Abstract

Credal networks lift the precise probability assumption of Bayesian networks, enabling a richer representation of uncertainty in the form of closed convex sets of probability measures. The increase in expressiveness comes at the expense of higher computational costs. In this paper we present a new algorithm which is an extension of the well-known variable elimination algorithm for computing posterior inferences in extensively specified credal networks. The algorithm efficiency is empirically shown to outperform a state-of-the-art algorithm. We then provide the first fully polynomial time approximation scheme for inference in credal networks with bounded treewidth and number of states per variable.

Keywords. Probabilistic graphical models, credal networks, approximation scheme, valuation algebra.

1 Introduction

Credal networks [11] are generalizations of Bayesian networks that allow for a richer representation of uncertainty in the form of set-valued probabilities—in contrast to the sharp numeric values required by their Bayesian counterpart. They are models of imprecise probability as advocated by Walley [18]. In a nutshell, credal networks rely on a directed acyclic graph (DAG) to encode a compact and computationally efficient representation of a closed convex set of joint probability mass functions over a set of variables, much in the same way that Bayesian networks do for single joint probability mass functions. Namely, credal networks respect the local Markov condition that each variable (uniquely represented by a node in the DAG) is (strongly) independent of its non-descendant non-parents conditional on its parents. Strong independence is justified by a sensitivity analysis interpretation, where we assume that there exists a single probability mass function representing our knowledge which we cannot know precisely for lack of resources; epistemic irrelevance, on the other hand, is arguably more consistent with a behavioral interpretation of inherent imprecision [18]. In the following, we assume credal networks to operate under strong independence.

In order to enable efficient computation, additional constraints need to be imposed to the set-valued specifications of the local probabilities. The two most common choices are extensively specified sets, in which local models are given as sets of probability potentials, and separately specified sets, in which local models are specified as collections containing one set of probability mass functions for each configuration of the parents. Separately specified networks can be mapped to extensively specified and vice-versa [2].

There is also another subtlety when computing with such local models, which concerns the way they are represented in a computer. The sets of local (conditional) probability mass functions can be encoded either as sets of points (e.g., the sets of vertices of a convex polytope), or as sets of (linear) inequalities. Although these two encodings can represent any finitely-generated closed convex set, moving from an inequality-based encoding to a vertex-based encoding can dramatically increase the length of the representation of the local models. For example, a simple 8-dimensional polytope specified by 729 inequalities has between 5 thousand and 12 billion vertices [4].

Inference with credal networks has been theoretically and empirically shown to be a difficult problem. For example, computing exact marginals in credal networks is known to be NP-hard even for polytree-shaped networks, a particular case that can be computed in polynomial time in Bayesian networks [7]. Despite the hardness of the problem, several algorithms are known to perform reasonably well under certain conditions. Most notably, the \(2U\) algorithm [12], which computes exact posterior bounds in polytree-shaped credal networks with binary variables, continues to be the only known polynomial time algorithm available, and its generalizations to arbitrary networks (e.g., the GL2U [3]), which perform approximate inference, are among the fastest algorithms. A notable example, against which we compare our results in this paper, is the algorithm of de Campos and Cozman [8], which
finds exact posterior bounds in general networks by converting the problem into a mixed integer program, which can be solved exactly for small networks, or relaxed to provide approximate results in large networks. Other approaches mix branch-and-bound methods for exact inference and local searches for approximate results [6, 9, 16]. Table 1 contrasts some of the available algorithms. To date, no algorithm is known to provide approximations within given bounds in polynomial time. Recently, de Cooman et al. [10] developed a polynomial time algorithm for tree-shaped credal networks, but it operates under epistemic irrelevance.

In this paper, we present a new algorithm for computing exact posterior bounds in extensively specified credal networks encoded by vertices, as well as a fully polynomial time approximation scheme (FPTAS) for networks with bounded treewidth and number of states per variable. We consider this issue by devising an FP-TAS (Section 5). Experiments showing the performance of the algorithms are presented and discussed in Section 6. Finally, Section 7 contains our concluding thoughts.

Due to the limited space, we only present proofs for the most important results.

2 An Algebra of Ordered Potentials

In this section, we introduce the main ingredients of the message passing algorithms that we present later as well as the basic results needed to guarantee the correctness and efficiency of computations.

From an algebraic viewpoint, the primitive entities of our formalism are the so-called labeled valuations \(\phi, x \), which encode information about a (local) domain through a valuation \(\phi \) and a set of variables \(x \). Here we adopt the equivalent notation \(\phi_x \) to denote the pair \((\phi, x) \). More concretely, valuations can take as straightforward forms as bounded real-valued functions (Section 2.2), or represent more complicated objects such as sets of pairs of probability potentials (Section 2.3).

The set of all variables we consider relevant to a problem, denoted by \(U \), is the largest set of variables that can be considered for a (labeled) valuation in our setting, which we assume to be bounded. We write variables with capital letters (e.g., \(X_1, \ldots, X_n \in U \)) and sets of variables in lower case (e.g., \(x = \{X_1, \ldots, X_n\} \)). Any variable \(X \) is assumed to be associated with a finite set of values \(\Omega_X \) called its frame. The elements of \(\Omega_X \) are called states. If \(x \) is a set of variables, the domain \(\Omega_x \) is given by the Cartesian product of the frames of variables in \(x \), \(\Omega_x \triangleq \times_{X \in x} \Omega_X \). Any element of \(\Omega_x \) is called a configuration. If \(x \) is a configuration in \(\Omega_x \), the notation \(x^\lambda \) denotes the projection of \(x \) onto \(y \subseteq x \), with \(x^\lambda \triangleq \lambda \), where \(\lambda \) denotes the null element that does not appear in any frame.

The set of all valuations \((\phi, x) \) over a subset \(x \subseteq U \) is denoted by \(\Phi_x \). The set of all valuations is denoted by \(\Phi \triangleq \bigcup_{x \subseteq U} \Phi_x \). The algebra comes with two basic operations of combination and marginalization. Intuitively, combination represents aggregation of two pieces of information. If \(\phi_x \) and \(\phi_y \) are two arbitrary valuations, then \(\phi_x \times \phi_y \) is a valuation \(\phi_{x \cup y} \) with domain \(\Omega_{x \cup y} \). Marginalization, on the other hand, acts by coarsening information. If \(\phi_x \) is a valuation then the marginal \(\phi_x^y \) is a valuation with domain \(\Omega_y \). Sometimes, it is convenient to define the elimination operation, which is in a one-to-one correspondence to marginalization. Formally, if \(\phi_x \) is a valuation then \(\phi_x^y \triangleq \phi_x^{x \setminus y} \) is the result of the elimination of variables in \(y \). When clear from the context, we write \(Y \) to denote a singleton \(y = \{Y\} \), for example \(\phi_x^{Y} = \phi_x^{x \setminus Y} \).

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complexity</th>
<th>Topology</th>
<th>Inference</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2U [12]</td>
<td>polynomial</td>
<td>polytree</td>
<td>exact</td>
<td>inequality</td>
</tr>
<tr>
<td>GL2U [3]</td>
<td>polynomial</td>
<td>all</td>
<td>approximate</td>
<td>vertex</td>
</tr>
<tr>
<td>A/R+ [16]</td>
<td>exponential</td>
<td>polytree</td>
<td>approximate</td>
<td>inequality</td>
</tr>
<tr>
<td>IP [8]</td>
<td>exponential</td>
<td>all</td>
<td>exact/approx.</td>
<td>inequality</td>
</tr>
<tr>
<td>ML [6]</td>
<td>exponential</td>
<td>all</td>
<td>exact/approx.</td>
<td>vertex</td>
</tr>
<tr>
<td>HC [9]</td>
<td>exponential</td>
<td>all</td>
<td>exact/approx.</td>
<td>vertex</td>
</tr>
</tbody>
</table>

Table 1: Comparison of some existing algorithms for inference in credal networks.
2.1 Set-Valuations

The algorithms we develop use the more complex entities of sets of valuations, called set-valuations. These entities can nevertheless be casted in the algebra of valuations, and manipulated by the variable elimination algorithm to produce sets of marginal valuations.

Let 2^Φ denote the power set of Φ_x, that is, the set of all subsets of it. Thus, 2^Φ denotes the set of all subsets of valuations in Φ. If $\Psi_x \subseteq 2^\Phi$ and $\Psi_y \subseteq 2^\Phi$, we define their set-combination \otimes as the set-valuation resulting from element-wise combination of their elements, $\Psi_x \otimes \Psi_y \triangleq \{\phi_x \otimes \phi_y : \phi_x \in \Psi_x, \phi_y \in \Psi_y\}$. Likewise, we define the set-marginalization operation \hookrightarrow on 2^Φ as the element-wise marginalization of the valuations in a set, $\Psi_x \hookrightarrow \phi_y \triangleq \{\phi_y : \phi_x \in \Psi_x\}$.

Proposition 1. The system $(\Phi, \otimes, \hookrightarrow)$ of set-valuations with set-combination and set-marginalization is a valuation algebra.

The exact variable elimination algorithm we develop in Section 4 obtains its (relative) efficiency by propagating only maximal valuations. Let $\max(2^\Phi) \triangleq \{\max(\Psi) : \Psi \subseteq 2^\Phi\}$ denote the set of all sets of maximal valuations in 2^Φ. We define the max-combination \oplus and max-marginalization \ominus as $\Psi_x \oplus \Psi_y \triangleq \max(\Psi_x \otimes \Psi_y)$ and $\Psi_x \ominus \phi_y \triangleq \max(\Psi_x \hookrightarrow \phi_y)$.

Proposition 2. The system $(\max(2^\Phi), \oplus, \ominus)$ of maximal set valuations with max-combination and max-marginalization is also a valuation algebra.

If $(\Phi_1, \otimes_1, \ominus_1)$ and $(\Phi_2, \otimes_2, \ominus_2)$ are two valuation algebras, we say that a mapping $h : \Phi_1 \rightarrow \Phi_2$ is a homomorphism if for any $\phi_x, \phi_y \in \Phi_1$ we have that $h(\phi_x \otimes \phi_y) = h(\phi_x) \otimes_2 h(\phi_y)$ and $h(\phi_x) \ominus_2 h(\phi_y) = h(\phi_x \ominus_1 \phi_y)$. Thus, if we are interested in computing $h(\phi_x \ominus \phi_y)$ for some valuation $\phi_x \in \Phi_1$ that we know that factorizes as $\phi_x = \psi_1 \times_1 \cdot \cdot \cdot \times_1 \psi_m$, we can equivalently obtain $(h(\psi_1) \times_2 \cdot \cdot \cdot \times_2 h(\psi_m)) \ominus_2 h(\psi_m)$, which might be computationally more convenient. The following result relates the algebras of set-valuations and maximal set-valuations.

Proposition 3. \max is a homomorphism from $(\max(2^\Phi), \otimes, \ominus)$ to $(\max(2^\Phi), \oplus, \ominus)$. Since the set of maximal elements of a set is in the worst case as large as the set itself, but often much smaller, the homomorphism \max allows us to conveniently obtain a set of maximal marginals $\max(\otimes, \Psi_x) \ominus \phi_y$ by computing the equivalent $\ominus_1 \max(\Psi_x) \ominus \phi_y$. Recall that \ominus is defined as element-wise combination of valuations in the cartesian product, and assume that the set-valuations Ψ_x can not be factorized as combinations of other set-valuations. Hence, the set $\otimes \Psi_x$ is exponentially large in the size of each Ψ_x, and often intractable. On the other hand, the combination of maximal set-valuations $\ominus_1 \max(\Psi_x)$ can mitigate the exponential explosion if the number of...
maximal points is kept bounded after each pairwise combination. For instance, if each of the local maximal sets \(\max(\Psi_x) \) is half as large as its original set \(\Psi_x \), then computing \(\max(\bigotimes_i \max(\Psi_x_i)^{\downarrow y}) \) involves \(O(2^n) \) less computations than \(\max(\bigotimes_i \Psi_x_i)^{\downarrow y} \). The speed up strongly depends on the number of non-maximal elements that are discarded after each max-combination.

In the rest of this section we introduce the concrete valuation algebras our framework relies on.

2.2 Probability Potentials

Probability potentials are perhaps the most common example of valuation algebras. They generalize (conditional) probability mass functions. If \(x \subseteq \mathcal{U} \) is a nonempty set of variables, we define a potential \(p_x \) as a mapping from \(\Omega_x \) to the set of nonnegative reals. A potential \(p_y \) over the empty set is defined as a nonnegative real number. The size of a potential \(p_x \) is the cardinality of its domain. The following operations are defined over potentials. Combination of potentials is done by element-wise multiplication: for \(z \in \Omega_{x\cup y} \),

\[
(p_x \times p_y)(z) \triangleq p_x(z^{\downarrow x}p_y(z^{\downarrow y}) .
\]

Marginalization is defined as the sum of compatible elements. For \(y \in \Omega_y \),

\[
)p_x^{\downarrow y}(y) \triangleq \sum_{x \in \Omega_x, x \uparrow y = y} p_x(x) .
\]

Note that if \(y = \emptyset \), the marginal \(p_x^{\downarrow y} \) is a (nonnegative real) number.

Partial ordering is given by weak Pareto dominance. Given two potentials \(p_x \) and \(q_x \) over \(\Omega_x \), we define \(p_x \succeq q_x \) if \(p_x(x) \geq q_x(x) \) for all \(x \in \Omega_x \). Note that if \(p_x \) and \(q_x \) have equal sum (i.e., \(\sum_{x \in \Omega_x} p_x(x) = \sum_{x \in \Omega_x} q_x(x) \)) then \(p_x \not\succeq q_x \) and \(q_x \not\succeq p_x \) (unless \(p_x = q_x \)). This is the case, for example, of potentials representing (conditional) probability mass functions. Therefore, the identity \(\mathcal{P}_x = \max(\mathcal{P}_x) \) holds for any set \(\mathcal{P}_x \) of (conditional) probability mass functions. Let \(\mathcal{P} \) denote the set of all probability mass potentials.

Proposition 4. The system \((\mathcal{P}, \mathcal{U}, \times, \downarrow, \leq)\) is an ordered valuation algebra.

Given a real number \(\alpha > 1 \), we define an equivalence relation \(\equiv_\alpha \) over potentials such that any two potentials \(p_x \) and \(q_x \) are \(\alpha \)-equivalent (i.e., \(p_x \equiv_\alpha q_x \)) if for all \(x \in \Omega_x \) either \(p_x(x) = q_x(x) = 0 \) or \(p_x(x) \) and \(q_x(x) \) are both positive and \([\log_\alpha p_x(x)] = [\log_\alpha q_x(x)] \).

2.3 Pairs of Potentials

The algorithms we develop in Sections 4 and 5 rely on a more abstract structure over pairs of potentials. Let \(\phi_x = (p_x, p_x') \) denote a pair of probability potentials over \(x \). The potentials \(p_x \) and \(p_x' \) are referred to as the left and right potentials of \(\phi_x \), respectively. For any two pairs of potentials \(\phi_x \) and \(\psi_x \), we define \(\phi_x \leq (p_x, q_x) \geq (q_x', q_x') \) \(= \psi_x \) if \(p_x \leq q_x \) and \(p_x' \geq q_x' \). The partial order defined in this way reflects the nature of computations with credal networks. We seek for a solution that partly dominates (according to right potentials) all other potentials and partly is dominated by them (according to left potentials). It is in part this dichotomy in the objective that makes posterior inferences in credal networks much harder than their Bayesian counterpart.

If \(\phi_x = (p_x, p_x') \) and \(\phi_y = (p_y, p_y') \) are two pairs of potentials, we define their combination as the pair of left and right combinations of potentials, that is, \(\phi_x \times \phi_y \triangleq (p_x \times p_y, p_x' \times p_y') \). Similarly, the marginalization of a pair \(\phi_x = (p_x, p_x') \) is performed on both potentials, \(\phi_x^{\downarrow y} \triangleq ((p_x^{\downarrow y}, (p_x')^{\downarrow y}) \). Let \(\Phi \) be the set of all pairs of potentials.

Proposition 5. The system \((\Phi, \mathcal{U}, \times, \downarrow, \leq)\) is an ordered valuation algebra.

Let \(2^\Phi \) and \(\max(2^\Phi) \) denote, respectively, the set of all sets of pairs of potentials and the set of all sets of maximal pairs of potentials. It follows from Propositions 1 and 2 that the systems \((2^\Phi, \mathcal{U}, \odot, \uparrow)\) and \((\max(2^\Phi), \mathcal{U}, \odot, [\downarrow])\) are valuation algebras. Moreover, \(\max \) is a homomorphism from \(2^\Phi \) to \(\max(2^\Phi) \). Thus, given a collection of finite sets of pairs \(\Psi_x, \ldots, \Psi_{x_n} \), we can obtain the set \(\max(\Psi_y) \triangleq \max((\bigotimes \Psi_x)^{\downarrow y}) \) of maximal marginal valuations potentially more efficiently by performing computations in the algebra of sets of maximal pairs, that is, by computing \(\max((\bigotimes \Psi_x)^{\downarrow y}) \). Bentley et al. [5] showed that sets with \(n \) uniformly distributed pairs of potentials over a domain \(\Omega_y \) have, on average, \(O((\log n)^{2|\Omega_y|}) \) maximal elements. Unfortunately, the uniformity assumption does not hold in the computations we perform, and we expect the average number of maximal elements to be higher than this. To our knowledge, it remains to be obtained any bounds or expectations on the size of maximal sets obtained from propagated valuations such as those generated by variable elimination. Note that, as with sets of probability potentials, if \(\Psi \) contains only valuations whose left or right potentials specify a probability mass function, then \(\Psi = \max(\Psi) \).

We can have an upper bound on the cardinality of sets by relaxing the partial order to allow approximate Pareto dominance. Given a real number \(\alpha > 1 \), we define a relation \(\leq_\alpha \) such that \(\phi \leq_\alpha \psi \) denotes that by mistakenly assuming \(\phi \leq \psi \) we introduce an error no greater than \(\alpha \) in each coordinate. More formally, we define \(\phi \leq_\alpha \psi \) if \((\alpha^{-1}, \alpha) \times \psi \geq \phi \). Note that \(\leq_\alpha \) is neither transitive nor antisymmetric, and that we may have \(\phi \leq_\alpha \psi \) for \(\phi \not\leq \psi \). The \(\alpha \)-equivalence relation over potentials can easily be
extended to pairs. Two pairs \((p^l_x, p^u_x)\) and \((p^l_y, p^u_y)\) are \(\alpha\)-equivalent if \(p^l_x \equiv_{\alpha} p^l_y\) and \(p^u_x \equiv_{\alpha} p^u_y\). It is not difficult to see that \(\phi \equiv_{\alpha} \psi\) implies both \(\phi \leq_{\alpha} \psi\) and \(\psi \leq_{\alpha} \phi\).

A \(\leq_{\alpha}\)-covering for a set of pairs of potentials \(\Psi_x\) provides an approximated version of \(\Psi_x\), one in which for each \(\phi_x \in \Psi_x\) we are guaranteed to have a pair \(\psi_x\) in the covering such that the left and right potentials of \(\psi_x\) and \(\phi_x\) differ in each coordinate by a factor no greater than \(\alpha\). We can easily obtain a \(\leq_{\alpha}\)-covering of \(\Psi_x\) of bounded cardinality from its quotient set \(\Psi_x/\alpha\), that is, by discarding one of any two \(\alpha\)-equivalent pairs in \(\Psi_x\). The approximation algorithm we develop in Section 5 strongly relies on the following results.

Lemma 6. If \(k_1, \ldots, k_m\) are positive integers and \(\Psi_{x_1}, \Psi_{x_1}', \ldots, \Psi_{x_m}, \Psi'_{x_m}\) are setvaluations such that for \(i = 1, \ldots, m\), \(\Psi'_{x_i}\) is a \(\leq_{\alpha^{k_i}}\)-covering for \(\Psi_{x_i}\), then \(\Psi_{x_1} \otimes \cdots \otimes \Psi_{x_m} \otimes \Psi'_{x_m}\) is a \(\leq_{\beta}\)-covering for \(\Psi_{x_1} \otimes \cdots \otimes \Psi_{x_m}\), where \(\beta = \alpha^{\sum_{i=1}^m k_i}\).

Proof. We work by induction on \(j = 1, \ldots, m\). For \(j = 1\), it follows directly that \(\Psi_1'\) is a \(\leq_{\alpha^{k_1}}\)-covering for \(\Psi_1\). Assume the result holds for \(1 \leq j < m - 1\), and consider any pair \(\phi = \phi' \times \phi''\) in \(\Psi_{x_1} \otimes \cdots \otimes \Psi_{x_{j+1}}\), where \(\phi' \in \Psi_{x_1} \otimes \cdots \otimes \Psi_{x_j}\) and \(\phi'' \in \Psi_{x_{j+1}}\). There is \(\psi = \psi' \times \psi''\) in \(\Psi_{x_1} \otimes \cdots \otimes \Psi_{x_{j+1}}\), where \(\psi' \in \Psi_{x_1} \otimes \cdots \otimes \Psi_{x_{j}}\) and \(\psi'' \in \Psi_{x_{j+1}}\), such that \((\alpha - \sum_{i=1}^{j+1} k_i, \alpha \sum_{i=1}^{j+1} k_i) \times \psi'' \geq \phi''\) (by assumption) and \((\alpha^{-k_{j+1}}, \alpha^{k_{j+1}}) \times \psi'' \geq \phi''\). It follows from (A4) that \((\alpha - \sum_{i=1}^{j+1} k_i, \alpha \sum_{i=1}^{j+1} k_i) \times \psi \geq \phi\). \(\square\)

Let \(\Psi_{x_1}, \ldots, \Psi_{x_m}\) denote sets of pairs of potentials which take values on the interval \([0, 1]\), and let \(b\) be the number of bits required to encode these sets.

Proposition 7. The number of elements in \((\Psi_{x_1} \otimes \cdots \otimes \Psi_{x_m})^{\psi, \alpha}\) is \(O((bm\alpha/(\alpha - 1))^{2(\alpha\Omega)})\).

The latter result is in fact an adaptation of Papadimitriou and Yannakakis’ result on the boundedness of \(\epsilon\)-approximate Pareto curves in multi-objective optimization problems [1, Theorem 1].

3 Credal Networks

In this section we review the basic concepts and computational challenges of extensively specified credal networks. Let \(\mathcal{G} = (\mathcal{U}, \mathcal{E})\) be a DAG, and \(X\) a node in \(\mathcal{U}\). We write \(\text{pa}(X) \triangleq \{Y \in \mathcal{U} : (Y, X) \in \mathcal{E}\}\) to denote the parents of \(X\), \(\text{ch}(X) \triangleq \{Y \in \mathcal{U} : (X, Y) \in \mathcal{E}\}\) to denote the children of \(X\) in \(\mathcal{U}\), and \(\text{fa}(X) \triangleq \{X\} \cup \text{pa}(X)\) to denote the family of \(X\). We call \(Y\) a descendant of \(X\) if there is a directed path from \(X\) to \(Y\) in \(\mathcal{G}\).

An extensive credal set \(K_x\) is a set of probability potentials \(p_x\) over domain \(\Omega_x\). Given an extensive credal set \(K_x\), we write \(H(K_x)\) to denote its convex hull (i.e., the set obtained by all convex combinations of elements in \(K_x\)), and \(\text{ext}[H(K_x)]\) to denote its extreme points (i.e., the elements of \(H(K_x)\) that cannot be written as a convex combination of other elements). The convex hull of a set and the set of its extreme points are themselves extensive credal sets.

An extensively specified credal network is a pair \((\mathcal{G}, \mathcal{K})\), where \(\mathcal{K}\) is a collection of finitely-generated closed convex extensive credal sets \(K_{\text{fa}}(X)\), one for each \(X \in \mathcal{U}\), such that each potential \(p_{\text{fa}}(X) \in K_{\text{fa}}(X)\) satisfies \(\sum_{\mathcal{X} \in \text{pa}(X)} p_{\text{fa}}(X) = 1\) for all \(\mathcal{X} \in \Omega_{\text{pa}(X)}\) (i.e., they represent conditional probability mass functions \(p(X | p_{\text{fa}}(X))\)). Figure 1 depicts a simple extensively specified credal network over 3 binary-valued variables.

The strong extension of a credal network is given by the credal set generated by the convex closure of the product of all extensive credal sets in \(\mathcal{K}\).

\[
K_{\mathcal{U}}^{\text{strong}} \triangleq H(\bigotimes_{X \in \mathcal{U}} K_{\text{fa}}(X)). \quad (3)
\]

Since the product of local extremes \(K_{\mathcal{U}}^{\text{ext}} \triangleq \bigotimes_{X \in \mathcal{U}} \text{ext}[K_{\text{fa}}(X)]\) is a subset of the strong extension (by definition), we have that \(K_{\mathcal{U}}^{\text{strong}} = \text{ext}[H(K_{\mathcal{U}}^{\text{ext}})] \subseteq K_{\mathcal{U}}^{\text{ext}}\). Notice that \(K_{\mathcal{U}}^{\text{ext}}\) contains a finite number of elements.

Let \(q, e \subset \mathcal{U}\) denote disjoint sets of queries and evidence variables, respectively, and \((q, e)\) an element of \(\Omega_{q,e}\). Inference with credal networks consists in computing lower and upper posterior probabilities (we assume \(p^1(e) > 0\) for all \(p \in K_{\mathcal{U}}^{\text{strong}}\):

\[
p_l(q | e) \triangleq \min_{p \in K_{\mathcal{U}}^{\text{strong}}} \frac{p^1(q, e)}{p^1(e)}, \quad (4)
\]

\[
p_u(q | e) \triangleq \max_{p \in K_{\mathcal{U}}^{\text{strong}}} \frac{p^1(q, e)}{p^1(e)}. \quad (5)
\]

Our goal in the rest of this section is to show that the continuous optimizations of Equations (4) and (5) can be mapped into problems of computing maximal sets of marginals of the combinations of finite sets of pairs of potentials. We begin with a well-known result that the solutions to the convex optimizations in Equation (5) are attained at extreme points of the strong extension [18]. Since
any non-extreme point of \(K_{\text{ext}} \) is also a non-extreme point of the strong extension, we have that

\[
\bar{p}(q|e) = \max_{p \in K_{\text{ext}}} \frac{p^{\downarrow q,e}(q,e)}{p^{\downarrow q,e}(e)}
\]

For any potential \(p(q|e) > 0 \), we can divide the numerator and the denominator of Equation (7) by \(p^{\downarrow q,e}(q,e) > 0 \) and obtain

\[
\bar{p}(q|e) = \max_{p \in K_{\text{ext}}} \left(1 + \frac{p^{\downarrow q,e}(-q,e)}{p^{\downarrow q,e}(q,e)} \right)^{-1}.
\]

For any potential \(p \in K_{\text{ext}} \), let \(p_{q|e} \) denote the posterior probability obtained by \(p \), that is, \(p_{q|e} \triangleq \frac{1 + p^{\downarrow q,e}(-q,e)/p^{\downarrow q,e}(q,e)}{-1} \). Now consider two potentials \(p \) and \(r \) such that \(p^{\downarrow q,e}(-q,e) \leq r^{\downarrow q,e}(-q,e) \) and \(p^{\downarrow q,e}(q,e) \geq r^{\downarrow q,e}(q,e) \). Clearly, \(p_{q|e} \geq r_{q|e} \), and \(r \) is not a solution of the maximization problem (conversely, \(p \) is not a solution of the minimization problem). This allows us to define a partial ordering among solutions \(p \in K_{\text{ext}} \).

Let \(\Phi_{q|e} \) denote the set of pairs of potentials \((p^{\downarrow q,e}(-q,e), p^{\downarrow q,e}(q,e)) \), where \(p \in K_{\text{ext}} \). Then Equation (8) can be rewritten as

\[
\bar{p}(q|e) = \max_{(p',p') \in \Phi_{q|e}} \left(1 + \frac{p'}{p'} \right)^{-1}.
\]

Basically, what Equation (9) states is that we can narrow down the optimization space to the set of potentials whose corresponding pairs in \(\Phi_{q|e} \) are not smaller than any other pair in the set (conversely, we take the set of minimal elements in the minimization case). Although this set could be as large as \(K_{\text{ext}} \), our experiments show that most often it is significantly smaller. Thus, if \(\max(\Phi_{q|e}) \) is sufficiently small, we can find the solution by a simple enumerative scheme, and the optimization problem is then converted into the problem of computing the maximal elements of \(\Phi_{q|e} \), which can be done by the variable elimination procedure in Algorithm 1, as the following section shows.

4 Exact Inference

In this section we describe an algorithm for exact computation of upper posterior probabilities in credal networks. An algorithm for obtaining lower probabilities can be obtained in a very similar way.

For any variable \(X \) and a subset \(\mathcal{X} \subset \Omega_X \), we define the identity potential \(I_X \) as a potential over \(X \) that returns 1 for \(x \in \mathcal{X} \) and 0 otherwise. If \(\mathcal{X} = \{x\} \) is a singleton, we write \(I_x \). For any \(x \in \Omega_X \), we define the set \(\neg x \triangleq \Omega_X \setminus \{x\} \).

Consider a credal network \((\mathcal{G}, \mathbb{K})\), an elimination ordering \(o = (X_1, \ldots, X_n) \) of the variables in \(\mathcal{U} \), sets of query and evidence variables \(q \) and \(e \), and a query-evidence pair \((q,e) \in \Omega_{q,e} \). The variable elimination algorithm (Algorithm 1) can be used to compute exact upper posterior probabilities using the valuation algebra of sets of maximal pairs of potentials in the following way. Let \(\Psi \) be the set that contains (i) for each \(X \in \mathcal{U} \) a set-valuation \(\Psi_X \triangleq \{(p_{\text{fa}(X)}, p_{\text{fa}(X)}) : p_{\text{fa}(X)} \in \text{ext}[K_{\text{fa}(X)}]\} \) in \(\Phi \); (ii) a set-valuation \(\Psi_q \triangleq \{(I_{\neg q}, I_q)\} \) in \(\Psi \); and (iii) for each \(E \in e \) a set-valuation \(\Psi_E \triangleq \{(I_{q|e}, I_{e|e})\} \) in \(\Psi \). Let \(\Gamma \) be the output of the variable elimination algorithm with max-combination, and max-marginalization and inputs \(\Psi_q \cup \Psi_E \cup \Psi_X \), and order \(o \), and let \(p_{q|e} \triangleq \max_{(p',p') \in \Gamma} \left(1 + p' / p'' \right)^{-1} \). Finally, let \(\bar{p}(q,e) \) be the solution of the maximization problem in Equation (5). The following result states the correctness of the upper posterior probability obtained the procedure.

Theorem 8. \(p_{q|e} = \bar{p}(q,e) \).

Proof. The sets \(\Psi_X, \Psi_q, \Psi_E \in \Psi \) as well as the sets \(\Psi_i \) generated by the variable elimination algorithm are valuations in the valuation algebra of sets of maximal pairs of potentials. It follows from (A1)–(A3) that

\[
\Gamma = \left(\bigoplus_{E \in e} \Psi_E \bigoplus \Psi_X \right)^{\downarrow \emptyset}
\]

\[
= \max \left[\left(\bigoplus_{E \in e} \Psi_E \bigoplus \Psi_X \right)^{\downarrow \emptyset} \right],
\]

where the last equivalence is obtained by repeatedly applying Proposition 3. Recall that combination of pairs is defined as the pair formed by the combination of left potentials and the combination of right potentials. Therefore, \(\Gamma \) is a set of maximal pairs of potentials \((p',p')\), where by definition of \(\Psi_q, \Psi_E, \) and \(\Psi_X \),

\[
p^X = \left(\bigotimes_{E \in e} I_{q|e} \bigotimes \Psi_{\text{fa}(X)} \right)^{\downarrow \emptyset}
\]

\[
= p^{\downarrow q,e}(-q,e),
\]

\[
p^r = \left(\bigotimes_{E \in e} I_{q|e} \bigotimes \Psi_{\text{fa}(X)} \right)^{\downarrow \emptyset}
\]

\[
= p^{\downarrow q,e}(q,e).
\]

Moreover, \(p^X \) and \(p^r \) are compatible, that is, for any potential \(p_{\text{fa}(X)} \) in \(p^X \) taken from a local extensive credal set \(K_{\text{fa}(X)} \), the same potential appears in \(p^r \) and no other potential from \(K_{\text{fa}(X)} \). Hence, \(\Gamma = \max(\Phi_{q|e}) \). The result
is obtained by comparing the definition of \(p_{\text{q|e}} \) and Equation (9).

The complexity of the algorithm is upper bounded by the cost of the combination of sets of pairs in computing \(\Psi^i \) during the variable elimination part. Each of these computations takes time polynomial in the size of the largest set, which might be exponential in the size of the input sets. For instance, the size of the largest potential is a function of the topology of \(G \) and the given elimination ordering \(o \). The number of elements of a set, on the other hand, depends on the number of non-maximal elements that are discarded at each combination or marginalization operation. In the worst-case scenario where no element is ever discarded, the algorithm runs in exponential time even if the network treewidth and the cardinality of the frames of the input sets are bounded (which is not surprising given that the problem is NP-hard under such assumptions).

An algorithm for lower posterior probabilities can be obtained by substituting sets of maximal valuations and maximizations by sets of minimal valuations and minimizations, respectively. The correctness and complexity analyses are analogous to the maximization case.

5 FPTAS

The computational bottleneck of the variable elimination procedure presented in Section 4 is the existence of large sets at some point in the propagation step (apart from the inherent difficulty of manipulating potentials over large domains). We can remedy the large set problem by trading off accuracy and running time. In this section, we devise a multiplicative approximation scheme that runs in time polynomial in the number of potentials of the input extensive credal sets, but it is still exponential in the size of the largest pair \(\Psi^X \), generated during the propagation step, which depends only on the sizes of the frames of the variables and the network treewidth. For the rest of this section, we assume the size of variable frames and the network treewidth to be bounded by a constant. Additionally, we require the input potentials to be represented by rational numbers, so that the length of the input is well-defined.

The approximation scheme we obtain is an FPTAS, that is, a family of algorithms parameterized by \(\epsilon > 0 \) that returns in time polynomial to \(1/\epsilon \) and to the input size a feasible solution that is no worse than the optimal solution by a factor of \(\epsilon \). If \(x^* \) is the optimal solution (of a maximization problem), the approximation algorithm returns a solution \(x \) such that \(x^*/(1 + \epsilon) \leq x \leq x^* \).

Given a real number \(\alpha \) greater than one, we define the \(\alpha \)-combination of two set-valuations \(\Psi_x \) and \(\Psi_y \) as the quotient of the set whose combination, that is, \(\Psi_x \otimes_{\alpha} \Psi_y \otimes_{\alpha} \Psi_z \) differs from \(\Psi_x \otimes_{\alpha} (\Psi_y \otimes_{\alpha} \Psi_z) \). Nevertheless, the order in which sets are \(\alpha \)-combined does not alter the combined approximation factor, as the following result states.

Lemma 9. If \(\Psi_1, \ldots, \Psi_m \) are set-valuations, then \(\Psi_1 \otimes_{\alpha} \cdots \otimes_{\alpha} \Psi_m \) (where the operations are applied in any order) is a \(\leq_{\beta} \)-covering for \(\Psi_1 \otimes \cdots \otimes \Psi_m \), where \(\beta = \alpha^{m-1} \).

Proof. We work by induction on \(k = 2, \ldots, m \). For \(k = 2 \), it follows directly from the definition of \(\alpha \)-combination that \(\Psi_1 \otimes_{\alpha} \Psi_2 \) is an \(\leq_{\alpha} \)-combination for \(\Psi_1 \otimes \Psi_2 \). Assume for \(k \in \{2, \ldots, m-1\} \) that \(\Psi_1 \otimes_{\alpha} \cdots \otimes_{\alpha} \Psi_{k-1} \) is a \(\leq_{\alpha} \)-covering for \(\Psi_1 \otimes \cdots \otimes \Psi_{k-1} \), where \(\beta = \alpha^{k-2} \). Consider any pair \(\phi = \phi' \times \phi'' \) in \(\Psi_1 \otimes \cdots \otimes \Psi_{k-1} \) and \(\phi'' \in \Psi_k \). There is \(\psi = \psi' \times \psi'' \) in \(\Psi_1 \otimes \cdots \otimes \Psi_{k-1} \otimes \Psi_k \), where \(\psi' \in \Psi_1 \otimes \cdots \otimes \Psi_{k-1} \) and \(\psi'' \in \Psi_k \), such that \(\psi' \geq_{\beta} \phi' \) (by assumption) and \(\psi'' \geq \phi'' \). Then it follows from (A4) that \(\psi \geq_{\beta} \phi \), or equivalently that \((\beta^{1-1}, \beta) \times \psi \geq \phi \). But since \(\Psi_1 \otimes_{\alpha} \cdots \otimes_{\alpha} \Psi_k \) is a \(\leq_{\alpha} \)-covering for \(\Psi_1 \otimes_{\alpha} \cdots \otimes_{\alpha} \Psi_k \), there is \(\phi''' \in \Psi_1 \otimes_{\alpha} \cdots \otimes_{\alpha} \Psi_k \) such that \(\phi''' \geq_{\beta} \psi \), or equivalently that \((\alpha^{-1}, \alpha) \times \psi''' \geq_{\beta} \phi \). By combining both sides with \((\beta^{1-1}, \beta) \) and applying (A4) we get to

\[
(\beta^{1-1}, \beta) \times (\alpha^{-1}, \alpha) \times \psi''' \geq (\beta^{1-1}, \beta) \times \psi \geq \phi ,
\]

and hence \((\alpha^{1-(k-1)}, \alpha^{k-1}) \times \psi''' \geq \phi \), and \(\psi''' \geq_{\beta} \phi \). The lemma follows from the induction. \(\square \)

Thus, by properly choosing the value of \(\alpha \) we can obtain a covering that approximates a combination of set-valuations with errors as small as we want. In addition, Proposition 7 guarantees that the sets obtained after each \(\alpha \)-combination have cardinality polynomial in the input length and in the maximum error, and so the covering.

We can then modify the exact variable elimination algorithm devised in Section 4 to provide an FPTAS by substituting max-combination and max-marginalization by \(\alpha \)-combination with \(\alpha = 1 + \epsilon/4n \) and set-marginalization. Let \(\Psi^i \) and \(\Psi^i_{\alpha} \) denote, respectively, the sets obtained in the \(i \)th iteration of the loop step of variable elimination using set-combination and \(\alpha \)-combinations (and both with set-marginalization). In other words, \(\Psi^i \) is the set obtained by a brute-force elimination algorithm, whereas \(\Psi^i_{\alpha} \) denote the sets obtained by the approximation algorithm. Similarly, we let \(\Gamma \) and \(\Gamma_{\alpha} \) denote the outputs of variable elimination with set-combination and \(\alpha \)-combination, respectively.

Let \(s_1 \) denote the number of set-valuations that are combined to compute \(\Psi^i_{\alpha} \) (and also \(\Psi^i \)) minus one, that is, \(s_1 = |\mathcal{B}| - 1 \). Then, for \(i = 2, \ldots, n \), we define \(s_i \) recursively as \(s_i = |\mathcal{B}| - 1 + \sum_{j=1}^{i-1} |\mathcal{B}^j| s_j \). Intuitively, \(s_i \) denote the number of valuations from the input that are required either directly or indirectly to compute \(\Psi^i_{\alpha} \) (and also \(\Psi^i \)) minus one. Hence, if \(\Psi \) is the set obtained after the loop step, we have that \(|\mathcal{B}^i| + \sum_{j \in \Psi^i} s_j = n \), since there are \(n \) set-valuations given as input and each is used exactly once in the computation of some \(\Psi^i_{\alpha} \) (or \(\Psi^i \)).
The following lemma relates the set-valuations propagated by variable elimination with \(\alpha \)-combination to the corresponding sets obtained by set-combination.

Lemma 10. For \(i = 1, \ldots, n \), the set-valuation \(\Psi_\alpha^i \) is a \(\leq_{\alpha^{i-1}} \)-covering for \(\Psi^i \).

Proof. For \(i = 1 \) the result follows directly from Lemma 9. Without loss of generality, let \(\Psi^i = [\Psi_1 \otimes \cdots \otimes \Psi_k \otimes \cdots \otimes \Psi_{|B_i|}]^{-X_i} \), where \(\Psi_1, \ldots, \Psi_k \) denote set-valuations as input and \(\Psi_{1+i}, \ldots, \Psi_{|B_i|} \) denote sets \(\Psi^j (j < i) \) generated in the propagation step. Similarly, let \(\Psi_\alpha^i = [\Psi_1 \otimes \cdots \otimes \Psi_k \otimes \cdots \otimes \Psi_{|B_i|}]^{-X_i} \), where, for \(k + 1 < \ell \leq |B_i| \), \(\Psi_\ell = \Psi^i \) implies \(\Psi_\ell = \Psi_\alpha^i \).

Assume by induction that the result holds for \(i, i - 1 \). Hence, if \(\Psi_\ell = \Psi_\alpha^i \) then \(\Psi_\ell \) is a \(\leq_{\alpha^{\ell-1}} \)-covering for \(\Psi_\ell \). Now, consider any pair \(\phi = [\phi_1 \otimes \cdots \otimes \phi_k]^{-X_i} \in \Psi_\ell \), where \(\phi_1 \in [\Psi_1 \otimes \cdots \otimes \Psi_k] \) and \(\phi_\ell'' \in [\Psi_{\ell+1} \otimes \cdots \otimes \Psi_{|B_i|}] \). From Lemma 9, we have that there is \(\psi'' \in \Psi_1 \otimes \cdots \otimes \Psi_k \) such that \((\alpha^{-k+1}, \alpha^{-k}) \times \psi'' \geq \psi' \). Likewise, since \(\Psi_{\ell+1} \otimes \cdots \otimes \Psi_{|B_i|} \) is a \(\leq_{\alpha^{\ell+1}} \)-covering for \(\Psi_{\ell+1} \otimes \cdots \otimes \Psi_{|B_i|} \) (by Lemma 9) and \(\Psi_\ell' \otimes \cdots \otimes \Psi_{|B_i|} \) is a \(\leq_{\alpha^{\ell+1}} \)-covering for \(\Psi_\ell' \otimes \cdots \otimes \Psi_{|B_i|} \) (by Lemma 6 and the induction hypothesis), there is \(\psi'' \in \Psi_{\ell+1} \otimes \cdots \otimes \Psi_{|B_i|} \) such that \((\alpha^{-k+1}, \alpha^{-k}) \times \psi'' \geq \psi' \). Since \(\psi'' \) is the \(\leq_{\alpha^{\ell+1}} \)-covering, there is \(\psi' \in \Psi_1 \otimes \cdots \otimes \Psi_k \) such that \((\alpha^{-k+1}, \alpha^{-k}) \times \psi' \geq \psi'' \times \alpha^{\ell+1} \). Then, it follows from (A4) that \([(\alpha^{-k+1}, \alpha^{-k}) \times \psi']^{-X_i} \geq \psi' \). From this, it is true for any \(\phi \in \Psi^i \), the result holds for \(i \). The lemma follows from the induction.

Consider a credal network \((G, \mathcal{X})\), an eliminating ordering \(\alpha = (X_1, \ldots, X_n) \) of the variables in \(\mathcal{U} \), sets of query and evidence variables \(q \) and \(e \), and a query-evidence pair \((q, e) \in \Omega_{q, e}\). Let \(\Psi \) be a collection of sets as defined in Section 4, and consider the \(\alpha \)-elimination algorithm with inputs \(\Psi, y = e \) and \(\alpha \) and \(\alpha \)-combination and set-maximization. Finally, return \(p_{\Psi q | e} \triangleq \max_{p^q, p^r} \min_{\alpha \in \Psi} (1 + p^q / p^r)^{-1} \) as the approximate solution output.

Theorem 11. The procedure described is an FPTAS for computing upper posterior probabilities for networks of bounded treewidth and number of states per variable.

Proof. First, we analyze the time complexity of the algorithm. We are thus interested in the maximum cardinality of a set \(\Psi_i \), and in the cardinality of the domain of a valuation generated in the loop. The boundedness assumptions imply that the cardinality of the domain of any propagated valuation is smaller than a constant. Hence, the polynomial time complexity depends on \(|\Psi_i| \), being bounded. For \(i = 1, \ldots, n \), any valuation \(\phi_i \in \Psi_\alpha^i \) is produced by first combining valuations that are either in some previously generated set \(\Psi_\alpha^j \) (\(j < i \)) or in a set given as input, and then eliminating \(X_i \) from it. Thus, by recursively applying (A1)–(A3) to factorize each valuation from a \(\Psi_\alpha^i \) into a combination of valuations and moving the eliminations out, we have that \(\phi_i = \phi_1 \otimes \cdots \otimes \phi_{s_i+1}^{-X_1 \cdots X_i} \), where each \(\phi_j \) is in a set-valuation given as input. Hence, each \(\Psi_\alpha^i \) can be factorized as \([\Psi_1 \otimes \cdots \otimes \Psi_{|B_i|}]^{-X_1 \cdots X_i} \), where each \(\Psi_i \) is a subset of a set-valuation given as input. It follows then from Proposition 7 that \(\Psi_\alpha^i \) has \(O(|B_i|/\alpha - 1)^{2\omega} \), where \(\omega \) is a constant greater than the cardinality of the domain of any \(\phi' \). Since \(\alpha = 1 + e/4n, O(|B_i|/\alpha - 1)^{2\omega} \leq O((4n^2b/e^{2\omega}) \times b \) is the length of the input in bits. Therefore the algorithm runs in time polynomial in the input, in the given approximation factor \(\epsilon \), and in the number of variables \(n \).

Let \(p(q,e) = \max_{p^q, p^r} \min_{\alpha \in \Psi} (1 + p^q / p^r)^{-1} \) denote the optimum value. We now show that the approximation algorithm yields a solution such that \(p_{\Psi q | e} \geq p(q,e) \) for any given positive \(\epsilon \). Let \(\Psi^t \), \(\Psi^s \) denote the sets \(\Psi^i \) in \(\Psi^t \) after the loop step of the approximation algorithm, where \(m = |\Gamma_\alpha| \), and let \(\Psi_1, \ldots, \Psi_m \) be the sets \(\Psi^i \) in \(\Psi^t \) after the loop step of the brute-force version. Then, \(\Gamma_\alpha = [\Gamma_\alpha]_1 \otimes \cdots \otimes \alpha_{\Psi^t} \) and \(\Gamma = [\Gamma_\alpha]_1 \otimes \cdots \otimes \Psi^t \). It follows from Lemma 9 that \(\Gamma_\alpha \) is a \(\leq_{\alpha^m} \)-covering for \(\Psi_1 \otimes \cdots \otimes \Psi_m \), which in turn is a \(\leq_{\alpha^n} \)-covering for \(\Gamma \), by Lemma 10. Hence, for any \(\phi \in \Gamma \) there is \(\psi \in \Psi_\alpha^i \) such that \((\alpha^{-n-1}) \times \psi \geq \phi \) and \((\alpha^{-n}) \psi \times \phi \). In particular, there is \(\psi = (p^q, p^r) \in \Gamma_\alpha \) such that \(\psi \geq \alpha^{-n} (p^q, p^r) = \phi^* \). Therefore, \(p^q \leq \alpha^{n} p^q, \alpha^{n} p^r \geq p^r \), and

\[
(1 + p^q / p^r)^{-1} \geq (1 + \alpha^{2n} p^q / p^r)^{-1} \\
\geq \alpha^{-2n}(1 + p^q / p^r)^{-1}.
\]

Since \(\alpha = (1 + e/4n) \), we have that

\[
(1 + p^q / p^r)^{-1} \geq (1 + e/4n)^{-2n}(1 + p^q / p^r)^{-1} \\
\geq (1 + \epsilon/4n)(1 + p^q / p^r)^{-1} \\
= (1 + \epsilon)\min_{p^q, p^r} \max_{\alpha \in \Psi}(1 + p^q / p^r),
\]

where the second passage is due to the inequality \((1 + x/z)^2 \leq 1 + 2x\), valid for any \(x \in [0, 1] \) and any positive integer \(z \). Hence, \(p_{\Psi q | e} \geq (1 + \epsilon) \).

Finally, we note that the approximation algorithm can be made more efficient by discarding non-maximal pairs from sets \(\Psi^i \) like in the exact algorithm in Section 4. This is done in our implementation of the algorithm whose performance we evaluate in the next section.

6 Experiments

We evaluate the performance of the exact and the approximation algorithms on a collection of extensively specified credal networks randomly generated using the BNGen package [14]. The graph topology of these networks is divided in three types, namely (from the simplest to the
most complicated): trees (graphs with maximum in-degree one), polytrees (graphs where the underlying undirected graph has no cycles), and multi-connected (DAGs without restrictions). All networks have treewidth no greater than four, 10 to 30 nodes, 2 to 4 states per variable, and 2 to 16 potentials in each local extensive credal set. In order to have statistically significant measures, we group networks with the same number of nodes, states, and potentials in each group. In order to have statistically significant measures, we group networks with the same number of nodes, states, and potentials in each group. In order to have statistically significant measures, we group networks with the same number of nodes, states, and potentials in each group. In order to have statistically significant measures, we group networks with the same number of nodes, states, and potentials in each group. In order to have statistically significant measures, we group networks with the same number of nodes, states, and potentials in each group. Table 2: Performance of proposed methods and the integer programming idea. Columns show percentage of solved cases, median, mean and standard deviation (SD) for each group. Numbers greater than one are truncated.

<table>
<thead>
<tr>
<th>Type</th>
<th>Exact Method</th>
<th>Approx. (ε = 0.1)</th>
<th>Integer Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% solved</td>
<td>Median Time(sec)</td>
<td>Avg. SD</td>
</tr>
<tr>
<td>M10-2-16</td>
<td>20</td>
<td>824</td>
<td>5617</td>
</tr>
<tr>
<td>M10-2-2</td>
<td>100</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>M10-2-4</td>
<td>100</td>
<td>4</td>
<td>1096</td>
</tr>
<tr>
<td>M10-4-2</td>
<td>100</td>
<td>0.19</td>
<td>0.38</td>
</tr>
<tr>
<td>M10-4-4</td>
<td>100</td>
<td>248</td>
<td>2030</td>
</tr>
<tr>
<td>M20-2-2</td>
<td>95</td>
<td>113</td>
<td>1835</td>
</tr>
<tr>
<td>M20-4-2</td>
<td>81</td>
<td>1154</td>
<td>5864</td>
</tr>
<tr>
<td>M30-2-2</td>
<td>26</td>
<td>8560</td>
<td>12170</td>
</tr>
<tr>
<td>P10-4-16</td>
<td>10</td>
<td>15428</td>
<td>16877</td>
</tr>
<tr>
<td>P10-4-2</td>
<td>100</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>P10-4-4</td>
<td>100</td>
<td>4</td>
<td>1977</td>
</tr>
<tr>
<td>P20-4-2</td>
<td>100</td>
<td>39</td>
<td>2055</td>
</tr>
<tr>
<td>P20-4-4</td>
<td>6</td>
<td>20669</td>
<td>20669</td>
</tr>
<tr>
<td>P30-4-2</td>
<td>6</td>
<td>8207</td>
<td>8207</td>
</tr>
<tr>
<td>T10-4-16</td>
<td>13</td>
<td>1559</td>
<td>1381</td>
</tr>
<tr>
<td>T10-4-2</td>
<td>100</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>T10-4-4</td>
<td>100</td>
<td>6</td>
<td>784</td>
</tr>
<tr>
<td>T20-4-2</td>
<td>96</td>
<td>89</td>
<td>2415</td>
</tr>
</tbody>
</table>

Table 2: Performance of proposed methods and the integer programming idea. Columns show percentage of solved cases, median, mean and standard deviation (SD) for each group. Numbers greater than one are truncated.
<table>
<thead>
<tr>
<th>Type</th>
<th># of nets</th>
<th>Exact</th>
<th>Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avg.</td>
<td>SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M10-2-16</td>
<td>60</td>
<td>36046</td>
<td>28928</td>
</tr>
<tr>
<td>M10-2-2</td>
<td>60</td>
<td>154</td>
<td>141</td>
</tr>
<tr>
<td>M10-2-4</td>
<td>60</td>
<td>24642</td>
<td>64632</td>
</tr>
<tr>
<td>M10-4-2</td>
<td>60</td>
<td>225</td>
<td>128</td>
</tr>
<tr>
<td>M10-4-4</td>
<td>60</td>
<td>46147</td>
<td>65056</td>
</tr>
<tr>
<td>M20-2-2</td>
<td>60</td>
<td>37515</td>
<td>61606</td>
</tr>
<tr>
<td>M20-4-2</td>
<td>60</td>
<td>67573</td>
<td>73868</td>
</tr>
<tr>
<td>M30-2-2</td>
<td>30</td>
<td>93213</td>
<td>55519</td>
</tr>
<tr>
<td>M10-4-16</td>
<td>30</td>
<td>104468</td>
<td>75687</td>
</tr>
<tr>
<td>P10-4-2</td>
<td>30</td>
<td>115</td>
<td>100</td>
</tr>
<tr>
<td>P10-4-4</td>
<td>30</td>
<td>37155</td>
<td>78008</td>
</tr>
<tr>
<td>P20-4-2</td>
<td>30</td>
<td>24856</td>
<td>44469</td>
</tr>
<tr>
<td>P20-4-4</td>
<td>30</td>
<td>76083</td>
<td>68966</td>
</tr>
<tr>
<td>P30-4-2</td>
<td>30</td>
<td>92744</td>
<td>5476</td>
</tr>
<tr>
<td>T10-4-16</td>
<td>30</td>
<td>11840</td>
<td>9570</td>
</tr>
<tr>
<td>T10-4-2</td>
<td>30</td>
<td>135</td>
<td>108</td>
</tr>
<tr>
<td>T10-4-4</td>
<td>30</td>
<td>17178</td>
<td>49396</td>
</tr>
<tr>
<td>T20-4-2</td>
<td>30</td>
<td>57055</td>
<td>104187</td>
</tr>
</tbody>
</table>

Table 3: Average and standard deviation (SD) of the maximum number of pairs of a set for the cases where both methods solved the inference. Numbers are truncated.

7 Conclusion

We derived a new algorithm for exact posterior inference in extensively specified credal networks under strong independence. The algorithm is empirically shown to outperform a state-of-the-art method, being able to solve medium-sized networks in feasible time. We then showed that for networks of bounded treewidth and number of states per variable, a FPTAS for the problem exists. In our experiments, approximation and exact algorithms performed similar, likely due to the large constants hidden by the boundedness assumptions in the asymptotic complexity analysis.

Acknowledgements

This work was partially supported by the Swiss NSF grants n. 200020_134759 / 1, 200020-121785 / 1, and by the Hasler foundation grant n. 10030.

References

