Imprecise random variables, random sets, and Monte Carlo simulation

Thomas Fetz, Michael Oberguggenberger

Unit for Engineering Mathematics
University of Innsbruck, Austria

Thomas.Fetz@uibk.ac.at
Michael.Oberguggenberger@uibk.ac.at

t.math

ISIPTA’15, Pescara, Italia
Unit of Engineering Mathematics
Faculty of Engineering Sciences
University of Innsbruck, Austria

Research team “imprecise probabilities”:

Michael Oberguggenberger
(head of unit)

Thomas Fetz

Jelena Nedeljkovic

Martin Schwarz
Problem

Given

- Expensive input-output map \(g : \mathbb{R}^n \rightarrow \mathbb{R} : x \rightarrow g(x) \).

 E.g. finite element computations (minutes or hours per computation).

- Family \(\{X_\lambda\}_{\lambda \in \Lambda} \) of random variables modelling the uncertainty of variable \(x \).

Aim

- Upper/lower probabilities that \(g(x) \in B \).

- Upper/lower probabilities that \(g(x) \leq y \) (upper/lower cumulative distribution functions).

- Upper/lower probabilities that \(g(x) \leq 0 \) (upper/lower probability of failure).

Two approaches

- Monte-Carlo simulation of \(\{g(X_\lambda)\}_{\lambda \in \Lambda} \).

- Monte-Carlo simulation of the random set \(X \) generated by \(\{g(X_\lambda)\}_{\lambda \in \Lambda} \).
Two approaches

1 Family \(\{X_\lambda\}_{\lambda \in \Lambda} \) of random variables
- Probability space \((\Omega, \Sigma, m)\).
- Family \(\{X_\lambda\}_{\lambda \in \Lambda} \) of random variables
 \[X_\lambda : \Omega \to \mathbb{R} : \omega \to X_\lambda(\omega). \]
- Probability \(P(X_\lambda \in B) \) for fixed \(X_\lambda \):
 \[P(X_\lambda \in B) = \int_{\Omega} \mathbb{1}_{X_\lambda(\omega) \in B} \, dm(\omega). \]
 (for initial analysis we drop the map \(g \))

2 Random set \(\mathcal{X} \) based on \(\{X_\lambda\}_{\lambda \in \Lambda} \)
- Set-valued map \(\mathcal{X} : \Omega \to \mathbb{R} \) defined by
 \[\mathcal{X}(\omega) = \{X_\lambda(\omega) : \lambda \in \Lambda\}. \]
- \(\mathcal{X} \) is a random set, if upper/lower inverses
 \[\mathcal{X}^-(B) = \{\omega \in \Omega : X(\omega) \cap B \neq \emptyset\}, \]
 \[\mathcal{X}^-(B) = \{\omega \in \Omega : X(\omega) \subseteq B\} \]
 are measurable subsets of \(\Omega \).
Two approaches

1. **Family \(\{X_\lambda\}_{\lambda \in \Lambda} \) of random variables**
 - Probability space \((\Omega, \Sigma, m)\).
 - Family \(\{X_\lambda\}_{\lambda \in \Lambda} \) of random variables
 \[X_\lambda : \Omega \to \mathbb{R} : \omega \to X_\lambda(\omega). \]
 - Probability \(P(X_\lambda \in B) \) for fixed \(X_\lambda \):
 \[P(X_\lambda \in B) = \int_\Omega 1_{X_\lambda(\omega) \in B} \, dm(\omega). \]
 (for initial analysis we drop the map \(g \))

Lower/upper probabilities for \(\{X_\lambda\}_{\lambda \in \Lambda} \)

\[
\underline{P}(B) = \inf_{\lambda \in \Lambda} P(X_\lambda \in B) = \inf_{\lambda \in \Lambda} \int_\Omega 1_{X_\lambda(\omega) \in B} \, dm(\omega)
\]
\[
\overline{P}(B) = \sup_{\lambda \in \Lambda} P(X_\lambda \in B) = \sup_{\lambda \in \Lambda} \int_\Omega 1_{X_\lambda(\omega) \in B} \, dm(\omega)
\]

2. **Random set \(X \) based on \(\{X_\lambda\}_{\lambda \in \Lambda} \)**
 - Set-valued map \(X : \Omega \to \mathbb{R} \) defined by
 \[X(\omega) = \{X_\lambda(\omega) : \lambda \in \Lambda\}. \]
 - \(X \) is a random set, if upper/lower inverses
 \[
 \underline{X}(B) = \{\omega \in \Omega : X(\omega) \cap B \neq \emptyset\},
 \overline{X}(B) = \{\omega \in \Omega : X(\omega) \subseteq B\}
 \]
 are measurable subsets of \(\Omega \).

Lower/upper probabilities for \(X \)

\[
\underline{P}(B) = m(\underline{X}(B)) = \int_\Omega 1_{X(\omega) \subseteq B} \, dm(\omega)
\]
\[
\overline{P}(B) = m(\overline{X}(B)) = \int_\Omega 1_{X(\omega) \cap B \neq \emptyset} \, dm(\omega)
\]
Two approaches

1. Family $\{X_\lambda\}_{\lambda \in \Lambda}$ of random variables
 - Probability space (Ω, Σ, m).
 - Family $\{X_\lambda\}_{\lambda \in \Lambda}$ of random variables
 \[X_\lambda : \Omega \to \mathbb{R} : \omega \to X_\lambda(\omega). \]
 - Probability $P(X_\lambda \in B)$ for fixed X_λ:
 \[P(X_\lambda \in B) = \int_{\Omega} 1_{X_\lambda(\omega) \in B} \, dm(\omega). \]
 (for initial analysis we drop the map g)

2. Random set X based on $\{X_\lambda\}_{\lambda \in \Lambda}$
 - Set-valued map $X : \Omega \to \mathbb{R}$ defined by
 \[X(\omega) = \{X_\lambda(\omega) : \lambda \in \Lambda\}. \]
 - X is a random set, if upper/lower inverses
 \[X^+(B) = \{\omega \in \Omega : X(\omega) \cap B \neq \emptyset\}, \]
 \[X^-(B) = \{\omega \in \Omega : X(\omega) \subseteq B\} \]
 are measurable subsets of Ω.

Lower/upper probabilities for $\{X_\lambda\}_{\lambda \in \Lambda}$

<table>
<thead>
<tr>
<th>Lower/upper probabilities for ${X_\lambda}_{\lambda \in \Lambda}$</th>
<th>Lower/upper probabilities for X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\underline{P}(B) = \inf_{\lambda \in \Lambda} P(X_\lambda \in B) = \inf_{\lambda \in \Lambda} \int_{\Omega} 1_{X_\lambda(\omega) \in B} , dm(\omega)$</td>
<td>$\underline{\tilde{P}}(B) = m(X^+(B)) = \int_{\Omega} 1_{X(\omega) \subseteq B} , dm(\omega)$</td>
</tr>
<tr>
<td>$\overline{P}(B) = \sup_{\lambda \in \Lambda} P(X_\lambda \in B) = \sup_{\lambda \in \Lambda} \int_{\Omega} 1_{X_\lambda(\omega) \in B} , dm(\omega)$</td>
<td>$\overline{\tilde{P}}(B) = m(X^-(B)) = \int_{\Omega} 1_{X(\omega) \cap B \neq \emptyset} , dm(\omega)$</td>
</tr>
</tbody>
</table>

Theorem

\[\underline{\tilde{P}} \leq \underline{P} \leq \overline{P} \leq \overline{\tilde{P}} \]

X is more imprecise than $\{X_\lambda\}_{\lambda \in \Lambda}!$
Example

- **Probability space:** \((\Omega, \Sigma, m) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), m), \quad m(B) = \int_{\mathbb{R}} 1_{\omega \in B} \frac{1}{\sqrt{2\pi}} e^{-\omega^2/2} \, d\omega.\)

- **Family** \(\{X_{(\mu, \sigma)}\}_{(\mu, \sigma) \in \Lambda} : X_{(\mu, \sigma)}(\omega) = \sigma \omega + \mu \implies X_{(\mu, \sigma)} \sim \mathcal{N}(\mu, \sigma^2).\)

- \(\Lambda = [\mu, \bar{\mu}] \times [\sigma, \bar{\sigma}] = [-0.5, 2] \times [1, 2], \quad B = [1, 2.5].\)

\[
\begin{align*}
X(\omega) &= \{X_{\lambda}(\omega) : \lambda \in \Lambda\} = [\underline{X}(\omega), \overline{X}(\omega)] \\
\underline{X}(\omega) &= \inf_{\mu \in [\mu, \bar{\mu}], \sigma \in [\sigma, \bar{\sigma}]} X_{(\mu, \sigma)}(\omega) = \begin{cases}
\sigma \omega + \mu & \omega < 0 \\
\sigma \omega + \bar{\mu} & \omega \geq 0
\end{cases} \\
\overline{X}(\omega) &= \sup_{\mu \in [\mu, \bar{\mu}], \sigma \in [\sigma, \bar{\sigma}]} X_{(\mu, \sigma)}(\omega) = \begin{cases}
\sigma \omega + \mu & \omega < 0 \\
\bar{\sigma} \omega + \mu & \omega \geq 0
\end{cases}
\end{align*}
\]

- \(P(B) = \inf_{(\mu, \sigma) \in \Lambda} P(X_{(\mu, \sigma)} \in B) = P(X_{(-0.5, 1)} \in B) = 0.0655\)

- \(\overline{P}(B) = \sup_{(\mu, \sigma) \in \Lambda} P(X_{(\mu, \sigma)} \in B) = P(X_{(1.75, 1)} \in B) = 0.5467\)

- \(\underline{P}(B) = m(\underline{X}^{-}(B)) = m(\emptyset) = 0.0000\)

- \(\overline{P}(B) = m(\overline{X}^{-}(B)) = m([-1, 3]) = \Phi(3) - \Phi(-1) = 0.8400\)
Simulation of a family \(\{X_\lambda\}_{\lambda \in \Lambda} \) of random variables

1 Basic sample \(x_1, \ldots, x_{N_{\text{samp}}} \)

- Generate a sample \(x_1, \ldots, x_{N_{\text{samp}}} \) which is distributed as a **basic random variable** \(X_* \).
- Distribution of \(X_* \) should cover a greater range than a distribution of a single \(X_\lambda \) does.

2 \(N_{\text{samp}} \) function evaluations \(g(x_k), k = 1, \ldots, N_{\text{samp}} \)

- We compute \(g(x_k) \) either using \(g \) directly or a cost saving surrogate model \(\tilde{g} \).

3 Approximation of \(P(g(X_\lambda) \leq y) \)

- Probability \(P(g(X_\lambda) \leq y) \) for fixed \(\lambda \) is computed by **reweighting** the original sample.
- Weights \(w_k(\lambda) \) depending on parameters \(\lambda \) for reweighting the sample \(x_1, \ldots, x_{N_{\text{samp}}} \) according to the distribution of \(X_\lambda \):
 \[
 w_k(\lambda) = \frac{f_{X_\lambda}(x_k)}{f_{X_*}(x_k)} \cdot \frac{1}{N_{\text{samp}}} = \frac{f_{\text{new}}(x_k)}{f_{\text{old}}(x_k)} \cdot \frac{1}{N_{\text{samp}}}
 \]
 where \(f_{X_\lambda} \) and \(f_{X_*} \) are strictly positive densities.
- \(P(g(X_\lambda) \leq y) \) for different \(X_\lambda \) **without additional function evaluations** of \(g \):
 \[
 P(g(X_\lambda) \leq y) \approx \sum_{k=1}^{N_{\text{samp}}} \mathbb{1}_{g(x_k) \leq y} \cdot w_k(\lambda) = \sum_{k=1}^{N_{\text{samp}}} \mathbb{1}_{g(x_k) \leq y} \cdot w_k(\lambda).
 \]
Simulation of a family $\{X_\lambda\}_{\lambda \in \Lambda}$ of random variables

4 Approximation of $\overline{P}(g \leq y)$ and $\underline{P}(g \leq y)$

For the computation of the upper/lower probabilities $\overline{P}(g \leq y)$ and $\underline{P}(g \leq y)$ we

- use a grid of representative parameter values λ_i,
- estimate the probabilities $P(g(X_{\lambda_i}) \leq y)$ at the grid points λ_i by means of MC simulation
- and take the maximum/minimum value:

$$\overline{P}(g \leq y) = \sup_{\lambda \in \Lambda} P(g(X_{\lambda}) \leq y) \approx \max_{i=1,\ldots,N_{\text{grid}}} P(g(X_{\lambda_i}) \leq y) \approx \max_{i=1,\ldots,N_{\text{grid}}} \sum_{k=1}^{N_{\text{samp}}} \mathbb{1}_{g(x_k) \leq y} \cdot w_k(\lambda_i),$$

$$\underline{P}(g \leq y) \approx \min_{i=1,\ldots,N_{\text{grid}}} \sum_{k=1}^{N_{\text{samp}}} \mathbb{1}_{g(x_k) \leq y} \cdot w_k(\lambda_i).$$

Effort: $N_{\text{grid}} \cdot N_{\text{samp}}$ reweightings, N_{samp} expensive function evaluations of g.
Simulation of a random set X

1. Propagation of a random set through g

- $\mathcal{G}(\omega) = g(X(\omega)) = \{g(X_{\lambda}(\omega)) : \lambda \in \Lambda\}$
- $\mathcal{G}(\omega) = [\underline{g}(\omega), \overline{g}(\omega)]$ random interval
- $\underline{g}(\omega) = \min g(X(\omega))$, $\overline{g}(\omega) = \max g(X(\omega))$

2. Cumulative distribution functions

- $\overline{F}(y) = \tilde{P}(g \leq y)$, $\underline{F}(y) = \bar{P}(g \leq y)$
- $\overline{F}(y) = P((\infty, y] \cap [\underline{g}, \overline{g}] \neq \emptyset) = P(\underline{g} \leq y) = \underline{F}(y)$
- $\underline{F}(y) = P([\underline{g}, \overline{g}] \subset (-\infty, y]) = P(\overline{g} \leq y) = \overline{F}(y)$

3. Algorithm for computing $\overline{F}(y)$

- Generate $\omega_1, \ldots, \omega_{N_{\text{samp}}}$ distributed as m.
- For each ω_n, estimate $\underline{g}(\omega_n) \approx \min_i g(X_{\lambda_i}(\omega_n))$ using grid points $\lambda_1, \ldots, \lambda_{N_{\text{grid}}}$ on Λ.
- $\overline{F}(y) \approx \frac{1}{N_{\text{samp}}} \sum_{k=1}^{N_{\text{samp}}} \mathbb{1}_{\underline{g}(\omega_k) \leq 0} \cdot \frac{1}{N_{\text{samp}}}$

Effort: $N_{\text{grid}} \cdot N_{\text{samp}}$ expensive evaluations of g.

Th. Fetz, M. Oberguggenberger | Imprecise random variables, random sets, and Monte Carlo simulation | ISIPTA’15, Pescara, Italia | 8 / 10
Simulation of a random set X

4 Cost saving methods, approximation of g by a surrogate model \tilde{g}

Starting point: Collocation points $x_j, j = 1, \ldots, N_{coll}$, in \mathbb{R}^n and N_{coll} evaluations $y_j = g(x_j)$.

Two levels are at hand: $\Omega \xrightarrow{X_\lambda} \mathbb{R}^n \xrightarrow{g} \mathbb{R}$.

A Surrogate model \tilde{g} of the map $g : \mathbb{R}^n \rightarrow \mathbb{R}$:

To obtain the lower bound \underline{g} we replace g by \tilde{g}: $\underline{g}(\omega_n) \approx \min_{i=1,\ldots,N_{grid}} \tilde{g}(X_\lambda_i(\omega_n))$.

Effort: One surrogate model \tilde{g},

$N_{grid} \cdot N_{samp}$ cheap evaluations of \tilde{g} and N_{coll} expensive evaluations of g.

B Surrogate models \tilde{g}_i of maps $\Omega \rightarrow g \circ X_\lambda$:

- Collocation points x_j are pulled back to Ω.
- For each λ_i and x_j, we get a collocation point $\omega_{ij} = X^{-1}_\lambda(x_j)$ in Ω.
- Clearly, $y_j = g(X_\lambda_i(\omega_{ij})) = g(x_j)$ for every i. Then $\underline{g}(\omega_n) \approx \min_{i=1,\ldots,N_{grid}} \tilde{g}_i(\omega_n)$.

Effort: N_{grid} surrogate models \tilde{g}_i,

N_{samp} cheap evaluations of \tilde{g}_i for each i and N_{coll} expensive evaluations of g.

Advantage of surrogate models \tilde{g}_i on Ω:

- Use of orthogonal polynomials with respect to the measure m.
- In the Gaussian case it means Hermite expansion.
Imprecise random variables, random sets, and Monte Carlo simulation

Given:
Simulate a family of random variables

Family:
- Probability space $(\Omega, \mathcal{F}, \mathbb{P})$ of random variables
- X_1, X_2, \ldots, X_n are measures of the sample
- $g(\cdot)$ is a continuous function
- $g(x_1, x_2, \ldots, x_n)$ is a real-valued function

Weight function evaluations:
For all $i = 1, \ldots, N_{\text{eval}}$ we compute $g(x_i)$ using $g(x_i)$ directly or a cost-saving surrogate model $g^\#$.

Simulation of a family of random variables
Goal: Approximation of $P(g(X_1) \leq t), P(g(X_2) \leq t)$ by means of Monte Carlo simulation using only one sample for all random variables X_1, X_2, \ldots, X_n.

Basic sample evaluation:
1. We generate a sample x_1, \ldots, x_n which distributed as a random variable X_i.
2. The distribution of X_i should cover a greater range than a distribution of a single x_i.

Approximation of $P(g(X_i) \leq t)$:
1. Probability $P(g(X_i) \leq t)$ for fixed X_i is computed by reweighting the original sample.
2. Weights $w_i(x_i)$, depending on parameters, for reweighting the sample x_1, \ldots, x_n according to the distribution of X_i.

Cumulative distribution functions:
- $P(g(X_i) \leq t)$ is approximated using grid points x_i.

Algorithm for computing $P(g(X_i) \leq t)$:
- Generate n_i samples x_i distributed as X_i.
- For each x_i, compute $g(x_i)$ using a grid point x_i.
- Effect: n_i evaluations $g(x_i)$.

Cost-saving methods:
Approximation of $P(g(X_i) \leq t)$ using a surrogate model $g^\#$.

Surrogate model $g^\#$ at a grid point x_i:
- Collocation points x_i^{col} and x_i^{test} are used to evaluate $g(x_i)$ at the grid point x_i.

Example:
- Beam tested on spring with uncertain spring constant

Simulation of a random set:
- Gold points (x_i, y_i) with $x_i \in [0, 20], y_i \in [-5, 5]$
- Focal set M of the random set α is approximated by $\hat{M} = \{ x | x \in M \}$
- Approximation of the upper probability of failure of the beam by means of Monte Carlo simulation:

Simulation of a family of random variables:
- Full range probability $P(X_i \in B)$ of the beam for fixed (x_i, y_i) is approximated by $\hat{P}(X_i \in B)$ using grid points (x_i, y_i).

Basic sample $x_1, \ldots, x_{N_{\text{sam}}}$, $\hat{P}(X_i \in B) = 10^{-6}$.

Upper probability of failure is approximated by $\hat{P}(\hat{X}_i \in \hat{B}) = \frac{1}{N_{\text{sam}}} \sum_{j=1}^{N_{\text{sam}}} P(x_j \in \hat{B})$.

Example:
- Given: Limit state function y and $(\tilde{x}_j)_{j=1}^{N_{\text{sam}}}$ for spring constant c_j as in the above example, but here with $\tilde{x}_j \in \mathcal{N}(\mu_j, \sigma_j)$, $\sigma_j = 0.3x_j$.
- Goal: Upper/lower probabilities of failure.

Please visit our poster for more details and numerical examples!

Thank you for your attention!

Th. Fetz, M. Oberguggenberger, Unit for Engineering Mathematics, University of Innsbruck, Austria

t.math

Imprecise random variables, random sets, and Monte Carlo simulation

ISIPTA’15, Pescara, Italy

10 / 10