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Abstract

After it has been successfully done in probability and
possibility theories, the paper is the first attempt to
introduce the operator of composition also for be-
lief functions. We prove that the proposed definition
preserves all the necessary properties of the opera-
tor enabling us to define compositional models as an
efficient tool for multidimensional models representa-
tion.

Keywords. Belief function, basic assignment, mul-
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1 Introduction

Last years of the last century witnessed emergence
of a new approach to efficient representation of mul-
tidimensional probability distributions. This ap-
proach, which is an alternative to Graphical Markov
Modeling, is based on a simple idea: multidimen-
sional distribution is composed from a system of
low-dimensional (oligodimensional) distributions by
repetitive application of a special operator of com-
position. This is also the reason why the models
are called compositional models. In several papers, in
which the properties of the operator and models were
studied [3, 4, 5], it was shown (among others) that
these models are, in a way, equivalent to Bayesian
networks. Roughly speaking, any multidimensional
distribution representable by a Bayesian network can
also be represented with approximately the same num-
ber of parameters (probabilities) in the form of a com-
positional models, and vice versa.

Though Bayesian networks and compositional mod-
els represent the same class of distributions, they do
not do it in the same way. Bayesian networks use
conditional distributions whereas compositional mod-
els consist of unconditional distributions. Naturally,
both types of models bear the same information but

whilst some marginal distributions are explicitly ex-
pressed in compositional models, it may happen that
their computation from a corresponding Bayesian net-
work is rather computationally expensive. Therefore
it appears that some of computational procedures de-
signed for compositional models are (algorithmically)
simpler than their Bayesian network counterparts.

The goal of this paper is to show that the operator
of composition can also be introduced for belief func-
tions. Moreover, we will show that it inherits the basic
properties of its probabilistic pre-image and therefore
it will enable us to introduce compositional models
for multidimensional belief functions.

We will see that this approach enables us to rep-
resent, let us say, a 15-dimensional belief function
as a sequence of 3 or 4-dimensional belief functions.
Whilst representation of a 15-dimensional belief func-
tion is completely impossible (it would require in bi-
nary case 2215

= 232k numbers), representation of
a 4-dimensional belief function requires only 224

=
216 = 64k numbers and therefore a model consist-
ing of twelve 4-dimensional belief functions requires
“only” 12× 216 = 768k values.

Let us stress at the very beginning that this paper is
the first one dealing with compositional models for be-
lief functions. At this moment, we do not know what
is the connection of the introduced operator of compo-
sition to different concepts of conditioning (and condi-
tional independence) introduced for belief functions.
The reader should realize that composition defined in
this paper is different from that defined by Shenoy
in [7]. His composition meets the requirements given
by Shenoy’s axioms (commutativity, associativity and
distributivity) neither of which is met by the composi-
tion defined here. Therefore we do not know to what
extent his principles of local computations are appli-
cable to our model. This is one of many important
open problems, some of which will be mentioned in
Conclusions.



The reader familiar with the literature on belief func-
tions is accustomed to the conjunctive rule of com-
bination. Ben Yaghlane et al. [2] apply this rule to
the set of marginal and conditional belief functions
with the goal to compute a joint belief function in a
way analogous to Bayesian networks (so-called Belief
Chain Rule). This type of operation again substan-
tially differs from the composition considered in this
paper; the conjunctive rule of combination is com-
mutative and associative. Moreover, in older papers,
Xu and Smets consider only 2-dimensional belief func-
tions, see e.g. [10].

Though the present paper is a contribution to belief
function theory, we will not use the term of belief func-
tion any more in this paper. We are convinced that it
will make the paper more legible for the reader when
we will restrict our considerations to basic belief as-
signments, only. Therefore we will define a composi-
tion of basic assignments and show how to compose
a sequence of simple basic assignments to get an as-
signment corresponding to a multidimensional belief
function.

The contribution is organized as follows. In Section 2
we summarize basic notions, notation and introduce
the operator of composition. Its basic properties can
be found in Section 3, while Section 4 is devoted to
more advanced properties. Finally, in Section 5 we
introduce the notion of so-called perfect sequences and
demonstrate their importance.

2 Notation

Consider a finite index set N = {1, 2, . . . , n} and finite
sets {Xi}i∈N . In this text we will consider multidi-
mensional frame of discernment

Ω = XN = X1 ×X2 × . . .×Xn,

and its subframes. For K ⊂ N , XK denotes a Carte-
sian product of those Xi, for which i ∈ K:

XK =×i∈KXi.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK

will be denoted x↓K , i.e. for K = {i1, i2, . . . , i`}

x↓K = (xi1 , xi2 , . . . , xi`
) ∈ XK .

Analogously, for K ⊂ L ⊆ N and A ⊂ XL, A↓K will
denote a projection of A into XK :

A↓K = {y ∈ XK |∃x ∈ A : y = x↓K}.

Let us remark that we do not exclude situations when
K = ∅. In this case A↓∅ = ∅.

In addition to the projection, in this text we will need
also the opposite operation which will be called

extension. By an extension of two sets A ⊆ XK and
B ⊆ XL we will understand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Consider a basic (probability or belief ) assignment (or
just assignment) m on XN , i.e.

m : P(XN ) −→ [0, 1]

for which
∑

A⊆XN
m(A) = 1. For each K ⊂ N its

marginal basic assignment is defined (for each B ⊆
XK):

m↓K(B) =
∑

A⊆XN :A↓K=B

m(A).

Having two basic assignments m1 and m2 on XK and
XL, respectively (we assume that K, L ⊆ N), we say
that these assignments are projective if

m↓K∩L
1 = m↓K∩L

2 ,

which occurs if and only if there exists a basic as-
signment m on XK∪L such that both m1 and m2 are
marginal assignments of m.

Now, let us start considering how to define compo-
sition of two basic assignments. Consider two sets
K, L ⊂ N . At this moment we do not pose any re-
strictions on K and L; they may be but need not be
disjoint, one may be subset of the other. We even ad-
mit that one or both of them are empty1. Let m1 and
m2 be basic assignments on XK and XL, respectively.

Our goal is to define new basic assignment, denoted
m1 . m2, which will be defined on XK∪L and will
contain all of the information contained in m1 and
as much as possible of information of m2 (for the ex-
act meaning see properties (iii) and (iv) of Lemma 1).
The required property is met by the following defini-
tion.

Definition 1 For two arbitrary basic assignments
m1 on XK and m2 on XL a composition m1 . m2

is defined for all C ⊆ XK∪L by one of the following
expressions:

[a ] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ⊗ C↓L then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

[b ] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K×XL\K then

(m1 . m2)(C) = m1(C↓K);
1Notice that basic assignment m on X∅ is defined m(∅) = 1.

Let us note that this is the only case where we accept m(∅) > 0,
otherwise m(∅) = 0 according to the classical definitions of
basic assignment and belief function, see [6].



[c ] in all other cases

(m1 . m2)(C) = 0.

Remark Notice what this definition yields in the
following degenerate situations:

• if K ∩ L = ∅ then m1 . m2 = m1 · m2 (recall
that m↓∅

2 (∅) = 1) — for details regarding this
situation see Example 1;

• if K ⊇ L then m1 . m2 = m1.

3 Basic properties of composition

Lemma 1 For arbitrary two basic assignments m1

on XK and m2 on XL the following properties hold
true:

(i) m1 . m2 is a basic assignment on XK∪L.

(ii) (m1 . m2)↓K = m1.

(iii) m1 . m2 = m2 . m1 ⇐⇒ m↓K∩L
1 = m↓K∩L

2 .

(iv) If K ⊆ L then m↓K
2 . m2 = m2.

Proof. Let us first prove that for any B ⊆ XK∑
A⊆XK∪L:A↓K=B

(m1 . m2)(A) = m1(B). (1)

Since, due to Definition 1, (m1 . m2)(C) = 0 for any
C ⊆ XK∪L \ (XK ⊗ XL) (in other words for C 6=
C↓K ⊗ C↓L) we see that∑
A⊆XK∪L:A↓K=B

(m1 . m2)(A)

=
∑

A⊆XK⊗XL:A↓K=B

(m1 . m2)(A)

=
∑

C⊆XL:C↓K∩L=B↓K∩L

(m1 . m2)(B ⊗ C).

To prove formula (1), we have to distinguish two situ-
ations depending on the value of m↓K∩L

2 (B↓K∩L). If
this value is positive then∑

A⊆XK∪L:A↓K=B

(m1 . m2)(A)

=
∑

C⊆XL:C↓K∩L=B↓K∩L

m1(B) ·m2(C)

m↓K∩L
2 (B↓K∩L)

=
m1(B)

m↓K∩L
2 (B↓K∩L)

∑
C⊆XL:C↓K∩L=B↓K∩L

m2(C)

=
m1(B)

m↓K∩L
2 (B↓K∩L)

m↓K∩L
2 (B↓K∩L)

= m1(B).

If m↓K∩L
2 (B↓K∩L) = 0 then, according to Defini-

tion 1, there exists only one A ⊆ XK∪L for which
A↓K = B such that (m1 . m2)(A) may be positive;
namely A = B ×XL\K . Therefore∑

A⊆XK∪L:A↓K=B

(m1 . m2)(A)

= (m1 . m2)(B ×XL\K)
= m1(B),

Thus having proved that equality (1) holds true let us
start proving assertions (i) – (iv).

ad (i) To prove that m1 . m2 is a basic assignment
on XK∪L we have to show that for each A ⊆ XK∪L

value (m1 . m2)(A) is nonnegative (which is evident)
and that the sum of all these values equals 1. The
latter holds true, too, because (using equality (1))∑
A⊆XK∪L

(m1 . m2)(A)

=
∑

B⊆XK

∑
A⊆XK∪L:A↓K=B

(m1 . m2)(A)

=
∑

B⊆XK

m1(B) = 1.

ad (ii) The formula is another form of equality (1).

ad (iii) Let us first prove

m↓K∩L
1 = m↓K∩L

2 =⇒ m1 . m2 = m2 . m1.

Consider any A ⊆ XK∪L. If A 6⊆ XK⊗XL then both
(m1 .m2)(A) and (m2 .m1)(A) equal 0. Therefore we
have to prove the implication only for A ⊆ XK ⊗XL.

If m↓K∩L
1 (A↓K∩L) = m↓K∩L

2 (A↓K∩L) > 0 then

(m1 . m2)(A) =
m1(A↓K) ·m2(A↓L)

m↓K∩L
2 (A↓K∩L)

=
m1(A↓K) ·m2(A↓L)

m↓K∩L
1 (A↓K∩L)

= (m2 . m1)(A).

In opposite when m↓K∩L
1 (A↓K∩L) =

m↓K∩L
2 (A↓K∩L) = 0, both m1(A↓K) and m2(A↓L)

must equal 0 and therefore (according to Definition 1)
(m1 . m2)(A) = (m2 . m1)(A) = 0.

To prove the other side of the equivalence (i.e. m1 .

m2 = m2 .m1 implies m↓K∩L
1 = m↓K∩L

2 ) it is enough
to realize that if m↓K∩L

1 6= m↓K∩L
2 then also m1.m2 6=

m2 . m1 because, due to already proved (item ii) of
this assertion, m↓K∩L

1 = (m1.m2)↓K∩L and m↓K∩L
2 =

(m2 . m1)↓K∩L.



Table 1: Basic assignments m1 and m2.

A ⊆ X1 m1(A) A ⊆ X2 m2(A)
{a1} 0.2 {a2} 0.6
{b1} 0.3 {b2} 0
{a1b1} 0.5 {a1b2} 0.4

Table 2: Basic assignment m1 . m2.

C ⊆ X{1,2}
C =

C↓{1} ⊗ C↓{2} (m1 . m2)(C)

{a1a2} {a1} ⊗ {a2} 0.12
{a1b2} {a1} ⊗ {b2} 0
{b1a2} {b1} ⊗ {a2} 0.18

{b1b2} {b1} ⊗ {b2} 0

{a1a2, a1b2} {a1} ⊗X2 0.08
{a1a2, b1a2} X1 ⊗ {a2} 0.3
{a1a2, b1b2} 0
{a1b2, b1a2} 0
{a1b2, b1b2} X1 ⊗ {b2} 0
{b1a2, b1b2} {b1} ⊗X2 0.12

{a1a2, a1b2, b1a2} 0
{a1a2, a1b2, b1b2} 0
{a1a2, b1a2, b1b2} 0
{a1b2, b1a2, b1b2} 0{

a1a2, a1b2

b1a2, b1b2

}
X1 ⊗X2 0.2

ad (iv) This property follows directly from previ-
ously proved items (iii) and (ii).

Let us now illustrate the operator of composition and
its properties by two examples. The first shows what
happens when K ∩ L = ∅, the other demonstrates
non-commutativity of the operator.

Example 1 Consider two basic assignments mi (for
i = 1, 2) on Xi = {ai, bi} specified in Table 1.2 Since,
in this case, K ∩L is empty (recall that m↓∅

2 (∅) = 1),
composition simplifies to the expression

(m1 . m2)(C) = m1(C↓{1}) ·m2(C↓{2}).

Using Table 2, where the values of m1 . m2 are
presented, the reader can easily check that m1 =
(m1 .m2)↓{1}, and since m1 and m2 are trivially pro-
jective also m2 = (m1 . m2)↓{2}. �

2Let us note that, for the sake of simplicity, we use in ex-
amples x1 . . . xn instead of (x1, . . . , xn).

Example 2 Let for i = 1, 2, 3, Xi = {ai, bi} and let
us consider the following basic assignments m1 and
m2 on X1 ×X2 and X2 ×X3, respectively:

m1(X1 × {a2}) = 0.4,

m1(X1 ×X2) = 0.6,

m2(X2 × {a3}) = 0.5,

m2(X2 ×X3) = 0.5,

the values of both basic assignments m1 and m2 on
the remaining subsets being zero. From Definition 1
(case [a]) one can immediately see that both (m1 .
m2)(A) and (m2 . m1)(A) can be positive only for
those A ⊆ X1 ×X2 ×X3 for which

A↓{1,2} = X1 × {a2} or A↓{1,2} = X1 ×X2,

and

A↓{2.3} = X2 × {a3} or A↓{2,3} = X2 ×X3.

There are only two such sets

A1 = X1 ×X2 × {a3} and A2 = X1 ×X2 ×X3.

For these sets we get

(m1 . m2)(X1 ×X2 × {a3})

= m1(X1×X2)·m2(X2×{a3})
m
↓{2}
2 (X2)

= 0.6·0.5
1 = 0.3,

(m1 . m2)(X1 ×X2 ×X3)

= m1(X1×X2)·m2(X2×X3)

m
↓{2}
2 (X2)

= 0.6·0.5
1 = 0.3,

and similarly

(m2 . m1)(X1 ×X2 × {a3})

= m2(X2×{a3})·m1(X1×X2)

m
↓{2}
1 (X2)

= 0.5·0.6
0.6 = 0.5,

(m2 . m1)(X1 ×X2 ×X3)

= m2(X2×X3)·m1(X1×X2)

m
↓{2}
1 (X2)

= 0.5·0.6
0.6 = 0.5.

From case [b] of Definition 1 we will get yet another
focal element for m1 . m2, namely

A3 = X1 × {a2} ×X3,



Table 3: Composed basic assignments.

(m1 . m2)(A) (m2 . m1)(A)
A1 0.3 0.5
A2 0.3 0.5

A3 0.4 0

for which

A
↓{1,2}
3 = X1 × {a2} and A

↓{3}
3 = X3.

Since m
↓{2}
2 (A↓{2}

3 ) = 0 and A
↓{3}
3 = X3 we get

(m1 . m2)(X1 × {a2} ×X3) = m1(X1 × {a2})
= 0.4.

Notice that there does not exist such a focal element
for m2 . m1, as m

↓{2}
1 (A↓{2}

3 ) > 0.

Both the composed basic assignments m1 . m2 and
m2 .m1 are outlined in Table 3 (recall once more that
for all other A ⊆ X1 ×X2 ×X3 different from those
included in Table 3 both assignments equal to 0). �

As said in the Introduction, operator of composition
was originally introduced in probability theory. A ba-
sic assignment m degenerates into a probability distri-
bution if all its focal elements are singletons (in other
words: m(A) > 0 =⇒ |A| = 1).

In agreement with [6] we will call such assignments
Bayesian basic assignments. It would be strange if
the operator of composition we have introduced in this
paper would not coincide with the probabilistic one if
applied to Bayesian basic assignments. Fortunately,
it is not the case.

Lemma 2 Let m1 and m2 be Bayesian basic assign-
ments on XK and XL, respectively, for which

m2
↓K∩L(A) = 0 =⇒ m1

↓K∩L(A) = 0 (2)

for any A ⊆ XK∪L. Then m1.m2 is a Bayesian basic
assignment.

Proof. To prove that a basic assignment m1 . m2 is
Bayesian, it is enough to show that if A ⊆ XK∪L is
not a singleton then (m1 . m2)(A) = 0.

Consider any A ⊆ XK∪L, and two different elements
x, y ∈ A. Since x 6= y then either x↓K 6= y↓K or
x↓L 6= y↓L (or both). Therefore either A↓K or A↓L is
not a singleton and therefore m1(A↓K) ·m2(A↓L) = 0.
This means that if m2

↓K∩L(A↓K∩L) > 0 then, due to
Definition 1, (m1 . m2)(A) = 0.

If m2
↓K∩L(A↓K∩L) = 0 then, because we assume the

validity of implication (2), m1
↓K∩L(A↓K∩L) = 0 and

therefore also m1(A↓K) = 0. Therefore, according to
Definition 1, (m1 . m2)(A) = 0, too.

Remark The reader should however notice that the
definition of the operator of composition for Bayesian
basic assignments is not fully equivalent to the defi-
nition of composition for probabilistic distributions.
They equal to each other only in case that the
probabilistic version is defined. This is anchored in
Lemma 2 by assuming the implication (2). In case
it does not hold, the probabilistic operator is not de-
fined whilst its belief version introduced in this paper
is always defined. Nevertheless, in this case, the re-
sult is not a Bayesian assignment. We shall illustrate
it by a simple example.

Example 3 Let X1,X2 and X3 be as in the previ-
ous example and consider the following Bayesian basic
assignments m1 and m2 on X1 × X2 and X2 × X3,
respectively:

m1({a1a2}) = m1({a1b2})
= m1({b1a2}) = m1({b1b2}) = 0.25,

m2({a2a3}) = m2({a2b3}) = 0.5,

m2({b2a3}) = m2({b2b3}) = 0.

Let us compute m1 . m2 for singletons {x1x2x3} ∈
X1 ×X2 ×X3. If x2 = a2 then

(m1 . m2)({x1a2x3})

= m1({x1a2})·m2({a2x3})
m↓2

2 ({a2})

= 0.25·0.5
1 = 0.125.

For a singleton {x1b2x3} we get

(m1 . m2)({x1b2x3}) = 0,

because m↓2
2 ({b2}) = 0. In this case, however, we get

(m1 . m2)({x1b2} ×X3) = m1({x1b2})
= 0.25.

This means that in this case there are 6 focal elements
of m1 . m2, namely 4 singletons:

{x1a2x3}, for x1 ∈ X1, x3 ∈ X3,

and 2 two-element sets

{x1b2} ×X3, for x1 ∈ X1.

Let us remark that in contrast to m1 . m2, m2 . m1

is a Bayesian basic assignment, because whenever



Table 4: Basic assignments m1 and m2.

A ⊆ X1 m1(A) A ⊆ X2 m2(A)
{a1} 0.5 {a2} 0.4
{a1, b1} 0.5 {a2, b2} 0.6

m
↓{2}
1 (x2) = 0 then also m

↓{2}
2 (x2) = 0. Basic as-

signment m1 . m2 has 4 focal elements:

(m2 . m1)({a1a2a3})
= (m2 . m1)({a1a2b3})
= (m2 . m1)({b1a2a3})
= (m2 . m1)({b1a2b3}) = 0.25. �

Remark In Examples 2 and 3 we showed that the
operator of composition is not commutative. From
the following example we shall see that this operator
is neither associative.

Example 4 Let X1 and X2 be as in previous ex-
amples and let us consider the following three basic
assignments m1,m2 defined on X1 and X2, respec-
tively, as suggested in Table 4 and m3 have only one
focal element, namely

m3(X1 ×X2) = 1.

Then

(m1 . m2)({a1a2}) = 0.2,

(m1 . m2)({a1} ×X2) = 0.3,

(m1 . m2)(X1 × {a2}) = 0.2,

(m1 . m2)(X1 ×X2) = 0.3,

due to Definition 1 (the values on remaining sets being
again zero) and (m1 . m2) . m3 = m1 . m2 according
to Lemma 1 property (iv). On the other hand

(m2 . m3)(X1 × {a2}) = 0.4,

(m2 . m3)(X1 ×X2) = 0.6.

Now, computing m1 . (m2 . m3) we obtain

(m1 . (m2 . m3))({a1} ×X2) = 0.5,

(m1 . (m2 . m3))(X1 × {a2}) = 0.2,

(m1 . (m2 . m3))(X1 ×X2) = 0.3,

which evidently differs from (m1 . m2) . m3 (see Ta-
ble 5). �

Table 5: Composed basic assignments.

(m1 . m2) . m3 m1 . (m2 . m3)
{a1a2} 0.2 0

{a1} ×X2 0.3 0.5

X1 × {a2} 0.2 0.2
X1 ×X2 0.3 0.3

4 Advanced properties of composition

In this section we are going to study properties which
were proved for probabilistic version of the operator
of composition and which are applied when proving
important theorems regarding compositional models.
Unless expressed explicitly otherwise in this section
we will assume m1,m2,m3 be basic assignments on
XK1 ,XK2 ,XK3 , respectively.

Lemma 3 Let m1,m2,m3 be basic assignments on
XK1 ,XK2 ,XK3 , respectively. If K1 ⊇ (K2∩K3) then

(m1 . m2) . m3 = (m1 . m3) . m2. (3)

Proof. The goal is to prove that for any C ⊆
XK1∪K2∪K3

((m1 . m2) . m3)(C) = ((m1 . m3) . m2)(C). (4)

We will have to distinguish five special cases.

A. C 6= C↓K1 ⊗ C↓K2 ⊗ C↓K3 .
This is the simplest situation because in this
case both sides of formula (4) equal 0 due to
Definition 1 (case [c]).

B. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3

& m↓K1∩K2
2 (C↓K1∩K2), m↓K1∩K3

3 (C↓K1∩K3) > 0.
In this case it is enough to realize that (under the
given assumptions) K3 ∩ (K1 ∪ K2) = K3 ∩ K1

and, analogously, K2 ∩ (K1 ∪ K3) = K2 ∩ K1.
Then we see that both sides of formula (4) again
coincide:

((m1 . m2) . m3)(C)

=
m1(C↓K1) ·m2(C↓K2)

m↓K2∩K1
2 (C↓K2∩K1)

· m3(C↓K3)

m
↓K3∩(K1∪K2)
3 (C↓K3∩(K1∪K2))

,

((m1 . m3) . m2)(C)

=
m1(C↓K1) ·m3(C↓K3)

m↓K3∩K1
3 (C↓K3∩K1)

· m2(C↓K2)

m
↓K2∩(K1∪K3)
2 (C↓K2∩(K1∪K3))

.



C. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3 ,
m↓K1∩K2

2 (C↓K1∩K2) > 0 = m↓K1∩K3
3 (C↓K1∩K3).

In this case, if C↓K3\K1 6= XK3\K1 then both
sides of formula (4) equal 0, because, due to
Definition 1, both assignments m1 . m2 and
(m1 . m3) . m2 equal 0. Therefore consider
C = C↓K1 ⊗ C↓K2 ⊗ XK3\K1 . For this we get
from Definition 1

((m1 . m2) . m3)(C) = (m1 . m2)(C↓K1∪K2).

For the right-hand side of formula (4) we get

(m1 . m3)(C↓K1∪K3) = m1(C↓K1)

and therefore

((m1 . m3) . m2)(C) = (m1 . m2)(C↓K1∪K2).

D. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3 ,
m↓K1∩K2

2 (C↓K1∩K2) = 0 < m↓K1∩K3
3 (C↓K1∩K3).

The proof is analogous to that under item C.

E. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3 ,
m↓K1∩K2

2 (C↓K1∩K2) = 0 = m↓K1∩K3
3 (C↓K1∩K3).

It is obvious from Definition 1 that both sides of
formula (4) equal 0 for all C but for C = C↓K1 ⊗
XK2\K1⊗XK3\K1 . For this special case, however,

((m1 . m2) . m3)(C) = m1(C↓K1),
((m1 . m3) . m2)(C) = m1(C↓K1).

Lemma 4 Let m1,m2 be basic assignments on
XK1 ,XK2 , respectively. If K1 ∪K2 ⊇ L ⊇ K1 then

(m1 . m2)↓L = m1 . m↓K2∩L
2 .

Proof. Consider first B ⊆ XL such that
m↓K1∩K2

2 (B↓K1∩K2) > 0. For this B we get

(m1 . m2)↓L(B)

=
∑

A⊆XK1∪K2 :A↓L=B

(m1 . m2)(A)

=
∑

A⊆XK1⊗XK2 :A↓L=B

(m1 . m2)(A)

=
∑

A⊆XK1⊗XK2 :A↓L=B

m1(A↓K1) ·m2(A↓K2)

m↓K1∩K2
2 (A↓K1∩K2)

=
∑

C⊆XK2 :C↓L∩K2=B↓L∩K2

m1(B↓K1) ·m2(C)

m↓K1∩K2
2 (B↓K1∩K2)

=
m1(B↓K1)

m↓K1∩K2
2 (B↓K1∩K2)

∑
C⊆XK2 :C↓L∩K2=B↓L∩K2

m2(C)

=
m1(B↓K1)m↓L∩K2

2 (B↓L∩K2)

m↓K1∩K2
2 (B↓K1∩K2)

= (m1 . m↓L∩K2
2 )(B).

If m↓K1∩K2
2 (B↓K1∩K2) = 0 for some B ⊆ XL, then

there is only one A ⊆ XK1∪K2 such that A↓K1 = B↓K1

for which (m1.m2)(A) may be positive, namely A∗ =
B↓K1 ⊗ XK2\K1 with (m1 . m2)(A∗) = m1(B↓K1).
Thus if B = B↓K1 ⊗XL\K1 ,

(m1 . m2)↓L(B) =
∑

A⊆XK1∪K2 :A↓L=B

(m1 . m2)(A)

= (m1 . m2)(A∗) = m1(B↓K1)

= (m1 . m↓K2∩L
2 )(A∗↓L)

= (m1 . m↓K2∩L
2 )(B).

If B 6= B↓K1 ⊗ XL\K1 and m↓K1∩K2
2 (B↓K1∩K2) = 0

then

(m1 . m2)↓L(B) = 0 = (m1 . m↓K2∩L
2 )(B).

Lemma 5 Let m1,m2 be basic assignments on
XK1 ,XK2 , respectively. If K1 ∪ K2 ⊇ L ⊇ K1 ∩ K2

then
(m1 . m2)↓L = m↓K1∩L

1 . m↓K2∩L
2 .

Proof. We will compute the required marginal assign-
ment in two steps. In the first step we will employ
Lemma 4, then (iv) of Lemma 1 and finally Lemma 3:

(m1 . m2)↓K1∪L = m1 . m↓K2∩L
2

= (m↓K1∩K2
1 . m1) . m↓K2∩L

2

= (m↓K1∩K2
1 . m↓K2∩L

2 ) . m1.

The last expression will be further marginalized with
the help of Lemma 4 and afterwards the final form
will be received with application of Lemma 3 and (iv)
of Lemma 1.

(m1 . m2)↓L =
(
(m↓K1∩K2

1 . m↓K2∩L
2 ) . m1

)↓L
= (m↓K1∩K2

1 . m↓K2∩L
2 ) . m↓K1∩L

1

= (m↓K1∩K2
1 . m↓K1∩L

1 ) . m↓K2∩L
2

= m↓K1∩L
1 . m↓K2∩L

2 .

Lemma 6 Let m1,m2 be basic assignments on
XK1 ,XK2 , respectively. Then

m1 . m2 = m1 . (m1 . m2)↓K2 .

Proof. Due to (ii) of Lemma 1 assignments m1 and
(m1 . m2)↓K2 are projective and therefore (due to
property (iii) of the same lemma) these arguments
may be commuted

m1 . (m1 . m2)↓K2 = (m1 . m2)↓K2 . m1

= (m↓K1∩K2
1 . m2) . m1,



where the last modification is made on the basis of
Lemma 5. The last expression meets the assumptions
of Lemma 3 and therefore we can exchange second and
third arguments, from which the required expression
is got by application of (iv) of Lemma 1:

(m↓K1∩K2
1 . m2) . m1 = (m↓K1∩K2

1 . m1) . m2

= m1 . m2.

5 Compositional models

Now we are starting to consider repetitive application
of the operator of composition with the goal to cre-
ate a multidimensional model. Since the operator is
neither commutative nor associative we have always
to specify in which order the oligodimensional assign-
ments are composed together. To make the formulas
more lucid we will omit brackets in case that the op-
erator is to be applied from left to right, i.e., in what
follows

m1 . m2 . m3 . . . . . mn−1 . mn

= (. . . ((m1 . m2) . m3) . . . . . mn−1) . mn.

Moreover, we will always assume mi be basic assign-
ment on XKi .

The reader familiar with some papers on probabilis-
tic or possibilistic compositional models knows that
one of the most important notions of this theory is
that of a so-called perfect sequence, which will be now
introduced also for a sequence of basic assignments.

Definition 2 A generating sequence of basic assign-
ments m1, m2, . . . ,mn is called perfect if

m1 . m2 = m2 . m1,

m1 . m2 . m3 = m3 . (m1 . m2),
...

m1 . m2 . . . . . mn = mn . (m1 . . . . . mn−1).

From the practical point of view it is also important
to have a tool enabling us to recognize whether a gen-
erating sequence is perfect or not. For this one can
take advantage of the following assertion.

Lemma 7 A generating sequence m1,m2, . . . ,mn is
perfect iff the pairs of basic assignments mj and (m1.
. . . . mj−1) are projective, i.e. if

m
↓Kj∩(K1∪...∪Kj−1)
j

= (m1 . . . . . mj−1)↓Kj∩(K1∪...∪Kj−1),

for all j = 2, 3, . . . , n.

Proof. This assertion is proved just by a multiple
application of assertion (iii) of Lemma 1:

m1 . m2 = m2 . m1 ⇐⇒ m↓K2∩K1
1 = m↓K2∩K1

2 ,

m1 . m2 . m3 = m3 . (m1 . m2)

⇐⇒ (m1 . m2)↓K3∩(K1∪K2) = m
↓K3∩(K1∪K2)
3 ,

...
m1 . m2 . . . . . mn = mn . (m1 . . . . . mn−1)

⇐⇒ (m1 . . . . . mn−1)↓Kn∩(K1∪...∪Kn−1)

= m↓Kn∩(K1∪...∪Kn−1)
n .

From Definition 2 one can hardly see what are the
properties of the perfect sequences; the main one is
expressed by the following characterization theorem.

Theorem 1 A generating sequence of basic assign-
ments m1,m2,. . . ,mn is perfect iff all the assignments
from this sequence are marginal to the composed basic
assignment m1 . m2 . . . . . mn:

(m1 . m2 . . . . . mn)↓Kj = mj ,

for all j = 1, . . . ,m.

Proof. The fact that all assignments mj from a perfect
sequence are marginals of (m1 . m2 . . . . . mn) follows
from the fact that (m1 . . . . .mj) is marginal to (m1 .
. . . .mn) (due to (ii) of Lemma 1) and mj is marginal
to mj . (m1 . . . . . mj−1) = m1 . . . . . mj .

Suppose now that for all j = 1, . . . , n, mj are marginal
assignments to m1 . . . . .mn. It means that all the as-
signments from the sequence are pairwise projective,
and that each mj is projective with any marginal as-
signment of m1 . . . . .mn, and consequently also with
m1 . . . . . mj−1. So we get that

m
↓Kj∩(K1∪...∪Kj−1)
j

= (m1 . . . . . mj−1)↓Kj∩(K1∪...∪Kj−1)

for all j = 2, . . . , n, which is equivalent, due to
Lemma 7, to the fact that m1,. . . ,mn is perfect.

Graphical Markov models (or rather decomposable
models) are recalled by the following (almost trivial)
assertion, which resembles assertions concerning de-
composable models.



Theorem 2 Let a generating sequence of pairwise
projective assignments m1,m2, . . . ,mn be such that
K1,K2, . . . ,Kn meets the well-known running inter-
section property:

∀j = 2, 3, . . . , n ∃`(1 ≤ ` < j)
such that Kj ∩ (K1 ∪ . . . ∪Kj−1) ⊆ K`.

Then m1,m2, . . . ,mn is perfect.

Proof. Due to Lemma 7 it is enough to show that
for each j = 2, . . . , n basic assignment mj and the
composed assignment m1 . . . . . mj−1 are projective.
Let us prove it by induction.

For j = 2 the required projectivity is guaranteed
by the fact that we assume pairwise projectivity of
all m1, . . . ,mn. So we have to prove it for general
j > 2 under the assumption that the assertion holds
for j − 1, which means (due to Theorem 1) that all
m1,m2, . . . ,mj−1 are marginal to m1 . . . . . mj−1.
Since we assume that K1, . . . ,Kn meets the running
intersection property, there exists ` ∈ {1, 2, . . . j − 1}
such that Kj∩(K1∪. . .∪Kj−1) ⊆ K`. Therefore (m1.

. . . . mj−1)↓Kj∩(K1∪...∪Kj−1) and m
↓Kj∩(K1∪...∪Kj−1)
`

are the same marginals of m1 . . . . . mj−1 and there-
fore they have to equal to each other:

(m1 . . . . . mj−1)↓Kj∩(K1∪...∪Kj−1)

= m
↓Kj∩(K1∪...∪Kj−1)
` .

However we assume that mj and m` are projective
and therefore also

(m1 . . . . . mj−1)↓Kj∩(K1∪...∪Kj−1)

= m
↓Kj∩(K1∪...∪Kj−1)
j .

It should be stressed at this moment that running
intersection property of K1,K2, . . . ,Kn is a sufficient
condition guaranteeing a perfectness of a generating
sequence of pairwise projective assignments. By no
means this condition is necessary as it will be shown
in the following example.

Example 5 Simple example is given by two basic as-
signments m1 and m2 from Example 1 (recall that
they are defined on X1 and X2, respectively, and their
values can be found in Table 1) and the third assign-
ment m3 = m1 . m2 (see Table 2). Considering se-
quence m1,m2,m3, it is evident that K1 = {1},K2 =
{2},K3 = {1, 2} do not meet the running intersec-
tion property. And yet the sequence m1,m2,m3 is
perfect because all the assignments are marginal (or
equal) to m1 . m2 . m3. Notice that if we chose any
other basic assignment m̂3 on X{1,2} different from

m3 = m1 . m2, the generating sequence m1,m2, m̂3

would not be perfect any more. So we see that per-
fectness of a sequence is not only a structural property
connected with the properties of K1,K2, . . . ,Kn but
depends also on specific values of the respective basic
assignments. �

The last assertion shows that each generating se-
quence defining a compositional model m1 . . . . . mn

can be transformed into a perfect sequence. It means,
any basic assignment representable by a generating se-
quence m1,m2, . . . ,mn can be represented also by a
perfect sequence m̂1, m̂2, . . . , m̂n

Theorem 3 For any generating sequence
m1,m2, . . . ,mn the sequence m̂1, m̂2, . . . , m̂n com-
puted by the following process

m̂1 = m1,

m̂2 = m̂↓K2∩K1
1 . m2,

m̂3 = (m̂1 . m̂2)↓K3∩(K1∪K2) . m3,

...
m̂n = (m̂1 . . . . . m̂n−1)↓Kn∩(K1∪...Kn−1) . mn

is perfect and

m1 . . . . . mn = m̂1 . . . . . m̂n.

Proof. The perfectness of the sequence m̂1, . . . , m̂n

follows immediately from Lemma 7 and from the def-
inition of this sequence as

m̂
↓Ki∩(K1∪...∪Ki−1)
i

= (m̂1 . . . . . m̂i−1)↓Ki∩(K1∪...∪Ki−1)

yields projectivity of (m̂1 . . . . . m̂i−1) and m̂i.

Let us prove

m1 . . . . . mn = m̂1 . . . . . m̂n

by mathematical induction. Since m1 = m̂1 by defi-
nition, it is enough to show that

m1 . . . . . mi = m̂1 . . . . . m̂i

implies also

m1 . . . . . mi+1 = m̂1 . . . . . m̂i+1.

In the following computations we will use the fact that
due to Lemma 5

(m̂1 . . . . . m̂i)↓Ki+1∩(K1∪...Ki) . mi+1

= ((m̂1 . . . . . m̂i) . mi+1)
↓Ki+1



and afterwards we will employ Lemma 6.

m̂1 . . . . . m̂i+1

= m̂1 . . . . . m̂i .(
(m̂1 . . . . . m̂i)↓Ki+1∩(K1∪...Ki) . mi+1

)
= m̂1 . . . . . m̂i . ((m̂1 . . . . . m̂i) . mi+1)

↓Ki+1

= m̂1 . . . . . m̂i . mi+1 = m1 . . . . . mi . mi+1,

where the last modification is an application of the
inductive assumption.

6 Conclusions

Graphical Markov Models were designed to enable de-
scription of real-life problems by probabilistic mod-
els. Since we are getting into problems when coping
with computational complexity of probabilistic mod-
els, all the more so problems naturally appear when
applying belief function models, for which there do
not exist distribution functions; we have to represent
them by set functions defined on the whole power set
of the frame of discernment Ω = XN . So, inspired
by the original probabilistic approach the paper is
the first attempt to build up compositional models
of multidimensional belief functions. We have defined
belief function operator of composition manifesting all
the main characteristics of its probabilistic pre-image.
Even more, there is one point in which the belief func-
tion operator of composition is superior to the prob-
abilistic one: thanks to the ability of belief functions
to model total ignorance, the operator of composition
is for basic assignments always defined, which is not
the case in the probabilistic framework.

In the paper we have proved the basic properties of the
operator necessary to introduce compositional mod-
els and their most important special case, perfect se-
quence models. Naturally, there are still many open
problems to be solved. The most important one is a
design of efficient computational procedures for this
type of models. It is also necessary to clarify interre-
lations between the operator of composition and con-
ditional independence. This problem is not easy be-
cause in the framework of belief functions there ex-
ist several notions corresponding to stochastic condi-
tional independence.

At this moment we know very little about similarities
and differences between the described compositional
models and other multidimensional models such as
[1, 2, 7], as well as about the relation between the
compositional models developed for belief functions
and those introduced in possibility theory [8, 9].
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