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Abstract
We recently introduced a bounded rationality approach
for the theory of desirable gambles. It is based on the
unique requirement that being nonnegative for a gam-
ble has to be defined so that it can be provable in poly-
nomial time. In this paper we continue to investigate
properties of this class of models. In particular we ver-
ify that the space of Bernstein polynomials in which
nonnegativity is specified by the Krivine-Vasilescu
certificate is yet another instance of this theory. As a
consequence, we show how it is possible to construct
in it a thought experiment uncovering entanglement
with classical (hence non quantum) coins.
Keywords: theory of desirable gambles, abstract logic,
bounded rationality, Bernstein polynomials, entangle-
ment

1. Introduction

In a recent paper (Benavoli et al., 2019), we have shown that
Quantum Theory (QT) is a theory of bounded rationality
(Simon, 1957) based on a different notion of nonnegativity.
This is tantamount to changing the class of gambles that
should always be desired in such a way that the consistency
problem becomes provable in polynomial time (we have
called it P-coherence). Conversely, in the same settings,
classical probability (standard “almost desirability” (Wal-
ley, 1991)) is NP-hard. As a consequence, we have thence
proved that the only physics’ axiom in QT is computational
tractability, yielding all its weirdness (different logic of
events, negative probabilities, and entanglement).

Interestingly, it turns out that entanglement is not pecu-
liar to QT but an inherent characteristic of bounded ratio-
nality for desirable gambles based on P-coherence, a model
first introduced in Benavoli et al. (2017a) and implemented
using sum-of-squares polynomials in the real numbers.

A first goal of the present paper is to better understand
the structural properties of P-coherence. An elegant way
of doing this is to look at the linear space of gambles (L )
as an algebra of formulas, and thus define a logic on it.
In doing so, we verify that a sufficient condition for the
reduction of P-coherence to classical logical consistency
(that is the existence of a non-derivable formula from the

considered set of assessments) is for the set of tautologies
to satisfy a certain “pullup” property.

As a second goal of our work, we provide yet another
instance of a P-coherence model by using the so-called
Krivine-Vasilescu nonnegativity certificate for polynomials.
We show that, by focusing on polynomials defined on the
simplex of probability, this notion of nonnegativity defines
the so-called Bernstein nonnegative polynomials, a class
whose cone, when polynomials are of any degree d, has
been introduced in De Cooman et al. (2009) to generalise
de Finetti’s representation result for exchangeable events
(see also (De Cooman and Quaeghebeur, 2012; De Bock
and De Cooman, 2012; De Cooman et al., 2015)).

Finally, we restrict our attention to a finite degree d, com-
pute the dual of a (Bernstein) P-coherent set of desirable
gambles and illustrate how P-coherence can provide an ex-
ample of entanglement with classical coins: two coins that
always land HH or TT, but for which it is not possible to
find a “common cause” (Einstein et al., 1935) (a classical
correlation model) that explains these results. The latter is
done by deriving a Bell’s type inequality in the Bernstein’s
world.

The title of this paper is freely inspired by Bell’s work
“Bertlmann’s socks and the nature of reality” (Bell, 1981).

2. The Logic of Desirability

Let Ω denote the possibility space of an experiment (e.g.,
{Head,Tail} or Rn). A gamble g on Ω is a bounded
real-valued function of Ω, interpreted as an uncertain re-
ward. Accepting a gamble g by an agent, Alice, is re-
garded as a commitment to receive, or pay (depending
on the sign), g(ω) utiles1 whenever ω ∈ Ω occurs. We
denote by L the set of all the gambles on Ω, the sub-
set of all nonnegative gambles, that is, of gambles for
which Alice is never expected to lose utiles, is denoted
as L ≥ := {g ∈L : infg≥ 0} (analogously negative gam-
bles are denoted as L < := {g ∈ L : supg < 0}). In the
following, with G ⊂L we denote a finite set of gambles

1. Abstract units of utility, we can approximately identify it with
money provided we deal with small amounts of it (de Finetti, 1974,
Sec. 3.2.5)
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that Alice finds desirable (we will comment on the case
when G may not be finite): these are the gambles that she
is willing to accept and thus commits herself to the corre-
sponding transactions.

The crucial question is now to provide a criterion for a
set G of gambles representing assessments of desirability
to be called rational. Intuitively Alice is rational if she
avoids sure losses (also called Dutch books or arbitrages):
that is, if, by considering the implications of what she finds
desirable, she is not forced to find desirable a negative
gamble. An elegant way to formalise this intuition is to see
L as an algebra of formulas, and thus define a logic on it.
Based on it, we can thus formulate rationality as logical
consistency.

In the theory of (almost) desirable gambles, we may
proceed as described in the next subsection.

2.1. A Gentzen System

First of all we introduce some basic notions from logic.
A sequent is a pair (G ,g), written G Bg, where G is a

set (possibly empty) of gambles, and g is a gamble.
One can read a sequent G Bg as saying “whenever the

gambles in G are desirable for (by) Alice, the gamble g is
also desirable for (by) Alice”.

A Gentzen-style rule is a pair which consists of a set
{Gi B gi | i ≤ α} of sequents, called the premisses of the
rule, and a sequent G B g, called the consequence of the
rule and therefore which follows from the set according
to the rule. We let α ∈ N∪{∞}, and thus do not rule out
the fact that a rule may be infinitary. A rule r is written
symbolically in the form

{Gi Bgi | i < α}
(r) ,

G Bg

which can be read as “if Alice finds the gamble gi desirable,
given the fact that she desires the gambles in Gi (for i < α),
then necessarily whenever the gambles in G are desirable,
the gamble g is also desirable”.

An axiom is a rule in which the set of premisses is empty.
A system S is a set of Gentzen-style rules. We say that

a sequent G B g is provable in a system S from a set of
sequents {Gi B gi | i ≤ α} if there is a well-founded tree
whose leaves are labelled either with axioms or with mem-
bers of {Gi Bgi | i≤ α}, whose root is labelled with G Bg
and the labelling of all nodes is consistent with the rules
of S. A sequent is provable in S if it is provable from
the empty set. The set of all gambles g such that G B g,
for some set G , will sometimes be denoted by CnS(G ).
Finally, we say that a set G is consistent in S if there is a
gamble g such that G Bg is not provable in S, that is

∃g ∈L such that g /∈ CnS(G ). (1)

A set G is closed in S whenever CnS(G ) = G , and is
called a theory of S. In general, theories are denoted by

K . When CnS is a consequence operator, that is it is
reflexive, monotone and transitive, the consistent theories
of S completely characterise it, in the sense that CnS(G )
coincides with the intersection of all consistent theories of
S extending G .

The system T for the theory of (almost) desirable gam-
bles is thus defined as follows:

Structural axiom:

Reflexivity
(R) , for g ∈ G

G Bg

Logic axiom:

Accept. nonneg.
(ANN) , for g ∈L ≥

G Bg

Logic rules:

Positive hull
G Bg G ′B f

(L) , for µ,λ > 0
G ,G ′Bµg+λ f

Closure
{G Bg+ ε` | ` > 0}

(C) , for ε ∈ (0,1)
G Bg

It is easy to verify that CnT is indeed a consequence op-
erator on L , and thus in particular that the usual structural
rules of Gentzen systems such as weakening and cut are
derivable in T. It is immediate to verify that logical consis-
tency in T is indeed tantamount to rationality (coherence,
no arbitrage):

Theorem 1 Let G be a set of assessments. It holds that
CnT(G ) = cl(posi(G ∪L ≥)), where posi denotes the pos-
itive hull operator and cl the topological closure operator.
Moreover the following conditions are equivalent to each
other

1. G is logically consistent in T

2. G avoids negativity (sure loss), that is L < ∩
CnT(G ) = /0

3. −1 /∈ CnT(G ).

Therefore, −1 can be regarded as playing the role of the
(classical) Falsum.

Clearly when G is finite, CnT(G ) simply coincides with
the conic hull closure of G . From Theorem 1 we thence
obtain that the following principle of explosion is derivable
in T:

G B−1
(Explosion) , for g ∈L .

G Bg

By observing that the mathematical dual of K is a closed
convex set of probabilities, we can then provide a semantic



(probabilistic interpretation) to T:

P(G ) =

{
µ ∈ S

∣∣∣∫
Ω

g(Ω)dµ(Ω)≥ 0, ∀g ∈ G

}
, (2)

where S = {µ ∈M | inf µ ≥ 0,
∫

Ω
dµ(Ω) = 1} is the set

of all probabilities on Ω, also-called (belief) states, and M
the set of all charges (a charge is a finitely additive signed-
measure (Aliprantis and Border, 2007, Ch.11)) on Ω. The
duality actually provides us immediately with a sound and
completeness results. Indeed, say that a state µ ∈S is a
model of a set of gambles G whenever µ ∈P(G ). Then
the following is an immediate consequence of Theorem 1
and (Benavoli et al., 2017b, Theorem 4).

Theorem 2 For every set of gambles G ∪ {g} ⊆ L , it
holds that

g ∈ CnT(G ) ⇐⇒ P({g})⊆P(G ). (3)

In particular G is inconsistent iff P(G ) = /0 (it has no
probabilistic model).

Hence, whenever an agent is coherent (that is the rational-
ity of her behaviour is represented by a logical consistent
theory in T), Equation (2) states that desirability corre-
sponds to nonnegative expectation (for all probabilities in
P(G )). When she is incoherent, P(G ) turns out to be
empty.

2.2. Coherence vs Logical Consistency

In (1) we have defined the notion of logical consistency
for a theory as being non trivial (different from the whole
language) and thus, from a semantic perspective, as having
a model (that is P(G ) is not empty). Theorem 1 attests
that −1 is tantamount to the (classical) Falsum, that is an
all implying formula that has no model.

The importance of being able to reduce incoherence to
logical inconsistency can be appreciated by the following
argument. Assume this is not the case, the explosion prin-
ciple for −1 does not hold. In particular, this means that
we may be able to find two different incoherent sets of
gambles (formulas). But then such sets cannot be separated
in the dual space, meaning that duality would fail in provid-
ing us with a sound and complete probabilistic semantics
for the system under consideration (that is satisfying the
correspondence in Equation (3) of Theorem 2).

The accent in this work to the capability of reducing
coherence (also when formulated as P-coherence) to logical
consistency is therefore justified by the fact that we do not
want a situation of incoherence (irrationality) to represent
anything else than a situation of incoherence (irrationality),
and thus for which, seen as a theory of a logic, there is no
“natural” model (in the dual space).

We conclude this discussion with some remarks on the
theory of desirable gambles when defined without the topo-
logical closure requirement and by stating that coherence

means avoiding status quo (the constant 0 gamble). In such
case, one would be tempted to define the corresponding
Gentzen system by just dropping rule (C) and modifying
the logic axiom with the stricter constraint g ∈L ≥ \{0}.
However, in such case coherence would not be equivalent
to logical consistency: just consider the incoherent (but
closed) theory L ≥. In particular, this means that it would
not be possible to prove a soundness and completeness re-
sult with respect to lexicographic probabilities, as expected
from the correspondence between coherent sets of desirable
gambles as just defined, and sets of lexicographic proba-
bilities (see e.g. (Benavoli et al., 2017b, Theorem 18)). In
order to recover an analog of Theorem 2, we would need
to add as an extra rule a principle of explosion stating that
0 is the Falsum.

3. The Complexity of Inference

In light of Theorem 1, when the theory is finitely gener-
ated (that is G = {g1, . . . ,g|G |}), the problem of checking
whether or not K is consistent can be formulated as the
following decision problem:

∃λi ≥ 0 :−1−
|G |

∑
i=1

λigi ∈L ≥. (4)

If the answer is “yes”, then the gamble −1 belongs to K ,
proving K ’s inconsistency. Actually any inference task
can ultimately be reduced to a problem of the form (4): the
lower prevision (expectation) of a gamble q is

E(q) = sup
λ0∈R,λi∈R≥

λ0 : q−λ0−
|G |

∑
i=1

λigi ∈L ≥.

Hence, the above decision problem unveils a crucial fact:
the hardness of inference in classical probability corre-
sponds to the hardness of evaluating the nonnegativity of
a function in the corresponding space (the “nonnegativity
decision problem”).

When Ω is infinite, and for generic functions, the non-
negativity decision problem is undecidable. To avoid such
an issue, we may impose restrictions on the class of allowed
gambles. For instance, instead of L , we may consider LR:
the class of multivariate polynomials of degree at most d
(we denote by L ≥

R ⊂LR the subset of nonnegative poly-
nomials and by L <

R ⊂LR the negative ones). In doing so,
by Tarski-Seidenberg quantifier elimination theory (Tarski,
1998; Seidenberg, 1954), the decision problem becomes
decidable, but still intractable, being in general NP-hard. If
we accept that P 6=NP and we require that inference should
be tractable (in P), we are stuck. What to do? A solution
is to change the meaning of “being nonnegative” for a
function by considering a subset Σ≥ ( L ≥

R for which the
membership problem in (4) is in P.



In other words, a computationally efficient version of the
theory of desirable gambles, which we denote by T?, should
be based on a redefinition of the logical axiom scheme, i.e.,
by stating that

Accept. P-nonneg.
(P) , for g ∈ Σ≥.

G Bg

We thus denote by T? the Gentzen system (on LR) ob-
taining from T by substituting (P) to (ANN), and call it a
P-system.

4. Coherence and Semantics
4.1. P-Coherence vs Consistency

However, how can be sure that we have done things prop-
erly, that T? is really just a computationally efficient version
of T? In order to do so we would like to verify that, for
finite sets G = {g1, . . . ,g|G |}, logical consistency can be
checked in polynomial time by solving:

∃λi ≥ 0 such that −1−
|G |

∑
i=1

λigi ∈ Σ
≥. (5)

Note that, the lower prevision of a gamble q in this case is

EB(q) = sup
λ0∈R,λi∈R≥

λ0

s.t.

q−λ0−
|G |

∑
i=1

λigi ∈ Σ
≥.

(6)

To verify that logical consistency can be checked in
polynomial time, we need to find an analog of Theorem 1,
but clearly we also need to assume that LR contains all
constant gambles.

In what follows, we provide some sufficient conditions
for this to hold. First of all, it is reasonable to ask to the
new variant of “being nonnegative” (that is to the set Σ≥)
to be a closed convex cone. Avoiding nonnegativity (that is
coherence, rationality, no arbitrage) can now be redefined
as follows

Definition 3 (P-coherence) A set C ⊆LR is P-coherent
if Σ<∩C = /0, where Σ< is the interior of {g | −g ∈ Σ≥}.

From now on, we also always make another minimal rea-
sonable assumption of Σ< being non empty. The next result
states essentially that −1 represents P-incoherence.

Proposition 4 Let G ⊆LR a set of assessments. It holds
that clposi(G ∪Σ≥) = CnT?(G ). Moreover the following
are equivalent:

1. −1 /∈ posi(G ∪Σ≥)

2. posi(G ∪Σ≥) is P-coherent

3. CnT?(G ) is P-coherent

Analogously with T, one can ask whether the class of
P-coherent theories characterises the system T?. It turns out
that if we want to be sure this to be the case (see discussion
in Subsection 2.2 for the reason why we want this) we need
to add some structure to Σ≥:

Proposition 5 Let G ⊆LR a set of assessments and as-
sume that

(pullup) for every f ∈LR, there is ε > 0 such that f +ε ∈
Σ≥.

The following are then equivalent

1. CnT?(G ) is P-coherent

2. CnT?(G ) is logically consistent.

Hence, whenever (pullup) holds and Proposition 5 can
be applied, logical consistency in T? for finitely generated
theories can be checked efficiently. This is the case of
QT and of the family of P-systems defined on Bernstein
polynomials introduced in the following sections of this
work.

4.2. Probabilistic Interpretation of P-Systems

Interestingly, we can associate a “probabilistic” interpre-
tation as before to the system T? by computing the dual
of a theory. Since LR is a topological vector space, we
can consider its dual space L ∗

R of all bounded linear func-
tionals L : LR→ R. Hence, with the additional condition
that linear functionals preserve the unitary gamble, the dual
cone of a theory C ⊂LR is given by

C ◦ = {L ∈L ∗
R | L(g)≥ 0, L(1) = 1, ∀g ∈ C } . (7)

Based on Equation 7 and its properties, under the pullup
assumption one then gets the analogous of Theorem 2 but
for T?. The question now is whether we can “massage” this
result and obtain a sound and complete classical proba-
bilistic semantics. In this aim, first notice that to C ◦ we
can associate its extension C • in M , that is, the set of all
charges on Ω extending an element in C ◦. However, as
shown in (Benavoli et al., 2019), in doing this one cannot
in general provide an adequate classical probabilistic in-
terpretations to T?, except if one allows for instance the
use of quasi-probabilities (probability distributions that ad-
mit negative values). This is essentially due to the fact that
whenever Σ< (L <

R , there are negative gambles that cannot
be proved to be negative in polynomial time. This obser-
vation (made mathematically precise in (Benavoli et al.,
2019, Theorem 1)) provides for instance an explanation of
all paradoxes of quantum mechanics, a special instance of
a P-system.



5. Krivine-Vasilescu’s Nonnegativity

Let LR be the space of all polynomials of n variables of
degree R in Ω.2 Let us assume that Ω ⊂ Rn is a compact
semi-algebraic set, i.e., a compact set described by polyno-
mial inequalities

Ω =
{

x ∈ Rn : c j(x)≥ 0, j = 1, . . . ,m
}
. (8)

Let c̄ j be equal to supx∈Ω c j(x), define

ĉ j(x) =
{

c j(x)/c̄ j if c̄ j > 0,
c j(x) if c̄ j = 0. (9)

Therefore, it results that ĉ j(x) ≥ 0 and 1− ĉ j(x) ≥ 0 for
each x ∈Ω. Consider the closed convex cone

Σ
≥
d =

{
∑

(α,β )∈N2m
d

uαβ ĉα1
1 · · · ĉ

αm
m

(1− ĉ1)
β1 · · ·(1− ĉm)

βm : uαβ ∈ R≥
}
,

(10)

where N2|c|
d = {(α,β ) ∈ N2|c| : |α + β | ≤ d} and |α| =

∑
m
i=1 αi. We denote with R the maximum degree of the

polynomials in Σ
≥
d , so that Σ

≥
d ⊂LR.

Assumption 1 We assume that Σ
≥
d satisfies the “pullup”

property for every d ∈ N.

We can then define the Krivine-Vasilescu nonnegativity
certificate (Krivine, 1964; Vasilescu, 2003; Lasserre, 2009).

Definition 6 (Krivine-Vasilescu) A polynomial of g∈LR
is “nonnegative” in Ω when it belongs to Σ

≥
d defined in

(10).

That is, the function is “nonnegative” whenever the coeffi-
cients uαβ are nonnegative.

Proposition 7 Given definition of Σ
≥
d in (10), the consis-

tency problem (5) can be solved in polynomial time

The proof is immediate and consists in showing that the
membership problem g ∈ Σ

≥
d can be formulated as a linear

programming problem. We will give an example of that
in the next section. Let G be a finite set of assessments,
and C its deductive closure posi(G ∪Σ

≥
d ), with the given

definition Σ
≥
d in (10), satisfying −1 /∈ C . By Proposition 4

C is P-coherent, and therefore also logical consistent.
Moreover, it is not difficult to prove that the dual of C is

Q =
{

L ∈ S | L(g)≥ 0, ∀g ∈ G
}
, (11)

2. The R in LR should stay for “Restricted”, here we also use it to
denote degree of the polynomial R.

with the set of (belief) states defined as:

S =
{

L ∈L ∗
R | L(1) = 1,

L(ĉα1
1 · · · ĉ

αm
m (1− ĉ1)

β1 · · ·(1− ĉm)
βm)≥ 0,

∀ (α,β ) ∈ N2|c|
d

}
.

(12)

Note that, the linear operator acts on the monomials (this
follows by linearity) and, therefore, the dual space is iso-
morphic to Rsn(d), with sn(d) being the number of all mono-
mials for a generic polynomial of n variables and degree d.
That means we can define the real numbers

zγ1γ2...γn = L(xγ1
1 xγ2

2 · · ·x
γn
n ) ∈ R, (13)

with γi ∈ N, and we can rewrite L( f ), for any polynomial
f ∈LR, as a function of the vector of variables z ∈ Rsn(d),
whose components are the real variables zγ1γ2...γn defined
above.

5.1. Simplex of Probability

A particular case of the Krivine-Vasilescu’s nonnegativity
criterion is obtained when Ω is the probability simplex:

Ω =

{
θ ∈ Rn : θ j ≥ 0, 1−

n

∑
j=1

θ j ≥ 0

}
, (14)

where the changed notation, θ instead of x, reflects the fact
that the variables are probabilities.3 In this case, we can
simplify the definition of nonnegativity in (10) as (Lasserre,
2009, Sec.5.4.1):

Σ
≥
d =

{
∑

α∈Nn+1
d

uα θ
α1
1 · · ·θ

αn
n

(1−θ1−·· ·−θn)
αn+1 : uα ∈ R≥

}
.

(15)

Note that, the maximum degree of the polynomials in Σ
≥
d

is d and, therefore, R = d. It is easy to prove the following.

Proposition 8 Σ
≥
d satisfies the “pullup” property for ev-

ery d ∈ N.

We have also that (12) in this case becomes:

S =
{

L ∈L ∗
R | L(1) = 1,

L(θ α1
1 · · ·θ

αn
n (1−θ1−·· ·−θn)

αn+1)≥ 0,

∀ α ∈ Nn+1
d , |α| ≤ d

}
.

(16)

We recall that the Bernstein (multivariate) polynomials
of degree d on an n+1-dimensional simplex are (Prautzsch
et al., 2013, Ch.10):

Bγ,d(θ) =

(
d
γ

)
θ

γ1
1 . . .θ γn

n (1−θ1−·· ·−θn)
d−|γ|,

3. Note that, in this case m = n+1 in (8).



where γ = (γ1, . . . ,γn) with γi ∈ N. Moreover, all Bernstein
polynomials of fixed degree d form a basis for the linear
space of all polynomials whose degree is at most d, and
they form a partition of unity: ∑γ:|γ|=d Bγ,d(θ) = 1. By
exploiting these properties, we can prove the following.

Proposition 9 A polynomial g : Ω→ R of degree d be-
longs to the cone in (15) iff it belongs to

Σ̃
≥
d =

{
∑

α∈Nn+1
d ,|α|=d

uα θ
α1
1 · · ·θ

αn
n

(1−θ1−·· ·−θn)
αn+1 : uα ∈ R≥

}
.

(17)

For this reason, we call Σ̃
≥
d (equiv. Σ

≥
d ) the cone of Bern-

stein nonnegative polynomials of degree d.4

In general, it holds that

Σ̃
≥
d ( L ≥

R

that is, there exist nonnegative polynomials that are not
included in Σ̃

≥
d .

Example 1 We use this counter-example from
(De Cooman et al., 2015)

q(θ) = θ
2
1 −θ1θ2 +θ

2
2 ,

with n = d = 2, which is nonnegative in Ω. Now consider
the cone

Σ̃
≥
2 = {u002(1−θ1−θ2)

2 +u011θ2(1−θ1−θ2)+u020θ
2
2+

u101θ1(1−θ1−θ2)+u110θ1θ2 +u200θ
2
1 : ui jk ∈ R≥}

(18)
and an empty G . The lower prevision of q can be computed
as follows:

EB(q) = sup
λ0∈R,ui jk∈R≥

λ0

−u002 +u101−u200 +1 = 0
−2u002 +u011 +u101−u110−1 = 0

2u002−u101 = 0
−u002 +u011−u020 +1 = 0

2u002−u011 = 0
−λ0−u002 = 0

(19)

where the equality constraints have been obtained by equat-
ing the coefficients of the monomials in

q(θ)−λ0 = u002(1−θ1−θ2)
2 +u011θ2(1−θ1−θ2)

+u020θ
2
2 +u101θ1(1−θ1−θ2)+u110θ1θ2 +u200θ

2
1 .

4. We could again simplify (16), but we leave the redundant formulation
(16) because it requires to specify L on the monomials too.

The solution of the above LP problem is

[λ0,u002,u011,u020,u101,u110,u200]

= [−0.5, 0.5, 1, 1.5, 1, 0, 1.5],

which means that EB(q) = −0.5 < 0. It is easy to verify
that EB(q) < 0 for any d ≥ 2 and, therefore, q does not
belong to Σ

≥
d for any d. However, Figure 1 shows that

EB(q) quickly tends to zero at the increase of the degree d
of Σ

≥
d . Therefore, we can build a hierarchy of LPs (Lasserre,

2009, Sec.5.4) of increasing size such that

EB(q)
d→∞−−−→ E(q).

This is true in general provided that G ∩L <
R = /0.

2 3 4 5 6 7 8
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Figure 1: Convergence of EB(q) to E(q) at the increase of
the degree d.

5.2. Updating via Partition of Unity

LR is a space of polynomials and, therefore, it does not
include indicator functions. That means we cannot define
conditioning. However, we can still update our beliefs in
a weaker way using a partition of unity. We have seen that
the Bernstein polynomials form a partition of unity, e.g.,

n = 3,d = 1 : {θ1,θ2,θ3,1−θ1−θ2−θ3}, (20)

they are nonnegative functions and sum up to one. We can
then compute an updated lower prevision for a gamble q
as:

EB(q|π) = sup
λ j≥0,λ0

λ0

s.t.

(q−λ0)π−
|G|
∑
j=1

λ jg j ∈ Σ
≥
d ,

(21)

where d must be large enough to guarantee that the mem-
bership problem is well-posed and π denotes any subset
sum of the partition of unity (in the example in (20) π ∈



{θ1,θ2,θ3,1−θ1−θ2−θ3,θ1 +θ2,θ1 +θ3,θ2 +θ3, . . .}).
To alternatively justify this rule, we point out that π can be
interpreted as a multinomial likelihood5 and the result of
(21) as a bounded rationality version of a regular posterior
(Walley, 1991, Appendix J5).

5.3. A Bell Inequality in the Bernstein World

In this section, we derive a Bell’s type inequality in the
Bernstein world: a probabilistic inequality that holds in
T but that is violated in T∗ (Bernstein world). We will
derive it by building a negative polynomial that has positive
prevision in T∗. In the next section, we will show that the
state assigning a positive prevision to such polynomial is
entangled! For this purpose, we consider two coins, that
we denote as l (left) and, respectively, r (right), and define

θ1
θ2
θ3

1−θ1−θ2−θ3

= Prob


HlHr
TlHr
HlTr
Tl ,Tr

 ,
where Hi,Ti denote the outcome Heads and, respectively,
Tails for the left or right coin. In this case, the possibility
space is

Ω =
{

θ ∈ R3 : θ1,θ2,θ3 ≥ 0, 1−θ1−θ2−θ3 ≥ 0
}
.

(22)
Note that, the following marginal relationships hold:

θHl = Prob(Hl) = θ1 +θ3, θHr = Prob(Hr) = θ1 +θ2.

Let d be equal to 2 and consider the state:

L(θ1) = z100 = 1/3 L(θ 2
1 ) = z200 = 1/3

L(θ2) = z010 = 1/6 L(θ 2
2 ) = z020 = 0

L(θ3) = z001 = 1/6 L(θ 2
3 ) = z002 = 0

L(θ1θ2) = z110 = 0 L(θ1θ3) = z101 = 0
L(θ2θ3) = z011 = 1/6 L(1) = z000 = 1,

(23)

which belongs to (16).
Now consider the polynomial:

q(θ) =−(θ1 +θ2)
2− (θ1 +θ3)(−2θ1−2θ2 +1)− ε,

with ε > 0 and observe that q(θ)≤−ε . The polynomial is
negative! However, its prevision6 EB(q) w.r.t. the state (23)
is equal to

L(q) =−z001 +2z011− z020− z100 +2z101 + z200− ε

=
1
6
− ε ≥ 0.

(24)

5. The multinomial distribution is used to model the outcome of ` exper-
iments, where the outcome of each trial has a categorical distribution,
e.g., rolling a k-sided die ` times.

6. The lower and upper previsions coincide for q.

Therefore, we have violated an inequality that holds in
classical probability (E(q)≤−ε in T), although the set of
desirable gambles

C = {g ∈LR | L(g)≥ 0},

with L defined in (23), is logical consistent in T? (P-
coherent). This is the essence of Bell’s type inequalities:
the quantum weirdness which is also present in Bernstein’s
world.

5.4. Entanglement

We continue the previous example and we set up a thought
experiment that uncovers the entanglement of the two coins.

Assume two coins are drawn from a bag in the state (23).
We give the left coin to Alice and the right coin to Bob as
depicted in Figure 2.

We will now show that after the coins move apart, there
are “matching” correlations between the output of their
toss. That is a measurement (though a toss) of the bias of
one coin will allow the prediction, with certainty, of the
outcome of the measurement (toss) on the other coin.

Assume that Alice tosses her coin first and that it
lands Heads, then she can compute her updated previ-
sion (through (21) with π = θ1 + θ3) for the gamble
q(θ) = θ1 +θ2 (Heads on Bob’s coin). We can easily do
this computation in the dual space.7 Note that

0 = L((q−λ0)π) =−λ0z001−λ0z100 + z011

+z101 + z110 + z200

has solution λ0 = 1. Alice instantaneously knows that the
result of the toss of Bob’s coin will be Heads. Similarly, we
can consider all the other cases

q = 1−θ1−θ2, π = θ1 +θ3, λ0 = 0
q = θ1 +θ2, π = 1−θ1−θ3, λ0 = 0
q = 1−θ1−θ2, π = 1−θ1−θ3, λ0 = 1.

This means that as soon as Alice sees the result of the toss
of the left coin, she immediately knows that the result of
the toss of Bob’s coin will be the same. The two coins are
totally “correlated”. Classical correlations can be explained
by a common cause, or correlated “elements of reality”
(Einstein et al., 1935). This is not the case in Bernstein’s
world.

7. Since the state (23) is precisely specified, we do not need to solve
any optimisation to compute the posterior prevision.



bag of coins

counter counter

H

T
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T

Alice Bob

Figure 2: Coin toss experiment in Bernstein’s world.

In fact, although the marginal operators satisfy

L(θHr) = L(θ1 +θ2) = z100 + z010 =
1
2
,

L(θHl ) = L(θ1 +θ3) = z100 + z001 =
1
2
,

L(θ 2
Hr) = L((θ1 +θ2)

2) = z200 +2z110 + z020 =
1
3
,

L(θ 2
Hl
) : = L((θ1 +θ3)

2) = z200 +2z101 + z002 =
1
3
,

(25)
these are the same moments we would get if the marginal
distribution of the two coins is uniform. That means that
if we send an ensemble of coins to Alice (Bob), and she
(he) tosses them, she (he) will experience Heads half of
the times. A classical correlation model that is compatible
with these marginal moments is given by this probabilistic
mixture of atomic charges (Dirac’s deltas):

p(θ) =
1
2

δ


1
6 (3−

√
3)

0
0

1
6 (3+

√
3)





(θ)+
1
2

δ


1
6 (3+

√
3)

0
0

1
6 (3−

√
3)





(θ).

However, this probabilistic model (or any other) can never
satisfy the moment constraints (23) or, equivalently, can
never violate the Bell’s type inequality presented in the
previous section. We have entanglement!

6. Conclusions

In this work, after a brief description and analysis of the
structural properties of P-coherent models, we have shown
that the space of Bernstein polynomials in which nonneg-
ativity is specified by the Krivine-Vasilescu certificate is
yet another instance of this theory and that, therefore, it is
possible to construct in it a thought experiment uncovering
entanglement with classical (hence non quantum) coins.

As a final side remark, we believe that formulating the
theory of desirable gambles directly as a logic system pro-
vides an elegant way for extending the framework to the
accept-reject one but also for merging the latter with the
theory of choice functions.
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