Efficient L_1-Based Probability Assessments Correction: Algorithms and Applications to Belief Merging and Revision

Marco Baioletti, Andrea Capotorti

Dipartimento di Matematica e Informatica
Università degli Studi di Perugia
Italy
A precise probability assessment is a quadruple $\pi = (V, U, p, C)$, where

- $V = \{X_1, \ldots, X_n\}$ is a finite set of propositional variables
- U is a subset of V that contains the effective events taken into consideration
- $p : U \to [0, 1]$ assigns a probability value to each variable in U
- C is a finite set of logical constraints which lie among all the variables in V
A precise probability assessment is coherent if there exists a probability distribution $\mu : 2^V \rightarrow [0, 1]$ on the set of all truth-value assignment 2^V which satisfies the following properties:

1. For each $\alpha \in 2^V$, if there exists a constraint $c \in C$ such that $\alpha \not|= c$, then $\mu(\alpha) = 0$;
2. $\sum_{\alpha \in 2^V} \mu(\alpha) = 1$;
3. For each $X \in U$, $\sum_{\alpha \in 2^V, \alpha |= X} \mu(\alpha) = p(X)$.

Coherence of probability assessment
INCOHERENCE

• What to do if the probability assessment is not coherent?
• A possible solution is to correct p in p' in a way that
 • $\pi' = (V, U, p', C)$ is coherent
 • p' is as close as possible to p
• The correction is then a constrained minimization problem
• This approach follows the principle of minimum change of belief revision
• A distance between probability assessments is needed
L1 correction

• In this paper we use the L1 distance

\[d_1(p, p') = \sum_{i=1}^{n} |p(X_i) - p'(X_i)| \]

• L1-distance minimization has a simple interpretation, since it implies a direct minimal modification of each single probability value

• Moreover, the related correction procedure has a much lower computational cost than other distances

• Note that the correction is not unique, i.e. there can be infinitely many corrections for an incoherent assessment

• Anyway, all the corrections form a convex set \(C(\pi) \)
It is possible to convert the problem of checking the coherence of a probability assessment into a mixed integer programming (MIP) problem [Cozman]

There exists fast procedures for solving MIP problems, even if this problem is NP-hard

We shortly describe the procedure **Correct**

The distance $\delta = d_1(p, p')$ between the original probability vector p and any of its corrections p' can be computed with a MIP program similar to the program for checking the coherence
Procedure Correct

- If $\delta = 0$, p is already coherent and no correction is needed.
- Otherwise, we want to find the extremal points q_1, \ldots, q_s of $C(\pi)$.
- Indeed $C(\pi) = Q \cap B_{\pi}(\delta)$ where
 - Q is the convex set (polytope) of all vectors q such that (V, U, q, C) is coherent.
 - $B_{\pi}(\delta)$ is the ball of all vectors q such that $d_1(p, q) \leq \delta$.
- Fast procedures for face-enumeration and vertex-enumeration can be used to compute the result.
We correct the following incoherent assessment with variables:

- $D \equiv \text{“the athlete uses banned performance-enhancing drugs” (i.e. ”doping”)}$
- $E \equiv \text{“the athlete is showing a performance-enhancing in the last period”}$
- $H \equiv \text{“the athlete is showing a significant change in his/her biological profile”}$

- probability values $p(D) = 0.9$, $p(E) = 0.8$ and $p(H) = 0.9$
- logical constraint $\mathcal{C} = \{ E \lor H, \neg D \lor E, \neg D \lor H \}$
EXAMPLE
Belief merging

- Given two coherent probability assessments $\pi_1 = (\mathcal{V}, U, p, \mathcal{C})$ and $\pi_2 = (\mathcal{V}, W, q, \mathcal{D})$, on the same propositional variables \mathcal{V}, we want to find a probability assessment π_3 as fusion of π_1 and π_2
- The basic procedure is
 - Join together π_1 and π_2 in a incoherent probability assessment π'_3
 - Correct π'_3
- We propose two approaches to perform the first operation
Belief merging I

• The first approach is to compute a “weighted average” of π_1 and π_2 with weights ω and $1 - \omega$.

• We define $\pi_1 + \omega \pi_2$ as the probability assessment $(V, U \cup W, r, C \cup D)$, where $r : U \cup W \rightarrow [0, 1]$ is now defined:

$$r(x) = \begin{cases}
 p(x) & \text{if } x \in U \setminus W \\
 q(x) & \text{if } x \in W \setminus U \\
 \omega p(x) + (1 - \omega)q(x) & \text{if } x \in U \cap W
\end{cases}$$

• The merging operator is defined as

$$\pi_1 \oplus_\omega \pi_2 = \text{Correct}(\pi_1 + \omega \pi_2)$$
Example

- Let $W = \{E, H, X_4 = (\neg D \land E \land H)\}$ and
- $\mathcal{D} \equiv \mathcal{C} \cup \{\neg D \lor \neg X_4, E \lor \neg X_4, H \lor \neg X_4\}$
- Let $\pi_1 = (V, W, \overline{p}, \mathcal{D})$ with
 \[\overline{p}(D) = 0.833, \overline{p}(E) = 0.867, \overline{p}(H) = 0.967 \text{ and } \overline{p}(X_4) = 0;\]
- Let $\pi_2 = (V, W, q, \mathcal{D})$ with
 \[q(E) = 0.867, q(H) = 0.967, q(X_4) = 0.01\]
- Choosing $\omega = \frac{1}{2}$, we have the starting weighted assessment $\pi_1 + \frac{1}{2} \pi_2$ with components $V, U \cup W = (D, E, H, X_4)$,
 \[r = (0.8333, 0.8667, 0.9667, 0.005)\]
Example

- $\pi_1 + \frac{1}{2} \pi_2$ is incoherent with an $L1$ minimal distance $\delta = 0.01$
- The correction $\pi_1 \oplus \frac{1}{2} \pi_2$ is the credal set with extremal values

\[
q_1 = (0.8333, 0.8742, 0.9667, 0.0075) \\
q_2 = (0.8308, 0.8642, 0.9667, 0.00) \\
q_3 = (0.8333, 0.8667, 0.9742, 0.0075) \\
q_4 = (0.8308, 0.8667, 0.9642, 0.00) \\
q_5 = (0.8358, 0.8692, 0.9667, 0.00) \\
q_6 = (0.8258, 0.8667, 0.9667, 0.0075)
\]
Belief merging II

- A different approach is to create a probability assessment which maintains both numerical values.
- The apparent contradiction is solved
 - by adding a new logical variable X'_i, for each event $X_i \in U \cap W$ such that $p(X_i) \neq q(X_i)$, and
 - by assigning the values $r(X_i) = p(X_i)$ and $r(X'_i) = q(X_i)$.
 - Moreover, the logical constraint $X_i = X'_i$ is added to $\mathcal{C} \cup \mathcal{D}$.
- $\pi_1 + \pi_2$ is obviously incoherent and the merging operation of π_1 and π_2 is computed as

$$\pi_1 \oplus_I \pi_2 = \text{Correct}(\pi_1 + \pi_2).$$
Example

- As in the previous example, but we add a new event X'_4
- We start with the assessment $\pi_1 + \pi_2$ with components V, $U' = (D, E, H, X_4, X'_4)$,
 $$r = (0.8333, 0.8667, 0.9667, 0.00, 0.01)$$
- The logical constraints have also $\neg X_4 \lor X'_4$, $X_4 \lor \neg X'_4$
- The correction leads now to a precise assessment with numerical values $(0.8333, 0.8667, 0.9667, 0.00, 0.00)$
Comparison

- The main difference between the two approaches is that \oplus_I tries to automatically solve the contradiction, while the operator \oplus_ω needs an explicit way of solving it.
- The approach of \oplus_ω is in some sense a supervised one, because the user must explicitly provide a weight ω,
- While \oplus_I adopts an unsupervised approach, and these difference can leads to very different final results
- Thinking the probability assessments as belief states, the merging operators are a belief merging functions
Belief revision

• Suppose that $\pi_1 = (V, U, p, C)$ represents our current belief state and a new reliable information $\pi_2 = (V, W, q, D)$ arrives.

• We want to update our belief state with the new available information, with the idea that
 • we assume that the new information π_2 is correct
 • we allow to revise, as less as possible, π_1 in order to adapt it to the new information

• The revision can be performed as follows.
 • π_1 and π_2 are merged together with the operator $+_0$,
 • The resulting assessment is corrected by forbidding any change on the probabilities of the variables in W.

• The revision of π_1 with π_2 is then computed as

$$\pi_1 \ast \pi_2 = \text{Correct}2(\pi_1 +_0 \pi_2, W)$$
Example

- Suppose we want to consider π_2 as valid
- We start with an initial assessment $\pi_1 +_0 \pi_2$ with components $V, U \cup W = (D, E, H, X_4), W = (E, H, X_4)$, $r = (0.8333, 0.8667, 0.9667, 0.01)$ and logical constraints \mathcal{D}
- The only possibility to correct it is to reduce the numerical evaluation $r(D) = 0.8333$ to $r'(D) = 0.823$
- Hence the revision $\pi_1 \star \pi_2$ is the precise assessment with components $V, U \cup W = (D, E, H, X_4)$, $r' = (0.8233, 0.8667, 0.9667, 0.01)$ and the same logical constraints \mathcal{D}.
Comparison with Jeffrey’s rule

• Revision operator \star in general leads to an imprecise model

• It could be thought as an analogous of the famous Jeffrey’s rule of combination

• The main difference is that \star minimizes the probability mass dislocation from the original assessment, maintaining as much as possible the magnitude of the values, hence working in an “additive” way

• While Jeffrey’s rule maintains as much as possible the odds ratios, hence working in a “multiplicative” way.

• Moreover the Jeffrey’s rule produces a final probability assessment which could be too different from π since it inevitably alters all the values of p on $U \setminus W$

• While \star tries to modify p as less as possible, in line with the belief revision methodology