑
Hi

λr .



By a similar reasoning
∑

EiHi
λr ≤ ui

∑
Hi

λr;
hence, recalling (8),

li
∑
Hi

λr ≤
∑
EiHi

λr ≤ ui

∑
Hi

λr , ∀ i ∈ Γ(0) .

Now, given any quantities

δ0
i ∈ [0, 1], i ∈ I(0) = Jn \ Γ(0) , (10)

let us consider the assessment Xn = ([li, ui], i ∈ Jn),
where, for each i ∈ Jn, it is

li = (1− δ0
i )l′i + δ0

i l′′i , ui = (1− δ0
i )u′i + δ0

i u′′i ,

and where δ0
i is defined by (9) for i ∈ Γ(0) and by (10)

for i ∈ I(0). We have

li
∑
Hi

λr ≤
∑
EiHi

λr ≤ ui

∑
Hi

λr , ∀ i ∈ Jn ; (11)

hence, Λ0 is a solution of system (4) and, consider-
ing the set I0 associated with Xn, as defined by (2)
(adapted to imprecise assessments), we have I0 ⊆
I(0) , Γ(0) ⊆ Γ0; then, by Theorem 11, the assess-
ment XΓ0 on FΓ0 is g-coherent (and hence XΓ(0) is
g-coherent too). Notice that δ0

i ≥ 0, 1 − δ0
i ≥ 0,

∀ i ∈ Γ0, with δ0
i > 0 , 1− δ0

i > 0 , ∀ i ∈ Γ(0); hence

min {l′i, l′′i } ≤ li ≤ max {l′i, l′′i } , ∀ i ∈ Γ0 ,

min {u′i, u′′i } ≤ ui ≤ max {u′i, u′′i } , ∀ i ∈ Γ0 ,

with the inequalities strict for i ∈ Γ(0).
We denote, respectively, by X ′

0, X
′′
0 ,F0 the sub-

assessments of X ′
n, X ′′

n and the sub-family of Fn as-
sociated with I0. Of course, from g-coherence of X ′

n

and X ′′
n , it follows that X ′

0 and X ′′
0 , defined on F0,

are g-coherent too.
Moreover, we denote, respectively, by I ′1 and I ′′1 the
subsets associated with X ′

0 and X ′′
0 , as defined by (2)

(adapted to imprecise assessments).
Then, exploiting again Theorem 10, we iterate the
above procedure by considering a pair of vectors
(Λ′1,Λ

′′
1) associated with X ′

0, X
′′
0 . Given any number

α1 ∈ (0, 1), we define a vector Λ1 = (1−α1)Λ′1+α1Λ′′1 ;
then, we introduce , as in (9), suitable non negative
coefficients δ1

i , i ∈ Γ1, with δ1
i > 0, ∀ i ∈ Γ(1). In

this way, by Theorem 11, we construct a g-coherent
assessment XΓ1 defined on FΓ1 , where

Γ1 ⊇ Γ(1) = Γ′1 ∪ Γ′′1 = I0 \ I(1) = I0 \ (I ′1 ∩ I ′′1 ) .

The g-coherence of the assessment (XΓ0 , XΓ1) on
FΓ0∪FΓ1 = FJn\I1 is obtained by the following steps:
(a) let X1 be any g-coherent assessment on the sub-
family F1, associated with the subset I1;
(b) then, by Theorem 5, the assessment (XΓ1 , X1) on
F0 = FΓ1 ∪ F1 is g-coherent;

(c) then, by Theorem 5, the assessment Xn =
(XΓ0 , XΓ1 , X1) on Fn = FΓ0 ∪FΓ1 ∪F1 is g-coherent;
(d) then, the sub-assessment (XΓ0 , XΓ1) on FΓ0 ∪FΓ1

is g-coherent.
By repeating the procedure for the triple (X ′

1, X
′′
1 ,F1)

associated with I1, we determine a g-coherent proba-
bility assessment XΓ2 defined on FΓ2 ; and so on.
In this way, after k + 1 steps, with k ≤ n − 1, we
construct an interval-valued assessment

X∆ = (XΓ0 , XΓ1 , . . . , XΓk
)

on Fn which, by Theorems 5 and 11, is g-coherent.
In particular, we could construct g-coherent
assessments on Fn of the kind X∆ =
(XΓ(0) , XΓ(1) , . . . , XΓ(h)), by applying Lemma 1
with S′ = {Λj}, j = 0, 1, . . . , h, where for each j the
vector Λj = (1− αj)Λ′j + αjΛ′′j is obtained as in (6).
We remark that each assessment X∆ is ob-
tained by using the continuous parameters
αj , δj

i , i ∈ Γj , j = 0, 1, . . . , k. Moreover, X∆ is
intermediate between X ′

n, X ′′
n ; that is, X∆ is a

convex combination of X ′
n, X ′′

n with coefficients the
parameters δj

i , i ∈ Γj , j = 0, 1, . . . , k.
We recall that the coefficients δj

i , i ∈ Γ(j), j =
0, 1, . . . , k, are defined by using the continuous param-
eters α0, α1, . . . , αk and the vectors Λ0,Λ1, . . . ,Λk, as
made in (9) for the coefficients δ0

i , i ∈ Γ0. Moreover,
the parameters α0, α1, . . . , αk can assume any value
in (0, 1) and, for each j = 0, 1, . . . , k, we have

lim
αj→0

δj
i = 0 , lim

αj→1
δj
i = 1 , ∀ i ∈ Γ(j) .

Finally, letting αj → 0, δj
i → 0, and αj → 1, δj

i →
1 , i ∈ Γj \ Γ(j), j = 0, 1, . . . , k, we obtain an infinite
class X of AUL interval-valued assessments on Fn, i.e.
X ⊆ =n. Then, (under the ordinary topology of the
space Rn) we can write

lim
∆→∆0

X∆ = X ′
n , lim

∆→∆1
X∆ = X ′′

n .

As is shown by the previous reasoning, we can move
in a continuous way from X ′

n to X ′′
n . By analogy with

Theorem 4, we can say that X ′
n, X ′′

n are connected by
the interval-valued assessments contained in X .
We also remark that, in general, we can find an in-
finite number (of sequences) of pair of solutions, like
(Λ′0,Λ

′′
0), . . . , (Λ′k,Λ′′k); hence, we can construct an in-

finite number of classes like X .

We illustrate the previous result by the following

Example 1. A Problem of Currency Exchange (a
similar problem is in [9]). Let (AB)t denote the price
of a unit of currency B in terms of a unit of currency
A for the final trade that occurs in a currency market
on day t. Consider the three currencies of the dollar,



$, the pound sterling, £, and the yen, Y . Consider the
events E1 = ($£)t+1 ≥ ($£)t, E2 = ($Y )t+1 ≥ ($Y )t,
E3 = (£Y )t+1 ≥ (£Y )t, that is the events that the
final trading price B in terms of A on day t + 1
is at least as great as on day t. Given the family
F5 = {E1 ∨E2, E2, E1|(E1 ∨E2), E1|E2, E3|E2}, sup-
pose that two experts (say E1 and E2) assert (on F5)
the following probability evaluations:

X ′
5 = (0.8, 0.4, [0.75, 0.95], [0.45, 0.55], [0.4, 0.6]) ;

X ′′
5 = (0.9, 0.85, [0.65, 0.98], [0.60, 0.70], [0.5, 0.65]) .

Such assessments are g-coherent, with I ′0 = I ′′0 = ∅.
Given any solution Λ′0 of system (4) associated with
X ′

n, one has
Φ1(Λ′0) = Φ2(Λ′0) =

∑
Ω λ′r = 1 ,

Φ3(Λ′0) =
∑

E1∨E2
λ′r = 0.8 ,

Φ4(Λ′0) = Φ5(Λ′0) =
∑

E2
λ′r = 0.4 .

Analogously, given any solution Λ′′0 of system (4) as-
sociated with X ′′

n , one has
Φ1(Λ′′0) = Φ2(Λ′′0) = 1 , Φ3(Λ′′0) = 0.9 ,
Φ4(Λ′′0) = Φ5(Λ′′0) = 0.85 .
Given any α0 ∈ (0, 1), let us consider the interval-
valued assessment X∆ = ([li, ui], i ∈ J5) on F5, de-
fined by
l1 = u1 = 0.8 (1− δ0

1) + 0.9 δ0
1 ,

l2 = u2 = 0.4 (1− δ0
2) + 0.85 δ0

2 ,
l3 = 0.75 (1−δ0

3)+0.65 δ0
3 , u3 = 0.95 (1−δ0

3)+0.98 δ0
3 ,

l4 = 0.45 (1−δ0
4)+0.60 δ0

4 , u4 = 0.55 (1−δ0
4)+0.70 δ0

4 ,
l5 = 0.4 (1− δ0

5) + 0.5 δ0
5 , u5 = 0.6 (1− δ0

5) + 0.65 δ0
5 ,

where δ0
1 = δ0

2 = α0, δ0
3 = 0.9 α0

0.8 (1−α0)+0.9 α0
, δ0

4 =
δ0
5 = 0.85 α0

0.4 (1−α0)+0.85 α0
. It can be verified that X∆

is g-coherent. Moreover, in this example, ∆ only de-
pends on α0. Then, if we have the same confidence
with both experts E1 and E2, we can choose α0 = 1

2 ,
by obtaining the following assessment on F5

X∆ = (0.85, 0.62, [0.69, 0.96], [0.55, 0.65], [0.46, 0.63]) .

By Theorem 12 we obtain
Corollary 2. Let be given two g-coherent interval-
valued assessments

X ′
n+1 = ([l1, u1], . . . , [ln, un], [p′, p′]) ,

X ′′
n+1 = ([l1, u1], . . . , [ln, un], [p′′, p′′]) ,

on Fn+1 = {Ei|Hi, i ∈ Jn+1}, with p′ < p′′. Then,
for each p ∈ [p′, p′′], the interval-valued assessment

Xn+1 = ([l1, u1], . . . , [ln, un], [p, p]) , (12)

on Fn+1 is g-coherent.

Proof. By Theorem 12, an infinite class connecting
X ′

n+1, X
′′
n+1 and containing all the assessments like

(12) is given by

X = {X∆, ∆ = (0, . . . , 0, δn+1), δn+1 ∈ [0, 1]} .

It can be easily verified that, for δn+1 = p−p′

p′′−p′ , one
has X∆ = ([l1, u1], . . . , [ln, un], [p, p]).

Remark 1. We recall that the notion of g-coherence
and (the proof of) Theorem 5 are strictly related with
the coherence principle of de Finetti. Moreover, The-
orems 8 and 9 have been obtained in [1] with the aim
of generalizing the fundamental theorem of de Finetti,
even if they can be seen as sub-derivatives of the nat-
ural extension principle of Walley.
Then, along these lines, there are a natural interest
and a deep motivation (at least in our de Finetti-based
approach) in unifying Theorems 8 and 9, as made in
the next result. As it will be seen, such result has a
very simple proof and is directly based on Theorem
5 and on (Corollary 2 of) Theorem 12, which is our
main result.

Theorem 13. Given a g-coherent interval-valued as-
sessment Xn = ([li, ui], i ∈ Jn) on Fn = {Ei|Hi, i ∈
Jn} and a further conditional event En+1|Hn+1, there
exists a suitable non empty interval [p0, p

0] ⊆ [0, 1]
such that the assessment Xn+1 = ([li, ui], i ∈ Jn+1)
on Fn+1 = {Ei|Hi, i ∈ Jn+1} is g-coherent if and only
if [ln+1, un+1] ∩ [p0, p

0] 6= ∅.

Proof. We denote by Π the set of values p such that

Xn+1 = ([l1, u1], . . . , [ln, un], [p, p] ,

is a g-coherent extension of Xn to Fn+1. We first ver-
ify that Π is non empty. Let D = {D1, . . . , Ds} be the
set of constituents generated by Fn ∪ {En+1|Hn+1}
and contained in Hn+1 = H1 ∨ · · · ∨Hn+1. Consider-
ing the constituents C1, . . . , Cm generated by Fn and
contained in Hn = H1 ∨ · · · ∨ Hn, we observe that
there exist disjoint subsets Γ1,Γ2, . . . ,Γm of D, such
that

Cr =
∨

Dt⊆Cr

Dt , r ∈ Jm .

The system (4), with unknowns λ1, . . . , λm associ-
ated with C1, . . . , Cm, can be written as a system
with vector of unknowns ∆ = (δ1, . . . , δs) associated
with D1, . . . , Ds, by replacing each λr by

∑
Dt⊆Cr

δt.
Then, we introduce the following extended system S ′,
with a parameter p ∈ [0, 1],

∑
En+1Hn+1

δt = p
∑

Hn+1
δt ,

lj
∑

Hj
δt ≤

∑
EjHj

δt ≤ uj

∑
Hj

δt , j ∈ Jn ,∑
t∈Js

δt = 1 , δt ≥ 0 , t ∈ Js ,

By suitably adapting p, with each solution of (4)
we can associate (at least) a solution of S ′. Given
any p, we denote by S′ the set of solutions of S ′;
moreover, we set Σ+ = {∆ ∈ S′ :

∑
Hn+1

δr > 0}.
We distinguish two cases: (i) there exists a value
p ∈ [0, 1] such that Σ+ 6= ∅; (ii) Σ+ = ∅ for every



p ∈ [0, 1]. In the first case, given any ∆ ∈ Σ+, the
assessment Xn+1 = ([l1, u1], . . . , [ln, un], [p, p], where

p =
∑

En+1Hn+1
δt∑

Hn+1
δt

, is a g-coherent extension of Xn to

En+1|Hn+1; hence Π 6= ∅. In the second case, (using
any value p) we determine the set I ′0 = I0 ∪{n+1} =
{j ∈ Jn+1 : Max∆∈S′

∑
Hj

δt > 0}, where I0 ⊂ Jn.
If I0 = ∅, then by Theorem 5 the assessment Xn+1

on Fn+1 is g-coherent for every coherent assessment
p on En+1|Hn+1; hence Π 6= ∅. If I0 6= ∅, we re-
place (Fn, Xn) by (F0, X0) by repeating the above
reasoning. After a finite number of steps, we find a
set Σ+ 6= ∅; hence we conclude that Π 6= ∅. Defin-
ing p0 = inf Π, p0 = sup Π, by the closure prop-
erty of the set of coherent probability assessments,
we have p0 ∈ Π, p0 ∈ Π. Finally, by Corollary 2, we
obtain Π = [p0, p

0]. Then, it immediately follows that
[ln+1, un+1] is a g-coherent extension of Xn if and only
if [ln+1, un+1] ∩ [p0, p

0] 6= ∅.

We will now construct some other classes of g-coherent
interval-valued probability assessments on a family
Fn = {Ei|Hi, i ∈ Jn}. Such construction could be
useful, e.g., to conciliate possible discrepancies among
different expert opinions, as shown in the following ex-
ample. Let F3 be the family {E1|H1, E2|H2, E3|H3}
and X ′, X ′′ be two interval-valued assessments on F3

(made by two experts)

([a1, b1], [a2, b2], [a3, b3]) , ([α1, β1], [α2, β2], [α3, β3]) ,

such that b1 < α1 and β2 < a2; this implies

[a1, b1] ∩ [α1, β1] = [a2, b2] ∩ [α2, β2] = ∅ .

Then, let us consider any assessment X3 =
([l1, u1], [l2, u2], [l3, u3]) on F3 and the following con-
ditions

(∗) [l1, u1] ⊆ [b1, α1], [ai, bi]∪[αi, βi] ⊆ [li, ui], i = 2, 3;

(∗∗) [l2, u2] ⊆ [β2, a2], [ai, bi]∪[αi, βi] ⊆ [li, ui], i = 1, 3.

In the next theorem we prove that, if X ′, X ′′ are g-
coherent, then any X3 satisfying (*), or (**), is g-
coherent too.
Given two coherent probability assessments on Fn,

P ′ = (p′i, i ∈ Jn) , P ′′ = (p′′i , i ∈ Jn) ,

and recalling (3), let be

[Pm,PM ] = [pm
1 , pM

1 ]× · · · × [pm
n , pM

n ] =
= {P : Pm ≤ P ≤ PM} .

Given any interval-valued assessment on Fn, Xn =
([li, ui], i ∈ Jn), we denote the associated multi-
interval by

I = [l1, u1]× · · · × [ln, un] .

Of course, if I ∩ {P ′,P ′′} 6= ∅, then Xn is g-coherent.
We have

Theorem 14. Given two g-coherent interval-valued
probability assessments

X ′
n = ([l′i, u

′
i], i ∈ Jn) , X ′′

n = ([l′′i , u′′i ], i ∈ Jn) ,

on the family Fn = {Ei|Hi, i ∈ Jn}, assume that, for
a suitable non empty subset Γ ⊆ Jn, it holds

[l′j , u
′
j ] ∩ [l′′j , u′′j ] = ∅ , ∀j ∈ Γ .

Moreover, let be X =
⋃

j∈Γ Xj , where, for each j ∈ Γ,
Xj is the class of interval-valued probability assess-
ments Xn = ([li, ui], i ∈ Jn) on Fn such that

[lj , uj ] ⊆ [um
j , lMj ] , [l′i, u

′
i]∪ [l′′i , u′′i ] ⊆ [li, ui] , ∀ i 6= j ,

where um
j = min {u′j , u′′j } , lMj = max {l′j , l′′j }. Then,

for every Xn ∈ X , Xn is g-coherent.

Proof. As X ′
n, X ′′

n are g-coherent, there exist two co-
herent assessments P ′,P ′′ on Fn such that

l′i ≤ p′i ≤ u′i , l′′i ≤ p′′i ≤ u′′i , i ∈ Jn ;

hence, considering the multi-interval [Pm,PM ], by
Theorem 4 there exists a continuous curve C, con-
tained in the multi-interval [Pm,PM ], which connects
P ′,P ′′. Let Xn = ([li, ui], i ∈ Jn) be any interval-
valued assessment in Xj and let I be the associated
multi-interval. For any pj ∈ [pm

j , pM
j ], we set

Ipj
= {(p1, . . . , pj , . . . , pn) : pi ∈ [pm

i , pM
i ], ∀ i 6= j} ;

hence
[Pm,PM ] =

⋃
pj∈[pm

j ,pM
j ] Ipj ;

C ∩ Ipj 6= ∅ , ∀ pj ∈ [pm
j , pM

j ] ;

(notice that C ∩ Ipj is the intersection point of C and
Ipj ). Moreover,

pm
i ≤ um

i , pM
i ≥ lMi , ∀ i ∈ Jn ;

hence, by the hypotheses, one has

[lj , uj ] ⊆ [pm
j , pM

j ] ; [pm
i , pM

i ] ⊆ [li, ui] , ∀ i 6= j .

Then, for every pj ∈ [lj , uj ], it is Ipj ⊆ I, so that

C ∩ I =
⋃

pj∈[lj ,uj ]

(C ∩ Ipj
) 6= ∅ ,

and hence Xn = ([li, ui], i ∈ Jn) is g-coherent.

Notice that each point P = C∩Ipj
, pj ∈ [lj , uj ], of the

arc of curve C∩I is a coherent probability assessment
on Fn consistent with Xn.
We illustrate the previous result by the following



Example 2. Recalling Example 1, let us consider
the subfamily F3 = {E1|(E1 ∨ E2), E1|E2, E3|E2} of
F5. Then, let us consider the following g-coherent
assessments on F3

X ′
3 = ([ 65

100 , 85
100 ], [ 45

100 , 55
100 ], [ 4

10 , 6
10 ]) ,

X ′′
3 = ([ 65

100 , 98
100 ], [ 6

10 , 7
10 ], [ 5

10 , 65
100 ]) .

We observe that [ 45
100 , 55

100 ] ∩ [ 6
10 , 7

10 ] = ∅;
then, by Theorem 14, the assessment X3 =
([ 65

100 , 98
100 ], [ 55

100 , 6
10 ], [ 4

10 , 65
100 ]) is g-coherent. To verify

g-coherence of X3, we observe that two precise
assessments consistent, respectively, with X ′

3 and X ′′
3

are P ′ = (3
4 , 5

10 , 5
10 ) and P ′′ = ( 241

360 , 65
100 , 55

100 ). Hence
Pm = (241

360 , 5
10 , 5

10 ) , PM = (3
4 , 65

100 , 55
100 ).

By Theorem 4, there exists a continuous curve
C ⊆ Πn such that Pm ≤ P ≤ PM , ∀P ∈ C. The idea
of Theorem 14, is that as C is continuous, there exist
coherent points (p1, p2, p3)’s such that p1 ∈ [ 65

100 , 98
100 ],

p2 ∈ [ 55
100 , 60

100 ] (the ”interval” between [0.45, 0.55] and
[0.60, 0.70]), and p3 ∈ [ 4

10 , 65
100 ]. Roughly speaking,

while we ”tighten” the interval associated with the
2nd event, we ”enlarge” the intervals associated with
the 1st and the 3rd event. For example, the precise
assessment ( 7

10 , 58
100 , 5

10 ) on F3 is coherent and verifies
the thesis of Theorem 14.

5 Totally coherent interval-valued
assessments

In this section we consider the notion of total coher-
ence; then, we give a result on totally coherent impre-
cise probability assessments and we examine its rela-
tionship with a necessary and sufficient condition for
total coherence of interval-valued assessments. Let
Πn be the set of coherent probability assessments
Pn = (p1, . . . , pn) on Fn = {Ei|Hi, i ∈ Jn}. An im-
precise probability assessment on Fn, represented by
a subset Sn ⊆ [0, 1]n, is g-coherent (i.e., avoiding uni-
form loss) if and only if Sn∩Πn 6= ∅. We say that the
imprecise assessment is totally coherent if and only if
Sn ⊆ Πn. In these cases, we also say that the set Sn

is g-coherent (resp., totally coherent).
Before giving the next result, we illustrate it in
a particular case. Let be given a family F3 =
{E1|H1, E2|H2, E3|H3}, a subset Φ of the unit square
[0, 1]2, and two functions g, f defined on Φ, with
0 ≤ g(x, y) ≤ f(x, y) ≤ 1, ∀ (x, y) ∈ Φ. Given any
α ∈ [0, 1], let γα be the function αg + (1 − α)f . We
denote, respectively, by Σg,Σf ,Σγα the surfaces as-
sociated with the functions g, f, γα, and by S the set⋃

α∈[0,1] Σγα
. Then, in the next theorem we prove

that totally coherence of the set Σg ∪ Σf implies to-
tally coherence of the set Σγα

and is equivalent to
totally coherence of the set S.
Given a subset Γn−1 = {i1, . . . , in−1} ⊂ Jn, we de-

note by Πn−1 the set of coherent assessments on
Fn−1 = {Ei|Hi, i ∈ Γn−1}. Then, we have

Theorem 15. Let be given two functions f(π), g(π),
where π = (pi, i ∈ Γn−1), defined on a set Φ ⊆ Πn−1,
with 0 ≤ g(π) ≤ f(π) ≤ 1, ∀π ∈ Φ. Moreover, let be

K = {γ : g(π) ≤ γ(π) ≤ f(π), ∀π ∈ Φ} ;

Σγ = {(π, γ(π)) : π ∈ Φ} , γ ∈ K ;

Σγα = {(π, γα(π)) : π ∈ Φ} , α ∈ [0, 1] ,

γα = αg + (1− α)f , α ∈ [0, 1] ,

S =
⋃

α∈[0,1]

Σγα
= {(π, pn) : π ∈ Φ, g(π) ≤ pn ≤ f(π)} .

Then, one has:
(i) Σg ∪ Σf ⊆ Πn =⇒ Σγ ⊆ Πn , ∀ γ ∈ K;
(ii) S ⊆ Πn ⇐⇒ Σg ∪ Σf ⊆ Πn.

Proof. (i) assume that Σg ∪ Σf ⊆ Πn; then, let us
consider any γ ∈ K. Given any P = (π, γ(π)) ∈ Σγ ,
let Sπ be the segment with vertices

Pg = (π, g(π)) ∈ Σg , Pf = (π, f(π)) ∈ Σf .

We have P ∈ Sπ and, by Corollary 1, Sπ ⊆ Πn; then
P ∈ Πn, ∀P ∈ Σγ ; hence Σγ ⊆ Πn.
(ii) of course S ⊆ Πn =⇒ Σg ∪ Σf ⊆ Πn.
Conversely, assume that Σg ∪ Σf ⊆ Πn. We observe
that, for each α ∈ [0, 1], it is γα ∈ K; then Σγα

⊆
Πn, ∀α ∈ [0, 1]; hence S =

⋃
α∈[0,1] Σγα

⊆ Πn.

We remark that in general the checking for total co-
herence of (arbitrary) sets like S, or Σg, or Σf , may
be intractable. Let be given an interval-valued as-
sessment Xn = ([l1, u1], . . . , [ln, un]) on Fn and the
associated multi-interval and set of vertices

I = [l1, u1]×· · ·×[ln, un] , V = {l1, u1}×· · ·×{ln, un} .

We recall below a necessary and sufficient condition of
total coherence for Xn ([8]), which amounts to check-
ing coherence of all vertices of I.

Theorem 16. Given an interval-valued assessment
Xn = ([l1, u1], . . . , [ln, un]) on Fn, one has:

I ⊆ Πn ⇐⇒ V ⊆ Πn . (13)

As an application of Theorem 15, we sketch below an
alternative proof of Theorem 16. We set V = Vg ∪Vf ,
where

Vg = {l1, u1} × · · · × {ln−1, un−1} × {ln} ,

Vf = {l1, u1} × · · · × {ln−1, un−1} × {un} .



Of course, I ⊆ Πn implies V ⊆ Πn. Conversely, as-
sume that V ⊆ Πn and (by induction) that (13) holds
for the multi-interval [l1, u1]×· · ·×[ln−1, un−1]. Then,
applying Theorem 15 with g(π) = ln, f(π) = un, and
Φ = [l1, u1]× · · · × [ln−1, un−1], we have

Σg = {(π, ln) : π ∈ Φ} , Σf = {(π, un) : π ∈ Φ} ,

γα(π) = α ln + (1− α)un , S =
⋃

α∈[0,1]

Σγα
= I .

As Vg ⊆ Πn (resp., Vf ⊆ Πn), by the inductive hy-
pothesis one has Σg ⊆ Πn (resp., Σf ⊆ Πn), so that
Σg ∪ Σf ⊆ Πn; hence I ⊆ Πn.

6 Conclusions

We have examined interval-valued probability assess-
ments on finite families of conditional events. Our
approach has been based on the notion of g-coherence
which coincides with Walley’s AUL property. We
have generalized some recent results on precise
probability assessments to the case of interval-valued
assessments. In particular, we have generalized a
connection property of the set Πn of precise coherent
conditional probability assessments to the case of
interval-valued assessments. More precisely, we have
proven that, with any pair of AUL interval-valued
assessments X ′

n, X ′′
n we can associate an infinite class

X of AUL interval-valued imprecise assessments con-
necting X ′

n and X ′′
n . Then, exploiting such result, we

have examined the extension of g-coherent imprecise
assessments. We have also examined a method to
construct classes of g-coherent interval-valued assess-
ments, which could be useful to conciliate possible
discrepancies between different opinions of experts.
Finally, we have given a result on totally coherent
set-valued probability assessments, by examining its
relationship with a necessary and sufficient condition
for total coherence of interval-valued assessments.
We remark that the results obtained for AUL
assessments can be suitably adapted to coherent
ones. This study could be deepened in a further work.
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