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Abstract
In the context of the analysis of interval-valued or
set-valued data it is often emphasized that one has to
carefully distinguish between an epistemic and an on-
tic understanding of set-valued data. However, there
are cases, for which an ontic and an epistemic view do
still lead to exactly the same results of the correspond-
ing data analysis. The present paper is a short note
on this fact in the context of the analysis of stochastic
dominance for interval-valued data.
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inance, Partially Ordered Set, Interval Order, Ontic and
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1. Introduction
There are at least two different types of views on inter-
preting the data imprecision that is possibly inherent in
interval-valued or set-valued data, (c.f., e.g., [8] for an
exemplification of this disambiguation):

• In the epistemic view, a set-valued data point
represents an imprecise observation of a precise, but
not directly observable data point of interest. One has
partial knowledge about this precise, but not observed
data point. One only knows that the unknown precise
data point is a member of a set-valued observed data
point.

• Opposed to this, in the ontic view, a set-valued data
point is understood as a precise observation of some-
thing that is ’imprecise’ only in the sense that we do
not observe Rp-valued data, but set-valued data. The
observed set is set-valued by nature and there are no
distinguished elements in the observed set and there
is actually no real imprecision at all. As an example,
think of the lifetimes of persons. Say, Joseph Haydn
lived from 1732 to 1809. At every time point from
1732 to 1809 Haydn was alive, but there is no special
distinguished time point within this period. For such
a prolonged data ’point’ one still has a natural notion
of order: One can say that Haydn definitely ’lived be-
fore’ Robert Schuhmann (1810-1856). On the other
hand, Haydn did not definitely live ’before’ or ’after’

Wolfgang Amadeus Mozart (1756-1791), he wos born
before Mozart and survived his dead. So it is natural to
speak here of an ontic type of a partial order. Beyond
the partial order inherent in such type of interval data,
there is of course further partial numeric information.
Within this paper that is concerned with stochastic
dominance, we will only rely on the aspects of the
underlying partial order.

For both views on set-valued data, different approaches
for handling these types of data where proposed in the
literature and it is often emphasized, especially within the
community of imprecise probabilities, that it is important
to not confuse these concepts in the first place. Furthermore,
such aspects of data imprecision often propagate to subtle
issues of model imprecision: Imprecisely observed data
often make statistical models only partially identified and
thus the true underlying parameter cannot be estimated
consistently and there is only a set (usually called identified
set or identification region) of possible parameters that
could be identified via the distribution of all involved
random variables that can actually be observed. In this
situation of partial identification1, the question arises, if the
non-identified true parameter or the whole identification
region is the object of interest, which roughly corresponds
to an epistemic versus an ontic understanding. Examples
of the epistemic understanding can be found e.g., in
[16] while the ontic approach is used e.g., in [15, 6].
Interestingly, in the literature on partial identification
which treats such situations of partially identified models,
there seems to be no explicit reference to an epistemic or
an ontic view, however, a discussion of the disambiguation
that does not use the words epistemic or ontic can be found
for example in [28].

However one might judge about the usefulness of an
explicit disambiguation between an ontic and an epistemic
view, it can sometimes be intriguing to apply methods
that are designed in an ontic fashion to situations of
epistemic data- or model imprecision. One example is
the so-called Set-loss Region (cf., [25]), an identification
region that was developed in the context of partially
identified linear regression models under interval-valued

1. For an introduction to partial identification, see, e.g., [29].
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response variables. This region treats the interval-valued
responses in an ontic fashion. But as the analysis shows,
this misuse of the ontic view leads to an identification
region with acceptable statistical properties and with a
clear relation to the epistemic view. For details, see [25]
(especially paragraph 3.2 and 4.4, as well as appendix A),
where also the so-called marrow region and the so-called
collection region, both with an epistemic underpinning, are
discussed.2

Also in many applications of machine learning to
interval-valued data, the epistemic view could be well-
motivated, but it is imaginable that an ontic approach could
be still more effective in a certain statistical sense and at
the same time the ontic approach may still be conceptually
relatable to the epistemic view. As an example, think of
the widely used ’ontic’ approach of the Hausdorff-distance
for measuring the distance between set-valued data, of
course often without any attempt of scrutinization of the
used understanding of data imprecision, compare e.g.,
the discussion in [30]. The present paper is specifically
concerned with differences between the ontic and the
epistemic view w.r.t. data imprecision (not w.r.t. e.g.
model imprecision3). One specific aspect of the epistemic
view in this situation is the fact that the epistemic line of
reasoning is often in the spirit of the so-called cautious
data completion (cf., [3, paragraph 7.8, p.181]):

”First look at every possible precise data point that is
compatible with the observed interval-valued data and then
apply a ”classical” method to the set of all such possible
data-completions.” But this seemingly straightforward
and innocently looking reasoning may possibly have the
following three Achilles’ heels:

1. By applying a classical precise method in the second
step, it is not appreciated that the method has to deal
with potential data points and not with the actual true
data point. Thus, the method cannot see that this or
that specific potential data point should possibly be
taken not as seriously as if one would know for sure
that the given data point is in fact the actually observed
true data point.

2. In dividing the procedure into two steps one handles
things as if one would divide a logical analysis
into two steps, but conceptually, classical statistics

2. The further splitting into the marrow region and the collection region
is not due to a further disambiguation within the epistemic view, it
is only due to a conceptual disambiguation of the underlying model
understanding as a structural or as a descriptive model (cf., also [21]),
which is not of relevance in this paper.

3. But note that often aspects of model imprecision are induced by
data imprecision. As already mentioned, for example imprecisely
observed data often lead to partially identified statistical models.

could not be more far away from the picture of
deductive reasoning, statistics in its classical form is
all about only ’controlling’4 the statistical behavior of
a method, it was never about and will never be about
’controlling’ truth or argument, in fact there is no such
thing as an inductive logic of inference:

“And the success of science is not based upon rules of
induction, but depends upon luck, ingenuity, and the
purely deductive rules of critical argument.... Induc-
tion, i.e. inference based on many observations, is a
myth. It is neither a psychological fact, nor a fact of
ordinary life, nor one of scientific procedure.” Popper
[23, S.53].

3. From a purely mathematical point of view, in
dividing a method into two steps that know not
from each other, one is vulnerable to any kind of
ineffectiveness and also ill-posedness issues (which
are in fact present e.g., in the context of linear
regression under partial identification, c.f., the discus-
sion in [25, paragraphap 5 and appendix A] and [21]) :

“When solving a problem of interest, do not solve a
more general problem as an intermediate step. Try to
get the answer that you really need but not a more
general one.” Vapnik [31, S.477]

Of course, on the other hand, the ’misuse’ of an ontic
procedure, concatenated with an epistemic reinterpretation,
is also some kind of a two-step procedure and thus also in
danger of suffering from the third point. For example, there
exists a big amount of literature (cf., e.g., [4, 5]) utilizing
random set theory as an ontic approach for constructing
confidence regions for the identified set of a partially
identified statistical model. In typical cases of partial
identification, the fact that the model is only partially
identified comes from the fact that certain variables cannot
be observed. But this means that the object of interest is
still the unknown true parameter and not the identified set,
at least if one believes in the ’true parameter’ at all. (For a
motivation of an interest in the whole identification region,
see [28].) Thus, one would actually be more interested in a
confidence region for the true, unknown parameter, which
seems to be difficult to obtain directly within a random set
approach. (Of course, a confidence region for the identified
set is also a conservative confidence region for the true
parameter, but it is in fact typically conservative, cf., e.g.
[4, p. 778] or [16, Lemma 1].)

4. With ’controlling’, I simply mean here the control of the error proba-
bilities e.g. in a classical hypothesis test. Of course, it is only a con-
trolling w.r.t. the theoretical term probability, if one takes Cournot’s
principle (cf., [7, p.78]) and Poppers fallibilism (cf., [22, paragraph
68]) seriously, then one is far away from really controlling things in
empirical terms.



However one is prepared to face the above considera-
tions, the present note is concerned with a situation, where
the disambiguation between an epistemic and an ontic view
does not make a difference with respect to the results one
obtains by applying the different views on data imprecision.

2. First Order Stochastic Dominance
In this paper, we deal with the notion of first order stochas-
tic dominance under interval-valued data. The concept of
first order stochastic dominance plays an important role in
a huge variety of disciplines like for example in decision
theory (cf., e.g., [19]), welfare economics (cf., e.g., [1, 2]),
portfolio analysis (cf., e.g., [17]), nonparametric item
response theory (cf., e.g., [24]), medicine (cf., e.g., [18]),
toxicology (cf., e.g., [9]) or psychology (cf., e.g., [20]).

One typical simple example is the analysis of income
poverty for example w.r.t. two different subpopulations.
Think for example of the distribution of the income in two
different countries, which can be formalized with two ran-
dom variables X and Y . The idea behind first order stochas-
tic dominance is to say that X is stochastically (weakly)
smaller than Y if the probability of X taking high values (i.e.
P(X ≥ c)) is always smaller than or equal to the probability
of Y taking high values (i.e. P(Y ≥ c)) independent of the
chosen threshold c, usually called ’poverty-line’). If, in the
sense of Sens capability approach (cf., [27]), one wants to
jointly analyze more ’dimensions’ of poverty, the analysis
is more difficult. One aspect here is that dimensions like
e.g. education do not have a cardinal scale of measurement,
in fact, one can argue that the dimension education is only
of a partially ordered scale of measurement. (It appears
natural to say that one person has a lower education than
another person only if she followed the same or a compara-
ble educational path, but stopped earlier.) Additionally, it
is difficult to compare different dimensions with different
scales of measurement. A natural way to do a stochastic
poverty analysis is then a relational analysis: Define person
x as less poor than person y (i.e. x ≥ y) if she is less poor
w.r.t. every dimension of poverty. The concept of stochas-
tic dominance then translates to the analysis of so-called
upsets instead of events of the form X ≥ c:

Definition 1 Let (V,≤) be a partially ordered set that is
additionally equipped with a σ -algebra A ′ ⊆ 2V . A set
A⊆V is called an upset (w.r.t. (V,≤)), if we have

∀x,y ∈V : x ∈ A & x≤ y =⇒ y ∈ A.

Let now (Ω,A ,P) be a probability space and let X ,Y :
Ω−→V be two V -valued random variables. We say that
X is (weakly) stochastically smaller than Y (i.e. X ≤SD Y )
if for every A ′-measurable upset A⊆V it holds that

PX (A)≤ PY (A).

Remark 2 The above definition can be intuitively ex-
plained by saying:

• Every (measurable) upset A can be understood as a
reasonable concretization of the term non-poor: For-
mally declare all values x ∈ A as non-poor and all
values x /∈ A as poor. Then, such a set A is a reason-
able concretization of the term non-poor, if it holds
that for every non-poor value x ∈ A and every value
y that is better than x or equal to x w.r.t. every dimen-
sion (i.e.: x≤ y) also y is declared as non-poor. This
is exactly the property of being an upset w.r.t. ≤ and
beyond this, if we have only the relation ≤, there is no
further constraint for a reasonable concretization of
the term non-poor.

• Then, X is (weakly) stochastically smaller than Y iff
for all reasonable concretizations of the term non-poor,
the probability for X being declared as non-poor is
smaller than or equal to the probability of Y being
declared as non-poor. Or short: X is (weakly) stochas-
tically smaller than Y iff the probability of being non-
poor is smaller for X compared to Y , independently of
the (reasonable) concretization of the term non-poor.

Remark 3 To give a little more intuition of the concept
of stochastic dominance, an equivalent characterization is
given by saying that X is (weakly) stochastically smaller
than Y iff for every bounded, isotone and measurable func-
tion u (think of an utility function) we have

E(u◦X)≤ E(u◦Y ),

which could be interpreted as: ’Whatever the utility func-
tion u, the expected utility for X is always smaller than or
equal to the expected utility for Y ’.

Remark 4 If (V,≤) is linearly ordered, then the upsets
of V are simply the upper-closed intervals of the form
[c,∞] := {x ∈ V | x ≥ c} and ]c,∞] := {x ∈ V | x > c}, re-
spectively. Note further that for checking stochastic domi-
nance in empirically observed samples, one needs only to
look at observed values c and not at all arbitrary c ∈ R.
Compared to the linearly ordered case, in the partially or-
dered case the set of all upsets of a partially ordered set
typically is very large and explicitly checking every upset
is illusory. In the worst case, there are essentially 2n upsets
for empirically observed samples of total size n. However,
there are efficient characterizations in terms of linear pro-
grams for checking stochastic dominance for empirically
observed samples, as well as a first approach to do sta-
tistical inference in this situation of poset-valued random



variables, see, e.g., [26]. In the following, we are explic-
itly only concerned with detecting stochastic dominance
for empirically observed samples, meaning that PX and
PY are replaced by empirical analogues. Some aspects of
statistical inference are only briefly touched in Section 5.

3. Analyzing First Order Stochastic
Dominance Under Epistemic
Data-imprecision

Consider now the following situation: Assume, for
simplicity, we are interested in the simple analysis of
income poverty, but now with the additional difficulty that
the income is not precisely observed. Instead, for every
respondent we have only an interval [l,u] and we only
know that the true income lies in the interval [l,u]. This
situation is in fact a realistic scenario, in surveys like e.g.
[13] one often asks for the income firstly with a direct
request, but for the non-responders, one adds a follow up
question about the income in a categorized question-design
to decrease the non-response rate. Then, according to
the above disambiguation of the two understandings
of data imprecision, for every view, a natural way to
proceed would suggest itself. (Of course, conceptually, the
epistemic data view is adequate here, because there is a
precise, but unknown income.)

Epistemic remedy: In the epistemic view, it appears
natural to compute stochastic dominance for every
potential data point that is compatible with the observed
intervals and to say that X ≤SD Y if stochastic dominance
is valid for every potential data point.

Ontic remedy: In the ontic view one can firstly define a
relation for interval-valued data points. The most straight-
forward definition would be the application of an interval
order (cf., e.g., [12]) in the sense that for two intervals [l,u]
and [l′,u′] one defines [l,u]≤ [l′,u′] :⇐⇒ u≤ l′.

Of course, also other orderings for intervals are possible,
cf., e.g., [10, p.1366], but the interval order from above is
the ’most conservative’ one. If one has not a relational kind
of analysis in mind, then another way to proceed would
be for example a metric approach. One could for example
introduce an ontic notion of distance between intervals, e.g.,
the Hausdorff-distance. However, with respect to first order
stochastic dominance, the notion of order is the essential
aspect and not the notion of distance. Because of this, we
proceed here with a relational ontic analysis and the inter-
val order from above. The following theorem now exactly
expresses the fact, that essentially both views on data im-
precision will lead to the same results of the analysis. The
involved mapping ΦA exactly describes here the process of
the data-completion.

Theorem 5 Let ≤ be the linear order of the reals and
let (I,≤I) be an interval order, meaning that there exist
functions l,u : I −→R that represent (I,≤I) in the sense of

∀x,y ∈ I : x≤I y ⇐⇒ u(x)≤ l(y).

For A⊆ I define the homomorphism

ΦA : I −→ R : x 7→

{
u(x) if x ∈ A
l(x) else

.

Then we have

1. If A ⊆ I is an upset w.r.t. (I,≤I), then
ΦA(A) := {ΦA(x) | x ∈ A} is an upset w.r.t.
(ΦA(I),≤ ∩ΦA(I)×ΦA(I)).

2. Let furthermore

Φ : I −→ R : x 7→Φ(x) ∈ [l(x),u(x)]

be an arbitrary data completion. If Φ(A) is an upset
w.r.t. (Φ(I),≤ ∩Φ(I)×Φ(I)), then {x ∈ I | ∃z ∈ A :
Φ(z) = Φ(x)}= Φ−1(Φ(A)) is an upset in (I,≤I).

Proof

1. Let A be an upset in (I,≤I), let a ∈ ΦA(A) and
let b ∈ ΦA(I) with b ≥ a. We have to show that
b ∈ ΦA(A): We have b = ΦA(y) ≥ a = ΦA(x) for
appropriate x ∈ A and y ∈ I. It follows y ∈ A, because
if y /∈ A then necessarily y 6≥I x and we would
have b = ΦA(y) = l(y) < u(x) = ΦA(x) = a which
contradicts the assumption b ≥ a. Thus, y ∈ A and
therefore b = ΦA(y) ∈ΦA(A).

2. Let Φ : I −→ R : x 7→ Φ(x) ∈ [l(x),u(x)] be an ar-
bitrary data completion and let Φ(A) be an upset
in (Φ(I),≤ ∩Φ(I)×Φ(I)), let x ∈ Φ−1(Φ(A)) or
equivalently Φ(x) ∈ Φ(A) and let y ≥I x. We have
to show that y ∈ Φ−1(Φ(A)) or equivalently that
Φ(y) ∈Φ(A): Since Φ is a consistent w.r.t. l and r, we
have Φ(y)≥ l(y)≥ u(x)≥Φ(x). Since Φ(x) ∈Φ(A)
and since Φ(A) is an upset, we have Φ(y) ∈Φ(A).

4. A Brief Exemplification of the Theorem
The first part of the theorem states that for an ontic type
analysis, every upset A in the interval order (I,≤I) as-
sociated to the interval-valued data gives rise to a spe-
cific data completion ΦA for which ΦA(A) is an upset in
≤∩ΦA(I)×ΦA(I). In particular this means that if we have



X �SD Y in an ontic analysis, there exists an upset A ⊆ I
with

PX (A)> PY (A),

or equivalently5

PX (Φ
−1
A (ΦA(X)))> PY (Φ

−1
A (ΦA(X))),

or

PΦA◦X (ΦA(A))> PΦA◦Y (ΦA(A)).

The first part of the theorem then implies that ΦA(A) is
an upset in ≤ ∩ΦA(I)×ΦA(I), which means, that also an
epistemic analysis would establish X �SD Y .

The second part of the theorem exactly expresses the
reversed implication: If we have X �SD Y in an epistemic
type analysis, then there exists a data completion Φ and an
upset Φ(A) in ≤ ∩ΦA(I)×ΦA(I) with

PΦ◦X (Φ(A))> PΦ◦Y (Φ(A)),

which is equivalent to the statement

PX (Φ
−1(Φ(A)))> PY (Φ

−1(Φ(A))),

and since the second part of the theorem states that
Φ−1(Φ(A)) is an upset in (I,≤I), it follows that also an
ontic type analysis would yield X �SD Y .

5. General Conclusion
In this paper we have established the fact that for first
order stochastic dominance under interval-valued data,
the epistemic and the ontic view on data imprecision still
lead to the same result. This result is of course more or
less obvious, especially in the case of a linearly ordered
set, but it establishes the possibility to look at the problem
both from an epistemic and an ontic view which allows to
utilize techniques from one view to facilitate the analysis
w.r.t. the other view. Let us briefly elaborate a little bit
on this by starting with an obvious observation: For an
epistemic data analysis of first order stochastic dominance
and empirically observed samples for analyzing e.g.

5. Note that for an upset A we have Φ
−1
A (Φ(A)) = A or equivalently

ΦA(x)∈ΦA(A) ⇐⇒ x∈ A. The second direction of this equivalence
is obvious and for the first direction assume that ΦA(x) ∈ ΦA(A).
Then there exists y ∈ A with ΦA(x) = ΦA(y). If x /∈ A, because of
y ∈ A we would have l(x) = ΦA(x) = ΦA(y) = u(y) and thus y≤I x,
and thus x ∈ A because A was an upset in (I,≤I). But this contradicts
the assumption x /∈ A and thus the assumption x /∈ A was false and
we have x ∈ A.

income-poverty between two countries, it is easy to get
the most extreme data completions by assigning the lower
bounds of the observed intervals to one country and the
upper bounds to the other country. Thus, if one has to deal
with this simple situation, one could easily apply classical
methods for univariate first order stochastic dominance
to these extreme data completions. In more complicated
situations of e.g. multidimensional poverty-analysis one
has to rely on methods for detecting stochastic dominance
like that developed in [26]. How one incorporates possible
data imprecision of certain dimensions, i.e., if one replaces
the intervals with the extreme values or if one simply uses
the corresponding interval-order does not play any role
w.r.t. the result.

But beyond this obviousness, the ontic remedy addition-
ally allows for imposing further modeling assumptions:
If the coarsening process leading to the interval-valued
data is not coarsening at random, but if one can assume at
least that the coarsening process is the same for X and Y ,
then one can conclude that the distribution of the true but
unknown data within the observed intervals is the same
for X and Y . This legitimates to define observed intervals
[l,u] and [l′,u′] with the same endpoints as equivalent
(i.e. [l,u] ≤I [l′,u′] and [l′,u′] ≤I [l,u]). Note that this
assumption does not mean that the coarsening process of
X or Y does not depend one the values of X or Y , it only
means that the dependence is the same for X and Y . With
this assumption which is clearly weaker than coarsening
at random one would get an analysis, that is generally
more decisive than an epistemic analysis, which is unable
to incorporate this modelling assumption. (Of course,
technically, in an epistemic analysis one can constrain
the possible data completions to that ones, for which the
precise potential data that correspond to identical observed
intervals are identical, too. This would lead to the same
result as the ontic procedure, but is conceptually not so
much in the spirit of the epistemic view, because there is
no assumption that the precise data values are identical
for identical observed intervals, one only assumes that
the distribution of the precise data within the observed
intervals is identical, which is a statement that is more in
the fashion of the ontic view.)

Another point that makes the ’ontic misuse’ attractive is
the aspect of inference. Generally, in the multidimensional
case, statistical inference is very difficult already for the
case of precisely observed data. In this situation, useful
empirical analogues that characterize stochastic dominance
like e.g.,

sup
A upset

P̂X (A)− P̂Y (A)

are not distribution free like in the continuous univariate
case. Statistical inference could then be done with permu-
tation tests. Within the epistemic view, the cautious data



completion would then require to do a permutation test for
every possible data completion, which would be computa-
tionally intractable. But due to the theorem, it is actually not
needed to look at the cautious data completion, it is enough
to do a permutation test on the ontic level. Furthermore,
a rough statistical analysis of the statistical complexity of
the problem in terms of the Vapnik-Chervonenkis dimen-
sion6 of the underlying family of all upsets of (V,≤) could
be easily applied on the ontic level. It turns out that the
Vapnik-Chervonenkis dimension is exactly the width7 of
the underlying poset (V,≤) of the ontic approach, see [26,
Section 5.2.1]. Because of the isomorphism between (V,≤)
and ⋂

Φ data completion
≤Φ

where x≤Φ y ⇐⇒ Φ(x)≤Φ(y), also within an epistemic
analysis the highest Vapnik-Chervonenkis dimension as
Φ ranges over every possible data completion is thus
also identical to the width of (V,≤). This means that one
can obtain large deviation bounds for the test statistic of
interest (independently of the view on data imprecision).
Since the width of (V,≤) could be arbitrarily high, the test
statistic can easily become badly behaved. In this situation,
one can try to regularize the problem like indicated in [26,
Section 5.3.1] (The approach for regularization described
therein treats the case of precisely observed data, but it
can be adopted to the case of imprecisely observed data).
So one can say that statistical analysis and regularization
within an epistemic understanding are very easy only due
to the somehow trivial theorem from above.

From a more general view, in contrast to the specific case
of first order stochastic dominance where the extreme data
completions are easy to obtain, the ontic remedy is often
computationally easier to handle than the epistemic one.
One prominent example is the computation of the cautious
data completion for the variance under interval-valued data.
Ferson et al. [11] showed that computing the upper bound
for the variance under interval-valued data is NP hard.
Compared to this, in an ontic fashion it is straightforward to
define a measure of dispersion for interval-valued data by
replacing distances in Rp by e.g., the Hausdorff-distance
between intervals or sets. Of course, one would become
one single number for the dispersion that seems to be not
translatable into an epistemic view.

Concerning the epistemic view, note that ironically,
the variance as a measure of dispersion is so widely used
because of its nice algebraic/analytical properties, which

6. Informally speaking, the Vapnik-Chervnenkis of a family of sets is a
measure of the statistical complexity of the family of sets in terms of
the large deviation behaviour of a supremum type statistic over this
family of sets. For more details, see, e.g., [32].

7. The width of a poset is the maximal cardinality of a subset of pairwise
incomparable elements.

makes the variance easy to handle. This is of special
interest in the light of the fact that the variance as a
’measure of dispersion’ is not the only reasonable choice.
One very underrated alternative measure of dispersion
with good structural properties8 is Gini’s mean difference,
cf., [14]. This measure can be related to linear moments
and thus seems to be computationally more accessible
w.r.t. the cautious data completion than an L2-type measure
like the variance: While the computation of the cautious
data completion for Gini’s mean difference can be done
by solving linear programming problem (which has
polynomial smoothed complexity), for computing the
variance, the most straightforward approach would be
a quadratic programming procedure. But for the upper
bound of the variance one would have to solve a quadratic
program with a quadratic form that is not negative-definite,
which indicates the already mentioned fact that computing
the upper bound is in fact NP hard. It cannot be emphasized
enough that in the first place, a typical statistical data
analysis is often mostly silent about which exact ’concept’
of e.g. dispersion has to be used, and if this silence is
adequate, then there is much room for using alternatives
that are computationally realizable.

To conclude, one can say that in spite of the important
warning to not confuse the epistemic and the ontic view,
one should always keep one’s eyes open, if, within the
competition of ideas, the ontic remedy can say something
about the epistemic or vice versa, notwithstanding the fact
that we actually need more direct methods and analyses
instead of ’two-step crutches’.
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