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Abstract
If one models an agent’s degrees of belief by a set
of probabilities, how should that agent’s choices be
constrained? In other words, what choice function
should the agent use? This paper summarises some
suggestions, and outlines a collection of properties of
choice functions that can distinguish between different
functions.

Keywords. decision making, choice functions, sets of
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1 Basics

This first section outlines some basic formalism. We
have a finite set of states Ω and we take the set of
events to be the power set of that: 2Ω.

We define a probability function over 2Ω as a function
pr : 2Ω → R with the following properties:

• pr(∅) = 0 and pr(Ω) = 1
• pr(∅) ≤ pr(X) ≤ pr(Ω) for all X
• pr(X ∪ Y ) + pr(X ∩ Y ) = pr(X) + pr(Y ) for all
X,Y ⊆ Ω

An agent’s degrees of belief are represented by a set of
probability functions, P . Call this set your representor.
With a little abuse of notation, we can define a function
P(H) which maps event H to the set of values that
the probability functions in P give to H. So P(H) =
{pr(H) : pr ∈ P}. We can then define P(H) and
P(H) as the minimal and maximal values that the
probabilities in P assign to H.1 These “summary
functions” give us objects that somehow represent
the belief and are easier to handle than the full set
of probability functions. It is sometimes convenient
to think of each pr ∈ P as a member of a “credal
committee” who collectively represent your opinions

1More properly, these should be the greatest lower bound
and the least upper bound, since we aren’t sure that the extrema
are attained. Nothing hangs on this.

and make your choices.

The objects of choice are gambles: real valued functions
from the set of states. A gamble ϕ wins ϕ(w) if w
turns out to be the true state. Let’s say we have acts
ϕ and ψ. Say we have some kind of random device
that outputs a 1 with probability p and a 0 otherwise.
pϕ+ (1− p)ψ is the act “get whatever ϕ gets you with
probability p, get whatever ψ gets you otherwise”. If
A is a set of acts, pA+ (1− p)ψ is the set of acts of
the form pϕ+ (1− p)ψ for ϕ ∈ A. Let A∗ be the set
of mixed acts over A. Note that the gambles have real
valued outcomes, so I am implicitly assuming that your
utility function is precise. I use “act” and “gamble”
interchangeably.

For probability function pr we define its expectation
Epr(ϕ) =

∑
w∈Ω pr(w)ϕ(w). That is, the expectation

– or expected value – for an act is a weighted sum
of what the act gets you in each state, weighted by
how likely pr considers that state. Orthodox decision
making is aimed at maximising this expected value.

We can define an imprecise expectation by taking
the set of the expectations for each pr ∈ P. That
is, EP(ϕ) = {Epr(ϕ),pr ∈ P}. We often drop the
subscript and just talk about E when it is obvious
what P is at issue. We can define E(ϕ) and E(ϕ) as
the smallest and largest expectations assigned to ϕ by
members of P. How are we to choose with imprecise
expectations? The first thing to note is that we can’t
simply “choose the biggest”. The Es for the various acts
will typically be sets of numbers: there’s no obvious
sense in which one collection of numbers is bigger than
the other. The sets can overlap. So we need to think
a little more carefully about what imprecise choice
involves.

We consider two kinds of gambles: those whose out-
come depends on the throw of a fair die, where the
probability of its landing even is fixed P(E) = {1/2};
and those whose outcome depends on the toss of a
coin of unknown bias, where the probability of the
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coin landing heads is unknown P(H) = [0, 1].

The main object of study in this paper will be vari-
ous forms of choice function. A choice function will
take a set of available acts and output a subset of
choiceworthy acts. A choice function is a function
C : 2A → 2A such that for all A ⊂ A we have C(A) ⊆ A
and C(C(A)) = C(A). That is, the function outputs
a subset of the acts available: it would be unhelpful
if the choice function gave you the advice to perform
some act that wasn’t available to you. We also re-
quire that the choice function is stable in a certain
sense. That is, applying the function a second time
has no effect. Call the set that the choice function
outputs – C(A) – the choice set. The majority of this
paper will be about what properties we can impose on
choice functions, and which of those properties it is
reasonable to demand in the imprecise case. We will
explore some well-known imprecise choice functions
and discover which properties they do or do not satisfy.

C(A) is meant to represent or encode what it is that
rationality requires of you when you must make a
choice among the members of A. There are many
ways of interpreting C(A). A “Strong” interpretation
would say that acts in C(A) are all equally the best
act: there is nothing to choose between the acts in
C(A) and you should be equally happy to take any of
them. ϕ ∈ C(A) is here considered an endorsement
of act ϕ. A weaker interpretation might be to say
that all the acts in C(A) are better2 than the acts
not in C(A). This interpretation does not preclude
there being strict preference between the acts in C(A).
ϕ ∈ C(A) isn’t now such a strong endorsement of
ϕ; but ψ /∈ C(A) is still considered a real flaw in ψ.
Consider the “vegetarian choice function” that rejects
all menu items containing meat. It is not the case that
all elements that survive this rejection criterion are
necessarily on a par.

In short, we can think of standards of rationality as
giving sufficient conditions for being acceptable, or
we can think of the standards of rationality as giving
necessary conditions for being acceptable. The former
accords with the positive understanding of rational-
ity: endorsing elements in C(A). The latter accords
with the negative understanding of rationality: those
elements outside C(A) are advised against.

Consider the reject set3 for a given choice rule: R(A) =
A\C(A). R(A) is the set of options that the choice rule

2Note that such “betterness” needn’t determine an order on
the acts. Consider the case where ϕ is better than ψ just in case
that ϕ doesn’t have some obvious flaw that ψ does. A choice
rule that returned the set of acts without this flaw would be an
example of this weaker sort of choice rule.

3Note that a reject set in this sense is not the same as what
[19] call a “reject statement”.

rejects. The weak interpretation of the choice function
amounts to endorsing the rejection of elements of R(A),
while the strong interpretation amounts to endorsing
the choice of elements in C(A). Call these reject-R and
endorse-C, respectively. The aim of this paper is to
suggest that there might not be a strong (endorse-C)
choice function for IP decision making, and that we
might have to make do with weak (reject-R) choice
functions. The contribution of the paper is primarily
philosophical, rather than mathematical. I further
want to present a case for preferring the “Maximality”
choice rule to the “E-admissibility” choice rule, and
while at least some of the properties of E-admissibility
that I mention are already known, I don’t know of
anyone who turns them into an argument against E-
admissibility. Finally, I mention a new “regret-based”
choice rule, although I don’t have space to do much
more than present it.

2 How to Constrain Choice Functions

What does a reasonable imprecise choice rule look
like? There are many places in the literature where
enterprises like this have been developed. There are
a great many ways we could approach the question
of how best to settle on an imprecise decision rule. I
survey some ways here.

I take inspiration from the classic discussions of choice
under complete ignorance, such as Milnor’s important
“Games Against Nature” [17] and Chapter 13 Luce
and Raiffa’s classic textbook [16]. I also look to social
choice theory: if we think of each probability in your
representor as a member of a credal committee that
has to vote on what you should do, then the parallel
between imprecise decision and social choice becomes
clear. Here I will draw on Arrow’s theorem [8] and
the work of Amartya Sen [26, 24].

There are two ways one might frame the discussion:
in terms of an ordering over the acts (Arrow, Milnor),
or in terms of a choice rule (Luce and Raiffa, Sen). I
will talk in terms of choice rules, but we will see that
relations will also play an important role.

There are several ways we could describe conditions
on the choice function. One is just to put conditions
on the functional form of the choice function. That is,
we could impose intuitive conditions on the function
with respect to how it interacts with unions and in-
tersections of sets of acts. For example consider the
condition we built into the definition of choice function:
C(C(A)) = C(A). This is a property that constrains
what kind of functions count as choice rules.

There is another way we might want to impose con-
straints on reasonable choice functions. This is by
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restricting various kinds of relation associated with
the choice function.

For this, we need some definitions. For reflexive rela-
tion �, let ∼ and � be its symmetric and irreflexive
parts respectively. A choice function C pairwise satis-
fies a relation � when, for all ϕ,ψ ∈ A:
• If ϕ � ψ then ϕ ∈ C({ϕ,ψ})
• If ϕ � ψ then {ϕ} = C({ϕ,ψ})

If � is understood as preference relation then pairwise
satisfying a relation means never picking a dispreferred
option in pairwise choices. A choice function C satisfies
a relation � when, for all ϕ,ψ ∈ A ⊆ A:
• If ϕ � ψ then ψ /∈ C(A)
• If ϕ ∼ ψ then ϕ ∈ C(A)⇔ ψ ∈ C(A)

Satisfying a relation can be understood as never pick-
ing a dispreferred option in any choice. We could then
constrain reasonable choice by demanding that the
choice function (pairwise) satisfies some particular re-
lation defined on the acts. If C(A) is nonempty for all
nonempty A4 and satisfies � then it pairwise satisfies
it, but the converse need not be true.

A relation can also determine a kind of choice function.
The maximal set for a relation � isM�:

M�(A) = {ϕ ∈ A : ¬∃ψ ∈ A,ψ � ϕ}

Interpreting the “�” as a relation of preference, this
M� is the set of acts that aren’t strictly dispreferred
to anything else in the set.5 Here are some facts about
M�.
(i) M� is a choice function
(ii) M� pairwise satisfies �
(iii) If � is acyclic6 on A where A is finite thenM�(A)

is non-empty
(iv) If � is transitive, thenM� satisfies �.
These are proved in the appendix (Theorem 2).

Going the other way, a choice function determines a
relation by

ϕ �C ψ ⇔ ϕ ∈ C({ϕ,ψ})

C pairwise satisfies �C. Under certain conditions C
satisfies �C [25]. Say that C is determined by pairwise
comparisons when this is the case.

Call a choice rule C more discriminating than C′ when
C(A) ⊆ C′(A) for all A. M� is the least discriminating

4We will call this property Decisive later.
5[3] makes a distinction between maximality (as defined

above) and strong maximality. The distinction won’t matter in
the current project since the relations I discuss are transitive,
and thus the two concepts overlap (see his Theorem 2).

6Meaning for all ϕ1 . . . ϕn, if ϕ1 � ϕ2, . . . ϕn−1 � ϕn then
ϕn � ϕ1.

choice function that satisfies �. That is, if C satisfies �
then C(A) ⊆M�(A) for all A. This is also proved in
the appendix (Theorem 3). We can think of relations
as pairs of elements of the domain of the relation,7
so it makes sense to talk about the intersection and
union of relations, and of one relation being a subset
of another.

Sometimes we will talk about the relation generated
by a function F into an ordered set (normally the
reals), �F . We understand this to be the relation
such that ϕ �F ψ iff F (ϕ) ≥ F (ψ). For instance,
ϕ �Epr ψ iff Epr(ϕ) ≥ Epr(ψ). We will sometimes
writeMF where more properly we should writeM�F .
For example, when your credences are precise, your
choice rule isMEpr . That is, you choose among the
things that do best by the criterion of expected value.
Note that ϕ ∈ MEpr(A) means (by definition) that
there does not exist a ψ ∈ A such that ψ �Epr ϕ. This
means that for all ψ ∈ A, Epr(ϕ) ≥ Epr(ψ). Which is
just to say that ϕ maximises expectation.

What if, instead of talking about maximality, we talked
about optimality? The optimal set for a relation � is:

Opt�(A) = {ϕ ∈ A : ∀ψ ∈ A,ϕ � ψ}

What we will find is that optimality – which is stronger
than maximality – is too strong a property. That is,
Opt� is often empty. Consider the set {ϕ,ψ} where
no relation holds between the two options. For this
set, there are no optimal acts – although both acts are
maximal in the sense ofM�. If the relation is com-
plete, reflexive and acyclic then Opt� is nonempty [26,
p. 55]. When Opt�(A) 6= ∅, and � is transitive then
Opt�(A) = M�(A) (Theorem 4). This means that
talking about optimality is superfluous. Maximality
is the more interesting concept in general. The two
happen to coincide for complete, transitive relations
but when we have incomplete relations, optimality
can be empty while maximality won’t be. See [27]
for more on the relationship between optimality and
maximality (in particular, theorems 5.2 and 5.3).

In summary, we want to analyse what sort of choice
rule makes sense for imprecise decision. We are going
to proceed by imposing certain intuitive constraints
on choice and showing that certain decision rules vio-
late these principles. The principles will come in two
flavours: restrictions on the functional form of C, and
relations that C must satisfy.

One might think that given the material I’m taking
inspiration from, I would be aiming at a representation
theorem (Luce and Raiffa, Milnor) or an impossibility
theorem (Arrow, Sen). I am doing neither. I don’t
think the conditions I discuss below are enough to

7That is, define X� ⊆ A×A by: (ϕ,ψ) ∈ X� iff ϕ � ψ.
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generate an impossibility, nor do I think they are
sufficient for any interesting kind of representation
(although the extremely general theorems of [7] or [5, 4]
might apply). Some of the decision rules I discuss have
been characterised. For example, E-admissibility [23].
And usingM� and axiomatising �, Maximality [22].
Perhaps also Gamma-maximin [11]. My main focus
is not on impossibility or representation, but on what
we can say about rational constraints on choice. Note
that in what follows I am presupposing some expected
utility evaluations of the gambles.

3 Properties of Choice Functions

3.1 Dominance Principles

Consider the choice function defined by

CID(A) = {ϕ ∈ A : ∀ψ ∈ A E(ϕ) ≥ E(ψ)}

This is a decision rule that Henry Kyburg [13] dis-
cussed. He calls it “Principle III”.8 It has also been
called “Interval Dominance”. Unfortunately, CID is
often empty. A choice rule that fails to give us advice
is not particularly helpful. This suggests a property
of choices rules that we might like to endorse.

Decisiveness: If C(A) = ∅ then A = ∅.
But consider the set of gambles that consists of the
set of gambles fn = n for all natural n. Or consider
gn = −1/n for all natural n. Arguably, no act in either
set is best, since there’s always a larger n (and thus a
smaller loss). I will focus my attention on closed and
bounded – often finite – sets of gambles.9

Despite failing as a choice rule, we can use this ID
idea to further restrict reasonable choice rules: when
some act does interval dominate all others, then the
dominating act should be in the choice set. Define
the relation ϕ �ID ψ iff E(ϕ) ≥ E(ψ).10 This gives us
another core condition.

Interval Dominance: C satisfies �ID

�ID is transitive and thus acyclic, soM�ID is decisive.
Often �ID is empty, so this condition will put no
restrictions on choice (i.e. M�ID(A) = A). However,

8In response to Teddy Seidenfeld’s comments (pp. 259–61),
Kyburg changes his mind (p. 271). We will discuss this in due
course.

9These restrictions are made for convenience, rather than
because more general sets of gambles, or more general spaces of
gambles (infinite dimensional, non-Archimedean, etc) are not
amenable to study [31, 1].

10Note this is defined directly as an irreflexive relation, since
it doesn’t lend itself to having a reflexive part. But ϕ �ID ψ
and ψ �ID ϕ implies ϕ and ψ have the same precise expectation.
So the second condition of the definition of “satisfies” is still
reasonable in this odd case.

when CID is not empty, the restrictions it puts on
choice are reasonable.

There is a stronger dominance property we can impose
on our choice rule. Imagine if every member of the
credal committee thought that ϕ �Epr ψ. Surely
in such a case, your choice rule should respect this
unanimity. Let’s consider the relation of dominance,
�Dom, as a relation that we want our choice rule to
satisfy. Define:

�Dom=
⋂

P
�Epr

That is, the relation of dominance is the intersection
of all the relations of higher expectation. ϕ domi-
nates ψ if and only if every relation of expectation
(in your representor) ranks ϕ and least as high as ψ.
ϕ ∼Dom ψ means that the gambles have the same
expectation for each pr. One sometimes considers the
logically stronger (thus less constraining) relation of
strict dominance, which amounts to the existence of an
everywhere positive gamble ε such that ϕ �Dom ψ+ ε,
or uniform strict dominance where ε is also constant.
Since I think even weak dominance (as captured by
�Dom) is enough to make an act unchoiceworthy, I
won’t say more about this subtlety.

This motivates another important desideratum for
imprecise choice.

Non-domination: C satisfies �Dom

Note that this is a stronger condition than Interval
Dominance. That is, whenever ϕ interval dominates
ψ, ϕ dominates ψ. Put another way, �Dom⊇�ID.
This expectation-dominance relation also subsumes
another kind of dominance, namely state-wise domi-
nance. ϕ state-wise dominates ψ if, for every w ∈ Ω,
ϕ(w) ≥ ψ(w). Clearly this entails that ϕ �Dom ψ.

3.2 Contraction Consistency

Consider the following scenario. You go to a restau-
rant and see that the menu consists of Fish, Steak or
Chicken. You decide on Chicken. The waiter comes
to take your order and tells you there is no more Fish.
So you decide to have the Steak. This story seems
a little odd. Why should the availability of an op-
tion you don’t choose cause a switch in choice like the
one exhibited in the move from Chicken to Steak? It
seems like a reasonable choice rule should be somewhat
consistent under various kinds of expansion or contrac-
tion of the option set. This motivates the following
principle:

Contraction Consistency: C(A ∪ B) ⊆
C(A) ∪ C(B)
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This rule is more normally seen in one of these equiva-
lent forms:

If ϕ ∈ C(A), B ⊆ A,ϕ ∈ B then ϕ ∈ C(B) (1)
If ϕ /∈ C(B), B ⊆ A,ϕ ∈ B then ϕ /∈ C(A) (2)

So in the preceding story, C(S,C, F ) = C but
C(S,C) = S. This violates the above property. This
property is also known as Sen’s alpha condition [26, 24].
I am following [8] in calling it “contraction consis-
tency”, but it also somewhat restricts expansion of the
option set. Luce and Raiffa have a version of (2) as
their Axiom 7.

There is a property that is slightly stronger than Con-
traction Consistency that is known as Path In-
dependence:

Path Independence: C(A∪B) = C(C(A)∪C(B))

It is obvious that this entails Contraction Con-
sistency since C(X) ⊆ X for all X. In fact, Path
Independence is equivalent to Contraction Con-
sistency and the property that Sen [26] calls “ep-
silon”:

If A ⊂ B then it is not the case that C(B) ⊂ C(A)

See [26, p. 69] for a proof.

3.3 Independence

We can cash out independence as:

Independence: C(pA+(1−p)ϕ) = p C(A)+(1−
p)ϕ

Perhaps the best way to understand independence is
with an example.

Example 1: I am going to ask you to
choose c or d. Then I’m going to roll a fair
die and flip a coin of unknown bias. If the
die lands even, you gain £6 if ¬H, nothing
otherwise. If the die lands odd, c and d pay
out as set out here:

• c: Gain £10 if H, nothing otherwise
• d: Gain £2 if H, £8 otherwise

The idea is that since what you choose – c or d – doesn’t
make a difference if the die lands even, then you should
choose in order to get the better of the options when
it matters (in the odd branch of the game). One can
further justify independence in a sequential choice
setting: agents who violate independence pay to avoid
free information [20].

3.4 Union Consistency

Recall that Contraction Consistency puts a sort
of “upper bound” on C(A ∪B) by requiring that it be
a subset of C(A) ∪ C(B). Union Consistency puts
a lower bound on C(A ∪B).

Union consistency: C(A) ∩ C(B) ⊆ C(A ∪B)

This is Sen’s gamma condition. It is sometimes seen
in this equivalent form:

If ϕ ∈ C(A), ϕ ∈ C(B) then ϕ ∈ C(A ∪B) (3)

The motivation here is that if you would choose Steak
out of Steak or Fish, and you’d choose Steak out of
Steak or Chicken, then you should choose Steak when
all three options are on the menu.

3.5 Other Properties of Choice

Let’s consider some properties whose violation I don’t
consider a flaw at all.

The first property appears in many contexts. Under-
standing why I think imprecise choice rules should
be allowed to violate this property will point to an
important difference between imprecise choice and pre-
cise choice. I shall call this property “all-or-nothing
expansion consistency”. It is called 7′′ by Luce and
Raiffa and “beta” by Sen. This says that if an old
choiceworthy act is made non-choiceworthy by the
addition of new acts, then all old choiceworthy acts
are made non-choiceworthy.

All-or-nothing: If ϕ ∈ C(A) but ϕ /∈ C(A∪B)
then, for all ψ ∈ C(A), we have ψ /∈ C(A ∪B)

As Luce and Raiffa show All-or-nothing makes
sense only when you are evaluating the acts on a single
scale. Sugden [28] discusses an example where one race
car is faster and another is more manoeuvrable: the
first will win in a head to head race, but the second will
win if there are other cars on the track. Thus the “race
winning function”, if you like, does not satisfy All-
or-nothing. Such a choice function can’t be given
a strong interpretation. That is, each member of the
choice set is better than all acts outside the choice set
in some sense; but it is not the case that all members of
the choice set are equally good. They are merely good
in different ways. I claim that imprecise decision can
be a little like this, and thus that All-or-nothing
should not be required. It is a property that makes
sense only for strong choice functions. Single criterion
choice (as characterised by All-or-nothing) and the
strong interpretation of the choice set go hand in hand.

Two further properties that I don’t endorse as con-
straints on rational choice are the following:
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Mixing: C(A) ⊆ C(A∗)
Convexity: C(A)∗ ∩A = C(A)

Mixing says that if ϕ is not choiceworthy among the
mixtures of A, then ϕ should not be choiceworthy in
A itself. This seems an odd requirement of rationality:
if you are choosing among the members of A, why
should the fact that an act is not choiceworthy in some
larger set of acts be relevant? Convexity says that
mixtures of choiceworthy acts should be choiceworthy.
This property seems to be trading on the same “single-
criterion choice” idea as I discussed above.

4 Examples of Choice Functions

4.1 Non-Domination

What about just taking M�Dom as our choice rule?
That is, any acts that are not dominated are in the
choice set. It is, perhaps, too permissive a rule.

Consider the following example.

Example 2: There is a coin of unknown
bias. You are offered the choice between
these bets:
• a: win £1 if the next toss lands heads
• b: win £1 if the next ten tosses all land

heads
• b′: win £1 +ε if the next ten tosses land

heads, win £ε otherwise

It seems right thatM�Dom rules out act b. However, it
seems unfortunate that it doesn’t rule out the “almost
dominated” act b′.

Also, this rule does not satisfy the All-or-nothing
property. Here is an example of how M�Dom fails
all-or-nothing expansion consistency.

Example 3: Consider the choice between
g and h, and the choice between g, h and k.
• g: Gain £10 if H, nothing otherwise
• h: Gain nothing if H, £10 otherwise
• k: Gain £11 if H, £1 otherwise

k dominates g, so in the expanded decision problem, g
is not choiceworthy. However, h is still undominated,
so this violates All-or-nothing. As I said above,
I don’t think violating All-or-nothing is a mark
against an imprecise choice rule.

A mixture of undominated acts can be dominated (see
Table 1). Each of a1 and a2 are undominated, but
the mixture is dominated by a3. So Convexity is
not true for M�Dom . This choice rule also violates
Mixing [23].

s1 s2

a1 2 −2
a2 −2 2
a3 1 1

0.5a1 + 0.5a2 = a4 0 0

Table 1: A mixture of undominated acts can be domi-
nated

4.2 E-Admissibility

The main problem withM�Dom is that it isn’t really
discriminating enough. That is, the choice sets that
that rule generates will often contain many acts. We
would really like choice to be more constrained. Let’s
consider a more discriminating choice rule. Another
restriction of the act set – “E-admissibility” – is due to
Isaac Levi [14, 15]. An act is E-admissible if there is
some probability in your representor such that that act
maximises expectation with respect to that probability
function. E-admissible acts are the ones that some
credal committee member thinks are best (by that
member’s standard of Epr). Levi argues that you
should only choose among E-admissible acts. A first
attempt at cashing out this choice rule is:

L(A) =
⋃

pr∈P
M�Epr (A) (4)

This might be more perspicuously rephrased as:11

L(A) = {ϕ ∈ A : ∃pr ∈ P,∀ψ ∈ A,Epr(ϕ) ≥ Epr(ψ)}
(5)

The intuition is that we ask each credal committee
member to pick their favourite act(s): we then take
the collection of each of these favourites. Compare
withM�Dom where we take out all the acts where the
committee unanimously prefers some other act.

As it stands, the definition of E-admissible isn’t quite
good enough. Recall Example 2 where we had the
choice between a bet on heads and a bet on ten heads in
a row. The latter maximises expectation for pr(H) = 0
and pr(H) = 1 so it is E-admissible. This act is,
however, weakly dominated.12 To fix this, consider
M�Dom ◦L(A) where “◦” is composition of functions.
We shall call this L(A).

We know that L(A) ⊆ M�Dom(A). There are un-
dominated acts that are not E-admissible.13 So we
in fact know that L(A) ( M�Dom(A) for some A.

11This rephrasing makes it clear that non-domination and
E-admissibility differ only in the order of quantification and the
strictness of the inequality. That is, non-domination becomes:
ϕ ∈ A,∀ψ ∈ A, ∃pr ∈ P,Epr(ϕ) > Epr(ψ).

12L never contains strongly dominated acts.
13For example gamble n in Example 4 below.
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So L is more discriminating than M�Dom . Given
that E-admissibility is more discriminating and given
that non-domination is arguably too permissive (not
discriminating enough), one might think that E-
admissibility is obviously the better rule. However, L
doesn’t help solve any of the problems withM�Dom .

L violates union consistency, as can be seen from
considering Example 4.

Example 4: You are betting on a coin of
unknown bias. You can choose among these
bets:
• l: Gain £10 if H, lose 5 otherwise
• m: Lose £5 if H, gain 10 otherwise
• n: Gain 0 whatever happens

L({l, n}) = {l, n} and L({m,n}) = {m,n}, but
L({l,m, n}) = {l,m}. That is, n is choiceworthy
in both pairwise choices, but if all three options are
offered together, then n is ruled out.

Seidenfeld et al. point out that it follows from Lemma
3 of [18] that E-admissibility satisfies Mixing [23]. It
also means that if A = A∗ then L(A) = M�Dom(A).
It is also worth noting that L is not determined by
pairwise comparisons, whileM�Dom is. I don’t think
either of these features tells in favour of the rule’s
rationality.

Despite being more discriminating, E-admissibility
does not seem like an improvement on non-domination.
I doesn’t help with almost dominated acts, or with
Convexity, and it adds violations of a further intu-
itive property: Union consistency.

4.3 Valuing Acts

The standard approach to decision making with precise
probabilities is to assign to each act a number repre-
senting how much that act is valued: Epr. Let’s try to
do the same thing here: can we find some number that
represents how valuable a certain gamble is? A first
attempt at valuing acts in the imprecise case would be
to look at E . That is, consider the decision rule that
says “act to maximise the worst-case expected value”.
IsME a good decision rule? This rule is sometimes
described as “gamma-maximin” [21]. It is also the rule
that [9] advocate.14

ME does not satisfy non-domination. That is, ME
sometimes contains acts that are weakly dominated,
as Example 2 shows. The above problem isn’t just

14Their decision rule is slightly more complex in that it takes
into account the “reliability” of the functions in your representor,
but if all probabilities are equally reliable, then their rule reduces
to gamma-maximin.

a problem forME , but for any rules that focus only
on the set of expectations. For example, instead of
maximising E , consider maximising Hα(ϕ) = α E(ϕ) +
(1 − α) E(ϕ) for some real number α between 0 and
1. This is an “imprecise analogue” of the Hurwicz
criterion for choice under complete ignorance [12, 17].
This is actually a whole class of different decision rules
depending on choice of α. If α = 1 then we recover
maximise minimum expectation (ME). If a precise
α value seems arbitrary, perhaps consider looking for
acts that do well for many different values of α. [2]
suggests a rule that, effectively, amounts to preferring
ϕ to ψ just in case ϕ is better according to all values
of α. Sadly, none of these rules can avoid making
(weakly) dominated acts permissible: none of these
rules can make b inadmissible in Example 2.15 That
is, since E(a) = E(b) and E(a) = E(b), any rule that
values acts as some function of these values must treat
the two bets the same.

As well as violating the rationally compelling Non-
domination principle, theME rule also violates in-
dependence. Consider Example 1: ME chooses d over
c in the odd branch. But when you mix with the even
branch, c ends up looking better. That is, the payouts
of c and d for the “mixed” decision problem are “5 if
H, 3 otherwise” and “1 if H, 4 otherwise” respectively.

If we focus on strict dominance �SDom rather than
weak dominance �Dom, thenME(A) ⊆MSDom [30].16

4.4 Composite Rules

Since the problem withME (and similar rules) is that
it allows weakly dominated acts to be choiceworthy,
why not just compose it withM�Dom to make a better
rule? Consider ME ◦M�Dom : this is the rule that
maximises minimum expectation among the acts that
are undominated. This rule obviously satisfies Non-
domination. It still fails independence, however.

What about composingME with L? Isaac Levi, for
instance, advocated usingME as a tie-breaker among
E-admissible acts. We have seen that both choice func-
tions have problems as decision rules. The composite
rule still violates Union consistency and Indepen-
dence. Combining them in the way Levi suggests
leads to further problems. This composite rule vi-
olates Contraction Consistency, as [21] points
out.

Example 5: Consider the choice between
t, u and the choice between t, u, v.
• t: £10 if H, nothing otherwise

15Indeed, b′ is uniquely admissible forME .
16This paper also discusses several other interesting connec-

tions between imprecise choice rules.
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• u: £3 if H, £3 otherwise
• v: £−1 if H, £8 otherwise

In a choice between t and u, it is u that does best by
ME . However, adding v means that u is no longer
E-admissible and of t and v, t does better.

4.5 Aggregate Value

Perhaps we have been approaching this the wrong way,
and what we should be doing is looking for some way
to aggregate P or E to get a (precise) aggregate ex-
pected utility and maximise that in the standard way?
There is a large literature on aggregating probability
judgements [10]; might this not provide new insight
on IP decision making? First, I’m not sure that such
an approach is in the spirit of IP. Second, it isn’t clear
that such an aggregate value approach will be able to
rationalise ambiguity aversion in the Ellsberg game
[6] which is, after all, a desideratum for IP decision
making.

In one sense, we would like to have some all-things-
considered aggregate value to attach to acts. We would
like to have some notion of value that rational agents
seek to maximise, some concept of rational choice that
can be given a strong interpretation. But when your
attitudes about the expected goodness are conflicted
in the way they are in IP models, I’m not sure why
we should think that such reasonable aggregation is
possible.

We can aggregate the credal committee’s opinions
about the probabilities (P), but this doesn’t seem to
be true to the goals of IP models. We can aggregate the
credal committee’s opinions about the expected values
(E), but the previous two subsections show that this
leads to some problematic consequences. Or we can
aggregate the credal committee’s preferences (the �Epr

relations), but the choice rules we get (M�Dom ,L)
can’t be given the strong interpretation we would like.

4.6 Regret

We have seen imprecise analogues of maximin and
Hurwicz criterion rules for decision under ignorance.
What about an imprecise analogue of minimax-regret?
Consider:

R(ϕ) = −max
pr∈P

{
max
ψ∈A
{Epr(ψ)} − Epr(ϕ)

}
(6)

And consider the choice rule MR. This rule vio-
lates Union consistency and Contraction con-
sistency.17 On the other hand, it satisfies Non-

17Interestingly, in Example 4,MR chooses l out of l, n and
m out of m,n, but makes n uniquely admissible in the three
way choice, which is a very different profile of choices from L.

domination and also rules out “almost dominated”
acts like b′ in Example 2. This rule deserves further
attention, although note that it is computationally
demanding. It’s also unclear under what conditions it
is decisive.

5 Conclusion

We have explored a number of different kinds of choice
rule. None is entirely satisfactory. So how should we
act? I think we can at least take Non-domination
as a requirement on rational choice. SoM�Dom serves
to rule out some bad acts. This means that ϕ ∈
M�Dom(A) is acting as a necessary but not sufficient
condition on imprecise choice. A variety of options
for going beyond this – to attempt to find sufficient
conditions for rational choice – have failed. All the
more discriminating rules we have looked at seem to
violate one or more intuitively compelling properties
of rational choice.

We can understandM�Dom(A) as a weak kind of choice
set. That is, it is reasonable to rule out all the acts that
M�Dom rules out. But it seems like some acts that
make it into M�Dom that we would not consider to
be reasonable choices. The various attempts to come
up with a choice rule that can be given a stronger
interpretation have failed. That is, every attempt to
construct a choice rule that positively endorses all the
acts in the choice set have come up short. CID is such
a rule, but it is often empty.

In summary, rules like ME and MHα violate Non-
domination and so are not good rules. They also
violate Independence. L violates Union Consis-
tency which might be considered a problem. Levi’s
suggestion of using E to break ties among elements of
L is doubly bad: it violates Contraction Consis-
tency and Independence. In short,M�Dom seems
hard to improve on: every proposed improvement, ev-
ery more discriminating choice rule, has some flaw or
other.

What I take myself to have shown here is that we
can make some progress on the problem of imprecise
choice. It is not the case that when your credences
become imprecise, all constraint on choice falls away.
In many cases of “moderate” imprecision, the above
constraints on choice (in particular Non-domination)
will be enough to fix your choice.

When your credences are imprecise, then it’s difficult to
know how you should act. Put another way: weaken
the theory of decision and it’s not surprising that
the constraints on choice aren’t as strong. Perhaps
the conclusion to draw from this is that there is no
rationally compelling IP choice function that admits
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of a strong interpretation. Obviously, we can’t take
M�Dom to cash out all there is to rationality, since
it doesn’t rule out “almost dominated” acts like b′ in
Example 2, as we would like. But it does seem to
capture a necessary condition on rational choice. This
makes it clear that even when we expect rationality
to be silent on some questions in this area, it is not
the case that imprecise choice is unconstrained.

A Proofs

Theorem 1 If C satisfies � and C(A) is nonempty for
nonempty A, then C pairwise satisfies �.
Proof: Assume ϕ � ψ and C satisfies � and is nonempty.
Then ψ /∈ C({ϕ,ψ}). C({ϕ,ψ}) is a subset of {ϕ,ψ}, does
not contain ψ and is nonempty. Therefore C({ϕ,ψ}) =
{ϕ}.
Assume ϕ � ψ and C satisfies � and is nonempty.
Now, either ϕ � ψ and the above argument shows that
C({ϕ,ψ}) = {ϕ}, or ϕ ∼ ψ. Therefore, since C satisfies �,
ϕ ∈ C({ϕ,ψ}) if and only if ψ ∈ C({ϕ,ψ}). Since C can’t be
empty, and must be a subset of {ϕ,ψ}, C({ϕ,ψ}) = {ϕ,ψ}.
In either case, ϕ ∈ C({ϕ,ψ}) as required.

Theorem 2 (i) M� is a choice function and (ii) M�
pairwise satisfies �. (iii) If � is acyclic on A where A is
finite thenM�(A) is non-empty. (iv) Furthermore, if �
is transitive, thenM� satisfies �.
Proof: (i)M�(A) ⊆ A by definition. It is equally obvious
thatM�(M�(A)) =M�(A).

(ii) We need to show that if a � b then a ∈ M�({a, b}).
The only way a could fail to be inM�({a, b}) is if b � a.
But this is ruled out by definition of �. If a � b then
a � b, so by the above, we have that a ∈M�({a, b}), and
by definition, b /∈M�({a, b}).
(iii) Let � be acyclic on some finite A. If the size of A,
|A| = 1, then that singleton element is maximal. Assume
M�Dom (A) is non-empty for |A| ≤ n. Consider A of
size n + 1. We need to find an element ϕ ∈ M�Dom (A).
Take an arbitrary ϕ0 ∈ A. If ϕo ∈ M�Dom (A) then we
are done. Otherwise, let A0 = A \ {ϕ0}. By hypothesis,
M�Dom (A0) 6= ∅. Say ϕ∗ ∈ M�Dom (A0). If ϕ∗ is max-
imal in A then we are done. If not, then we must have
ϕ0 � ϕ∗. If ϕ0 is not maximal then there must be some
ϕ1 such that ϕ1 � ϕ0. And since � is acyclic, ϕ1 can’t
be equal to ϕ∗. This procedure will eventually pick out an
element that is maximal in A [29, Theorem A(3), p.14].

(iv) If a � b then b /∈ M�(A) by definition. Finally,
assume for contradiction that a ∼ b and a ∈ M�(A) but
b /∈ M�(A). This means there exists some c � b. But
b � a so by transitivity18 c � a, contradicting a ∈M�(A).

Theorem 3 If C satisfies � then C(A) ⊆M�(A) for all
A.
Proof: Let a ∈ C(A). Assume for contradiction that there

18Strictly speaking, we don’t really need transitivity here: we
only need that ψ ∼ ϕ and ρ � ψ imply ρ � ϕ.

is some b ∈ A such that b � a. If there were such a b, then
a would not have been in C(A) by definition of “satisfies”.
Thus ¬∃b ∈ A, b � a. This is exactly the condition required
for inclusion inM�.

For the next theorem we will need a little bit more notation.
We will use ϕ ./ ψ to mean ¬ϕ � ψ and ¬ψ � ϕ. That is,
ϕ ./ ψ if and only if the two acts are incomparable. We
will also need this fact about ./.

Lemma 1 For transitive �: if ϕ ∼ ψ and ψ ./ ρ then
ϕ ./ ρ
Proof: Assume ϕ ∼ ψ ./ ρ. Assume for contradiction
that ϕ � ρ. Then ψ ∼ ϕ � ρ which implies ψ � ρ which
contradicts our assumptions.19 Likewise for ρ � ϕ. Thus
ϕ ./ ρ.

Theorem 4 When Opt�(A) 6= ∅, and � is transitive then
Opt�(A) =M�(A).
Proof: We first show that Opt�(A) ⊆ M�(A). We then
show that if ϕ is maximal but not optimal, then no act is
optimal.

Assume ϕ ∈ Opt�(A). Assume for contradiction that there
is some ψ such that ψ � ϕ. Therefore ¬ϕ � ψ, which
contradicts our assumption. Thus ¬∃ψ ∈ A,ψ � ϕ. This
is exactly the criterion for inclusion inM�(A).

Assume now that ϕ ∈ M�(A) but, ϕ /∈ Opt�(A). For ϕ
not to be optimal, this means there is some ψ such that
¬ϕ � ψ. ϕ is maximal, so ϕ and ψ must be incomparable.
Assume there is some ρ ∈ Opt�(A). So ρ � ϕ, but since ϕ
is maximal, this must mean ϕ ∼ ρ. ρ ∼ ϕ ./ ψ, therefore
ρ ./ ψ by the above lemma. In particular ¬ρ � ψ which
contradicts our assumption. Therefore Opt�(A) is empty.
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