A Logic with Upper and Lower Probability Operators

Nenad Savić1, Dragan Doder2, Zoran Ognjanović3

1 : University of Novi Sad
2 : University of Luxembourg
3 : Mathematical Institute of SASA

ISIPTA 2015.
Example

P – a set of probability measures

P⋆(X) = sup {µ(X) | µ ∈ P},
P⋆(X) = inf {µ(X) | µ ∈ P}
Example

\begin{itemize}
\item \textbf{RED}
\item \textbf{OR}
\item \textbf{BLUE}
\end{itemize}

\begin{itemize}
\item \textbf{RED}
\item \textbf{OR}
\item \textbf{BLUE}
\end{itemize}

\textbf{?}
P – a set of probability measures

$P^*(X) = \sup\{\mu(X) \mid \mu \in P\}, \quad P_*(X) = \inf\{\mu(X) \mid \mu \in P\}$
Example

\[L = 0 R, L = 0 B; \]
Example

\[\begin{align*}
L & = 0 R, L = 0 B; \\
U & = 0.7 R, U = 0.7 B
\end{align*} \]
Example

$L = 0 R, L = 0 B; \quad U = 0.7 R, U = 0.7 B$

$((U \leq 0.3 G \land L \geq 0.3 G) \land U \leq 0.2 R) \Rightarrow L \geq 0.5 B.$
A Logic with Upper and Lower Probability Operators

Semantics

Definition (LUPP-structure)

Any tuple $M = \langle W, H, P, \nu \rangle$, where:

- W is a nonempty set of worlds.
- H is an algebra of subsets of W.
- P is a set of finitely additive probability measures defined on H.
- $\nu: W \times L \rightarrow \{\text{true}, \text{false}\}$ evaluations of the primitive propositions.

Definition (Satisfiability relation)

$M \models \alpha$ iff $\nu(w)(\alpha) = \text{true}$, for all $w \in W$.

$M \models U \geq s \alpha$ iff $P^\star(\lbrack \alpha \rbrack) \geq s$.

Theorem (Decidability)

A satisfiability problem for LUPP-formulas is NP-complete.
Semantics

Definition (LUPP-structure)

Any tuple $M = \langle W, H, P, \nu \rangle$, where:

- W is a nonempty set of worlds.
- H is an algebra of subsets of W.
- P is a set of finitely additive probability measures defined on H.
- $\nu : W \times \mathcal{L} \rightarrow \{true, false\}$ evaluations of the primitive propositions.

Satisfiability relation

$M \models \alpha$ if $\nu(w)(\alpha) = true$, for all $w \in W$.

$M \models \alpha \geq s$ if $P^{\star}(\alpha) \geq s$.

Theorem (Decidability)

A satisfiability problem for LUPP-formulas is NP-complete.
Semantics

Definition (\textit{LUPP}-structure)

Any tuple $M = \langle W, H, P, \nu \rangle$, where:

- W is a nonempty set of \textit{worlds}.
- H is an algebra of subsets of W.
- P is a set of finitely additive probability measures defined on H.
- $\nu : W \times \mathcal{L} \rightarrow \{\text{true}, \text{false}\}$ evaluations of the primitive propositions.

Definition (Satisfiability relation)

- $M \models \alpha$ iff $\nu(w)(\alpha) = \text{true}$, for all $w \in W$,
- $M \models U_{\geq s} \alpha$ iff $P^*([\alpha]) \geq s$.

Theorem (Decidability)

A satisfiability problem for LUPP-formulas is NP-complete.
Semantics

Definition (LUPP-structure)
Any tuple $M = \langle W, H, P, \nu \rangle$, where:
- W is a nonempty set of worlds.
- H is an algebra of subsets of W.
- P is a set of finitely additive probability measures defined on H.
- $\nu : W \times \mathcal{L} \rightarrow \{true, false\}$ evaluations of the primitive propositions.

Definition (Satisfiability relation)
- $M \models \alpha$ iff $\nu(w)(\alpha) = true$, for all $w \in W$,
- $M \models U_{\geq s}\alpha$ iff $P^*([\alpha]) \geq s$.

Theorem (Decidability)
A satisfiability problem for LUPP-formulas is NP-complete.
Axiomatization issues

1) Non-compactness of *LU**P**P*-logic
 - consequence: there is no finitary axiomatization

2) Expressiveness of our propositional language
 - the representation theorem (Anger, Lembcke 1985)
Axiom schemes

A Logic with Upper and Lower Probability Operators
Axioms and Inference Rules

(1) all instances of the classical propositional tautologies

(2) $U \leq 1$ \quad $L \leq 1$

(3) $U \leq r \alpha \rightarrow U < s \alpha, s > r$

(4) $U < s \alpha \rightarrow U \leq s \alpha$

(5) $(U \leq r_1 \alpha_1 \land \cdots \land U \leq r_m \alpha_m) \rightarrow U \leq r \alpha, \text{if } \alpha \rightarrow \bigvee J \subseteq \{1, \ldots, m\}, |J| = k + n \land j \in J \alpha_j$ and $\bigvee J \subseteq \{1, \ldots, m\}, |J| = k \land j \in J \alpha_j$ are propositional tautologies, where $r = \sum_{i=1}^{m} r_i - k n, n \neq 0$

(6) $\neg (U \leq r_1 \alpha_1 \land \cdots \land U \leq r_m \alpha_m), \text{if } \bigvee J \subseteq \{1, \ldots, m\}, |J| = k \land j \in J \alpha_j$ is a propositional tautology and $\sum_{i=1}^{m} r_i < k$

(7) $L = 1 (\alpha \rightarrow \beta) \rightarrow (U \geq s \alpha \rightarrow U \geq s \beta)$
Axiom schemes

(1) all instances of the classical propositional tautologies

(2) \(U \leq_1 \alpha \land L \leq_1 \alpha\)

(3) \(U \leq_r \alpha \rightarrow U \leq_s \alpha, \ s > r\)

(4) \(U \leq_s \alpha \rightarrow U \leq_s \alpha\)

(5) \((U \leq_{r_1} \alpha_1 \land \cdots \land U \leq_{r_m} \alpha_m) \rightarrow U \leq_r \alpha, \) if \(\alpha \rightarrow \bigvee J \subseteq \{1, \ldots, m\}, |J|=k+n \land \bigwedge j \in J \alpha_j\) and \(\bigvee J \subseteq \{1, \ldots, m\}, |J|=k \land \bigwedge j \in J \alpha_j\) are propositional tautologies, where

\[r = \frac{\sum_{i=1}^{m} r_i - k}{n}, \ n \neq 0\]

(6) \(\neg(U \leq_{r_1} \alpha_1 \land \cdots \land U \leq_{r_m} \alpha_m),\) if \(\bigvee J \subseteq \{1, \ldots, m\}, |J|=k \land \bigwedge j \in J \alpha_j\) is a propositional tautology and \(\sum_{i=1}^{m} r_i < k\)

(7) \(L = 1(\alpha \rightarrow \beta) \rightarrow (U \geq_s \alpha \rightarrow U \geq_s \beta)\)
Inference Rules

(1) From ρ and $\rho \rightarrow \sigma$ infer σ

(2) From α infer $L \geq 1 \alpha$

(3) From the set of premises $\{\phi \rightarrow U \geq s - k \alpha | k \geq 1 s\}$ infer $\phi \rightarrow U \geq s \alpha$

(4) From the set of premises $\{\phi \rightarrow L \geq s - k \alpha | k \geq 1 s\}$ infer $\phi \rightarrow L \geq s \alpha$.
Inference Rules

(1) From ρ and $\rho \rightarrow \sigma$ infer σ
(2) From α infer $L_{\geq 1} \alpha$
(3) From the set of premises

$$\{ \phi \rightarrow U_{\geq s - \frac{1}{k}} \alpha \mid k \geq \frac{1}{s} \}$$

infer $\phi \rightarrow U_{\geq s} \alpha$
(4) From the set of premises

$$\{ \phi \rightarrow L_{\geq s - \frac{1}{k}} \alpha \mid k \geq \frac{1}{s} \}$$

infer $\phi \rightarrow L_{\geq s} \alpha$.
A Logic with Upper and Lower Probability Operators

Axioms and Inference Rules

Theorem (Strong completeness)

A set of formulas T is consistent iff it is LUPP Meas.

Sketch of the proof:

1. Every consistent set T can be extended to a maximal consistent set T.
2. We use T to construct a canonical model.
Theorem (Strong completeness)

A set of formulas T is consistent iff it is $\text{LUPP}_{\text{Meas}}$ — satisfiable.

Sketch of the proof:
Theorem (Strong completeness)

A set of formulas T is consistent iff it is $\text{LUPP}_{\text{Meas}}$ satisfiable.

Sketch of the proof:

1. Every consistent set T can be extended to a maximal consistent set T^*.
2. We use T^* to construct a canonical model.
A Logic with Upper and Lower Probability Operators

\[LUPP_{Fr(n)} \]

Main differences:
1) All measures \(\mu \) have the finite range, i.e. for all \(\mu \in \mathcal{P} \):
 \[H \rightarrow \{0, 1, \ldots, n, 1, \ldots, n, \ldots \} \]
2) The axiomatization is finite.
Main differences:
Main differences:

1) All measures μ have the finite range, i.e. for all $\mu \in P$

$$\mu : H \rightarrow \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\};$$
Main differences:

1) All measures μ have the finite range, i.e. for all $\mu \in P$

$$\mu : H \rightarrow \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\};$$

2) The axiomatization is finite.