Linear programming under vacuous and possibilistic uncertainty

Keivan Shariatmadar, Erik Quaeghebeur & Gert de Cooman
SYSTeMS Research Group, Ghent University
{Keivan.Shariatmadar,Erik.Quaeghebeur,Gert.deCooman}@UGent.be

Abstract

Consider the following (standard) linear programming problem: maximise a real-valued linear function $C^T x$ defined for optimisation variables x in \mathbb{R}^n that have to satisfy the constraints $Ax \leq B$, $x \geq 0$, where the matrices A, B, and C are independent random variables that take values a, b, and c in $\mathbb{R}^{m \times n}$, \mathbb{R}^m and \mathbb{R}^n, respectively. Using an approach we developed in previous work, the problem is first reduced to a constrained optimisation problem (co-problem) from which the uncertainties present in the description of the constraint are eliminated. The goal is to derive efficient solution techniques for this resulting co-problem.

We investigate what results can be obtained for two types of uncertainty models for the random variables A, B, and C – vacuous previsions and possibility distributions [see, e.g., 1, 5] – and for two different optimality criteria – maximinity and maximality [see, e.g., 4]. In our poster, we will present the problem description and show illustrated solutions for the most interesting cases we have investigated. We consider three variants of our problem: (i) when there is no uncertainty about C (this exactly fits the approach in [3]), (ii) when there is no uncertainty about B, which reduces to variant (i) when considering the dual, and (iii) the general case, which we can convert to the following problem: maximise the real value λ such that $Ax \leq B$, $C^T x \geq \lambda$ and $x \geq 0$, and which is the subject of current research. We here focus on variant (i).

For the different cases we studied, the co-problem and solution techniques derived are:

- **Vacuous model relative to a set $A \subseteq \mathbb{R}^{m \times n} \times \mathbb{R}^m$:**
 - The maximin solution x_m can be found by solving the linear programming problem $\arg \max_{x \in \mathbb{R}^n} \{c^T x \mid L \} P_\pi (Ax \leq B)$ where L is a penalty for violating the constraints. When the possibility distribution π is unimodal then $(c^T x - L) P_\pi (Ax \leq B)$ is unimodal too because of the linearity of the objective function, which allows us to find the maximin solution using a bisection method in which each step a linear programming problem must be solved.
 - We have not yet found an efficient way to calculate the maximal solutions. We can approximate the solutions when m and n are small enough.

Keywords. linear programming, maximinity, maximality, vacuous prevision, possibility distribution.

References