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Abstract
A semi-graphoid independence relation is a set of in-
dependence statements, called triplets, and is typically
exponentially large in the number of variables involved.
For concise representation of such a relation, a subset
of its triplets is listed in a so-called basis; its other
triplets are defined implicitly through a set of axioms.
An elementary-triplet basis for this purpose consists
of all elementary triplets of a relation. Such a basis
however, may include redundant information. In this
paper we provide two lower bounds on the size of an
elementary-triplet basis in general and an upper bound
on the size of a minimum elementary-triplet basis.
We further specify the construction of an elementary-
triplet basis of minimum size for restricted relations.

Keywords: Independence relations, Axioms of inde-
pendence, Elementary triplets, Basis representation.

1. Introduction

The notion of conditional independence plays a key role
in practical systems of uncertainty, since effective use of
knowledge about independences allows these systems to
deal with the computational complexity of their problem-
solving tasks. The notion thus arises in various frameworks
of uncertainty, and in probabilistic settings more specifi-
cally (see for example [3, 4, 8, 9, 24, 25]). Probabilistic
conditional independence has been subject to multiple stud-
ies, from both a mathematics perspective and a computing-
science perspective, with the latter focusing on problems
of concise representation and efficient computation.

An independence relation over a set of random variables
V is a set of triplets 〈A,B |C〉 where A,B,C⊆ V are pair-
wise disjoint subsets with A,B 6= ∅. A triplet 〈A,B |C〉
states that the sets of variables A and B are independent
given the conditioning set C; relative to any specific dis-
crete joint probability distribution Pr over V, the triplet thus
states that Pr(A,B |C) = Pr(A |C) · Pr(B |C) for all possi-
ble value combinations of A,B,C. Well-known properties
of classical probabilistic independence have been formu-
lated as axiomatic systems to allow a study of independence
without the numerical context involved (see for example
[8, 10, 11, 12, 15, 17, 18, 20, 22]). The most often stud-
ied system includes four axioms, called the semi-graphoid
axioms. Any (ternary) relation over V that is closed under

these axioms, is then called a semi-graphoid independence
relation [12, 18]. Although the semi-graphoid axioms have
been formulated within the setting of classical probabil-
ity theory, their validity and implications are also studied
within other frameworks of uncertainty (see for example
[5, 6, 7, 16, 26]).

Semi-graphoid independence relations in general are
exponentially large in the number of random variables in-
volved [22, 23], and representing them by mere enumera-
tion of their triplets is not feasible for practical purposes. A
more concise representation is arrived at by explicitly list-
ing a small set of triplets, called a basis, and letting all other
triplets be defined implicitly through the semi-graphoid ax-
ioms [23]. For such a representation, two types of basis
have been proposed in the literature: an elementary-triplet
basis is composed of triplets 〈A,B |C〉 with A,B single-
ton sets [19], and a dominant-triplet basis is composed of
triplets such that any remaining triplet can be derived di-
rectly from one triplet from this set [23]. The latter type
of basis has received considerably more attention from the
research community, since it is commonly thought to be
smaller in size than an elementary-triplet basis. While ap-
propriate algorithms have been designed for constructing
dominant-triplet bases from a given starting triplet set with-
out the need to generate the full relation [1, 2, 13, 23], no
such algorithms are available as yet for the construction of
non-redundant elementary-triplet bases.

In this paper, we study elementary-triplet bases as rep-
resentations of a semi-graphoid independence relation de-
fined by a starting set of general, possibly non-elementary
triplets. More specifically, we address the problem of con-
structing minimum elementary-triplet bases for indepen-
dence relations defined by a starting set J of general triplets,
without the need of actually generating all triplets of the
relation. We will thereby first focus on the problem for
starting sets including a single triplet and show that an
elementary-triplet basis of minimum size can always be
readily constructed for such sets. We then use this re-
sult to derive an upper bound on the size of a minimum
elementary-triplet basis for arbitrarily-sized starting sets.

The paper is organised as follows. In Section 2, we pro-
vide some preliminaries on independence relations in gen-
eral and thereby introduce our notations. In Section 3 we
provide two lower bounds for elementary-triplet bases and
in Section 4 we show that, for a singleton starting set, a
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basis of lower-bound size can always be constructed. In
Section 5 we give an upper bound for minimum elementary-
triplet bases for arbitrarily-sized starting sets. Section 6
concludes the paper with our future plans.

2. Preliminaries
We consider a finite, non-empty set V of discrete random
variables. A triplet over V is a statement of the form 〈A,B |
C〉, where A,B,C ⊆ V are pairwise disjoint subsets with
A,B 6=∅. A triplet 〈A,B |C〉 states that the sets of variables
A and B are independent given the conditioning set C. The
set of all triplets over V will be denoted by V(3).

A subset of V(3) constitutes a semi-graphoid indepen-
dence relation if it satisfies the four properties below.

Definition 1 A semi-graphoid independence relation is
a subset of triplets J ⊆ V(3) that satisfies the following
properties for all sets A,B,C,D⊆ V:

G1: if 〈A,B |C〉 ∈ J, then 〈B,A |C〉 ∈ J (Symmetry)

G2: if 〈A,B |C〉 ∈ J, then 〈A,B′ |C〉 ∈ J for any non-emp-
ty subset B′ ⊆ B (Decomposition)

G3: if 〈A,B1∪ B2 |C〉 ∈ J with B1∩ B2 =∅, then 〈A,B1 |
C∪B2〉 ∈ J (Weak Union)

G4: if 〈A,B |C∪D〉 ∈ J and 〈A,C |D〉 ∈ J, then 〈A,B∪C |
D〉 ∈ J (Contraction)

The four properties stated above have been proven logically
independent and taken to constitute an axiomatic system
for the qualitative notion of independency [18]. The sys-
tem is sound relative to the class of discrete probability
distributions, yet not complete [21].

The semi-graphoid axioms of independence are viewed
as derivation rules for generating, possibly new, triplets
from a given triplet set. Given an arbitrary triplet set J ⊆
V(3) and a designated triplet θ ∈V(3), we write J `∗θ if the
triplet θ can be derived from J by finite application of the
rules G1–G4. The closure J of a starting triplet set J then
is the semi-graphoid independence relation composed of J
and all triplets θ that can be derived from it. The starting
set J can thus be viewed as a concise representation of J,
and as such is called a basis for J.

Definition 2 A basis J for a semi-graphoid independence
relation J is a subset J ⊆ J such that J = {θ | J `∗ θ}.

Concise basis representations are of importance since inde-
pendence relations in general are exponential in size. Two
types of basis have been proposed. Studený [23] proposed
as a basis for a relation J, a subset of triplets J ⊆ J such
that any remaining triplet can be derived directly from one
triplet of J through the derivation rules G1–G3. Peña [19]
proposed to represent J by its so-called elementary triplets.

An elementary triplet is a triplet of the form 〈{A},{B}|
C〉, that is, a triplet with singleton sets for its first two
arguments [19]; slightly abusing notation, we will omit
in the sequel the set notation for singleton sets and write
〈A,B |C〉. The set of all elementary triplets over V will be
denoted by E(3). For the subset J E of elementary triplets of
an independence relation J, the following properties hold.

Proposition 3 Let J E
= J ∩ E(3) be the set of elementary

triplets of a semi-graphoid independence relation J ⊆ V(3).
Then, J E satisfies the following properties for all A,B,D ∈
V and C⊆ V:

E1: if 〈A,B | C〉 ∈ J E, then 〈B,A | C〉 ∈ J E (Symmetry)

E2: if 〈A,B |C〉 ∈ J E and 〈A,D | B∪C〉 ∈ J E, then 〈A,D |
C〉 ∈ J E and 〈A,B | C∪D〉 ∈ J E (Equivalence)

The two properties stated above in essence capture the semi-
graphoid axioms G1–G4, tailored to elementary triplets.
We use the term equivalence to refer to the property E2, to
indicate that it essentially states an equivalence between
two pairs of elementary triplets.

A well-known property associated with elementary
triplets is that the set J E of all such triplets in an indepen-
dence relation J constitutes a basis for J [14, 24]; J E was
proposed in fact [19], as a representation of independence
relations. The set of all elementary triplets in a relation
may include redundant triplets due to the property E2 of
equivalence however, and a smaller elementary-triplet basis
may exist. In the sequel we will use K to denote an arbitrary
elementary basis. Its closure under the semi-graphoid ax-
ioms will be indicated by K and its closure under E1–E2 by
K̃; K̃ will be referred to as the elementary closure of K. We
note that since E1–E2 in essence capture the semi-graphoid
axioms G1–G4, we have that K = J if and only if K̃ = J E.

3. Lower Bounds on Elementary-Triplet
Bases

We establish two lower bounds on the size of an elementary-
triplet basis for a semi-graphoid independence relation. The
first of these bounds is related to the number of different
(unordered) variable pairs occurring in the first two argu-
ments of any elementary triplet of the relation.

Proposition 4 Let J be an independence relation and
let J E

= J ∩ E(3) be as before. Let U be the set of un-
ordered variable pairs (Ai,B j) with 〈Ai,B j | C〉 ∈ J E for
some C⊆ V\{Ai,B j}. Then, any elementary-triplet basis
for J includes at least |U | elements.

Proof The set U stated in the lemma includes all unordered
variable pairs (Ai,B j) occurring in the first two arguments
of any elementary triplet of J E. Now suppose that there
exists an elementary-triplet basis K for J with |K |<|U |.



Then there must be at least one variable pair (Ar,Bs) such
that (Ar,Bs) ∈U and 〈Ar,Bs | C〉,〈Bs,Ar | C〉 6∈ K for all
C⊆ V\{Ar,Bs}. Since the derivation rules E1–E2 cannot
construct a triplet with the variable pair (Ar,Bs) from the set
K, it follows that the elementary closure K̃ cannot be equal
to J E. Since K = J if and only if K̃ = J E, we conclude that
K is not a basis for J, which implies that any elementary-
triplet basis for J should include at least |U | elements.

We note that, by the above proposition, an elementary-
triplet basis may include O(n2) triplets.

Another lower bound on the size of an elementary-triplet
basis for an independence relation J is given by the number
of different cardinalities of the conditioning sets C in J E.

Proposition 5 Let J,J E be as before. Let U be the set of
numbers tk such that there is at least one triplet 〈Ai,B j |
C〉 ∈ J E with |C |= tk. Then, any elementary-triplet basis
for J includes at least |U | elements.

Proof Suppose that there exists an elementary triplet basis
K with |K |< |U |. Then there is at least one number tr such
that tr ∈U and there is no triplet 〈Ai,B j | C〉 with |C |= tr
in K. Since the derivation rules E1–E2 cannot construct a
triplet with a conditioning part of cardinality tr from the
triplet set K, it follows that K̃ does not include such a triplet
either and, hence, cannot be equal to J E. Since K = J if
and only if K̃ = J E, we conclude that K is not a basis for J,
which implies that any elementary-triplet basis for J should
include at least |U | elements.

The two bounds stated in the Propositions 4 and 5 are tight
in the sense that for each of these bounds independence
relations exist for which it is attained. There are relations
however, for which neither of the two bounds are met, as
demonstrated by the following example.

Example 1 We consider the following starting set

J = {〈1,{2,3} |∅〉, 〈1,{2,3} | {4,5,6}〉, 〈1,{7,8} |∅〉}

The set J E of the relation J includes:

〈1,2 |∅〉 〈1,2 | {4,5,6}〉 〈1,7 |∅〉
〈1,2 | 3〉 〈1,2 | {3,4,5,6}〉 〈1,7 | 8〉
〈1,3 |∅〉 〈1,3 | {4,5,6}〉 〈1,8 |∅〉
〈1,3 | 2〉 〈1,3 | {2,4,5,6}〉 〈1,8 | 7〉

The lower bounds found by Propositions 4 and 5 are both
equal to 4. It is easily verified through the derivation rules
E1–E2 however, that the number of triplets in a minimum
elementary-triplet basis for J equals 6. �

4. Minimum Bases from Singleton Start-
ing Sets

In this section we focus on elementary-triplet bases of
minimum size for the closure of starting sets composed of a
single, possibly non-elementary, triplet; Section 5 addresses
elementary-triplet bases for arbitrarily-sized starting sets.

We begin by stating the number of elementary triplets
implied by a general triplet θ through the semi-graphoid
axioms G1–G4. In Lemma 7, we then show how to con-
struct a generating triplet set from the elementary triplets
implied by θ . Proposition 8 concludes by showing that the
constructed triplet set is a basis for the closure of {θ}.

Lemma 6 Let θ = 〈A,B | C〉 be an arbitrary triplet in
V(3), with A = {A1, . . . ,An}, n≥ 1, and B = {B1, . . . ,Bm},
m≥ 1. Then, θ implies n ·m ·2n+m−2 different elementary
triplets (ignoring symmetry).

Proof From the triplet θ , by the decomposition and weak
union rules, all elementary triplets of the form 〈Ai,B j | D〉
with C ⊆ D ⊆ C∪ (A∪B) \ {Ai,B j} are derived, for i =
1, . . . ,n, j = 1, . . . ,m. For a single pair Ai,B j, the number
of elementary triplets thus constructed equals the size of
the power set of (A∪B) \ {Ai,B j}, that is, 2n+m−2. With
n ·m pairs Ai,B j, therefore, a total of n ·m ·2n+m−2 different
elementary triplets are derived from θ .

The set of elementary triplets derived from a single triplet
θ as described in Lemma 6, is known to constitute a basis
for the closure of {θ}. As this set adheres to the axioms E1–
E2 from Proposition 3, however, it may include derivable
elements and not be minimal with respect to set inclusion.

The following lemma and associated proposition now
detail the construction of an elementary-triplet basis for
the closure of {θ} of a size that exactly matches the lower
bound from Proposition 4 for any starting set composed of
a single independence statement.

Lemma 7 Let θ = 〈A,B | C〉 be a triplet in V(3) with
A = {A1, . . . ,An}, n ≥ 1, and B = {B1, . . . ,Bm}, m ≥ 1.
Furthermore, let

Kθ =
{
〈Ai,B j | A\{Ai, . . .An}∪ B\{B j, . . .Bm}∪C〉

∣∣
i = 1, . . . ,n, j = 1, . . . ,m

}
Then, Kθ `∗ θ .

Proof We consider the elementary triplet set Kθ and show
by induction that Kθ `∗ θ .

Induction base: Let θ = θ1,1 = 〈A1,B1 |C〉. Then, Kθ1,1 =
{〈A1,B1 | C〉} clearly implies the triplet θ1,1.

Induction hypothesis: Let θi, j = 〈{A1, . . . ,Ai},{B1, . . .B j} |
C〉, for some i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}. Our hypothesis
has that Kθk,` `

∗ θk,` for all k = 1, . . . , i, `= 1, . . . , j.

Induction step: Without loss of generality we consider



θi, j+1 = 〈{A1, . . . ,Ai},{B1, . . . ,B j+1} | C〉

that is, the triplet θi, j+1 that extends θi, j by a single variable
in the second argument. The triplet set Kθi, j+1 equals

Kθi, j ∪ {〈Ak,B j+1 | A−k ∪{B1, . . . ,B j}∪C 〉 | k = 1, . . . , i}

where A−k = ∅ for k = 1 and A−k = {A1, . . . ,Ak−1} other-
wise. Since Kθi, j `∗ θi, j by the induction hypothesis and
Kθi, j ⊆ Kθi, j+1 , we have that Kθi, j+1 `∗θi, j. From the triplets
in Kθi, j+1\Kθi, j , we can now construct the triplet

θ
′ = 〈{A1, . . . ,Ai},B j+1 | {B1, . . . ,B j}∪ C〉

by repeatedly applying the contraction rule G4. From θ ′

and θi, j, we then construct the triplet θi, j+1 by once more
applying G4.

From Lemma 7 we have that the constructed elementary-
triplet set allows the derivation of the starting triplet θ . The
following proposition now states that the constructed set
actually is a minimum elementary-triplet basis.

Proposition 8 Let θ = 〈A,B | C〉 be a triplet with A =
{A1, . . . ,An}, n ≥ 1, and B = {B1, . . . ,Bm}, m ≥ 1. Let
J = {θ} and let J be its closure. Furthermore, let Kθ be
the elementary-triplet set constructed from J in Lemma 7.
Then, Kθ is a minimum elementary-triplet basis for J.

Proof From Lemma 7, we have that the set Kθ implies
the triplet θ . As Kθ is a subset of the closure J of {θ}, we
further have that any triplet τ with Kθ `∗ τ is implied by θ .
The set Kθ thus is an elementary-triplet basis for J. As it
includes n ·m elements by its construction moreover, we
have by Proposition 4 that it is a minimum basis for J.

We note that from a different perspective, Peña proved the
related proposition stating that it suffices to check n ·m
elementary triplets from a basis J E to establish whether
some triplet θ is included in J [19].

The elementary-triplet basis Kθ from Lemma 7 is not
unique. It is readily seen that by choosing different order-
ings of the variables in the sets A and B, a different basis
will result. Yet, there exist also minimum elementary-triplet
bases that cannot be obtained by different orders of pro-
cessing A and B, as shown in the following example.

Example 2 Let J = {〈{1,2},{3,4} | ∅〉}. By Lemma 7,
the set

{〈1,3 |∅〉,〈1,4 | 3〉,〈2,3 | 1〉,〈2,4 | {1,3}〉}

is a minimum elementary-triplet basis for J. The first and
third triplet of this basis can be substituted by their equiva-
lent triplet pair through the rule E2, resulting in

{〈1,3 | 2〉,〈1,4 | 3〉,〈2,3 |∅〉,〈2,4 | {1,3}〉}

which is not of the form Kθ for any order of the variables
of the sets {1,2} and {3,4}. �

To conclude we note that for a singleton starting set {〈A,B |
C〉} with A = {A1, . . . ,An}, n ≥ 1, and B = {B1, . . . ,Bm},
m≥ 1, the lower bound of Proposition 4 equals n ·m while
the lower bound of Proposition 5 is n+m−1. For a single-
ton starting set therefore, the lower bound of Proposition 4
is equal to or larger than the bound of Proposition 5.

5. Minimum Elementary Bases in General
Proposition 8 established the number of triplets in a mini-
mum elementary-triplet basis for a starting set composed
of a single triplet. We now address starting sets with arbi-
trary numbers of triplets and provide an upper bound on the
number of triplets in a minimum elementary-triplet basis
for such starting sets.

Corollary 9 Let J = {θ1, . . . ,θk}, with θi = 〈Ai,Bi | Ci〉,
i = 1, . . . ,k, be a starting triplet set and let J be its closure.
Let ni,mi be the number of variables in the sets Ai,Bi,
respectively. A minimum elementary-triplet basis for J has
at most ∑i=1,...,k ni ·mi elements.

Proof The result follows directly from Proposition 8.

The upper bound stated above is tight, in the sense that
there exist starting sets for which this bound is attained.

For any starting set J, an elementary triplet basis of a
size equal to the upper bound provided in the corollary
above is constructed straightforwardly by adding for every
triplet θ ∈ J the subset Kθ ∈ J detailed in Lemma 7. The
thus constructed basis may include redundant triplets, as el-
ementary triplets found from one triplet in J may imply ele-
mentary triplets from another such triplet. A non-redundant
elementary-triplet basis can now be readily found by itera-
tively removing triplets and checking whether the resulting
basis still has J for its closure. Such a procedure unfortu-
nately does not guarantee that a minimum basis is found,
as illustrated by the following example.

Example 3 Let J E
= {θi}, i = 1, . . . ,7, be the elementary

triplets of a semi-graphoid independence relation J with:

θ1 = 〈1,2 | 4〉 θ5 = 〈1,3 | {2,4}〉
θ2 = 〈1,2 | {3,4}〉 θ6 = 〈1,4 | 2〉
θ3 = 〈1,3 | 2〉 θ7 = 〈1,4 | {2,3}〉
θ4 = 〈1,3 | 4〉

In this basis J E, the triplet pairs (θ1,θ5) and (θ2,θ4) are
equivalent by the derivation rule E2, as are the pairs
(θ3,θ7) and (θ5,θ6). Now suppose that the basis is re-
duced in size by first removing the triplets θ1,θ5, and then
deleting the triplet θ6. The resulting basis {θ2,θ3,θ4,θ7}
cannot be further reduced in size, and includes four triplets.
An example elementary-triplet basis for J of minimum size
is {θ1,θ5,θ6}, including three triplets. �



The example above shows that a procedure of iteratively
removing redundant triplets from an elementary-triplet ba-
sis does not necessarily result in a basis of minimum size.
Such a procedure would therefore constitute just a heuristic
resulting in a minimal elementary-triplet basis.

6. Conclusions and Future Work

For concisely representing a semi-graphoid independence
relation, a subset of its triplets is listed explicitly in a basis,
leaving its other triplets implicit by the associated axioms.
In this paper, we addressed the use of an elementary-triplet
basis for this purpose, composed of all elementary triplets
of an independence relation, as proposed by Peña [19].
Since elementary triplets may occur in equivalent pairs,
a relation’s set of all such triplets may include redundant
information. We provided two lower bounds on the size
of an elementary-triplet basis in general and showed that
an elementary-triplet basis of minimum size can be readily
constructed for semi-graphoid relations defined by a single
arbitrary triplet. We further derived an upper bound on
the size of a minimum elementary-triplet basis for semi-
graphoid relations in general, and detailed a procedure for
constructing minimal elementary-triplet bases.

In our future research we intend to further investigate
algorithms for constructing elementary-triplet bases of min-
imum size for semi-graphoid independence relations in
general. Having focused so far on semi-graphoid relations,
we further intend to study alternative concepts of proba-
bilistic independence and irrelevance, as found for example
in frameworks of imprecise probability, for which the semi-
graphoid axioms of independence may not all hold (see for
example [4, 7, 16]), and address their concise representa-
tion by triplet bases.
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