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DecideIT 3.0: Software for Second-Order Based Decision Evaluations

Mats Danielson MATS.DANIELSON@SU.SE

Department of Computer and Systems Sciences, Stockholm University, Sweden

Love Ekenberg EKENBERG@IIASA.AC.AT

International Institute for Applied Systems Analysis, Austria

Aron Larsson ARON.LARSSON@MIUN.SE

Department of Information Systems and Technology, Mid Sweden University, Sweden

Abstract
In this paper, we discuss representation and evaluation
in the DecideIT 3.0 decision tool which is based on a
belief mass interpretation of the background informa-
tion. The decision components are imprecise in terms
of intervals and qualitative estimates and we emphas-
ise how multiplicative and additive aggregations influ-
ence the resulting belief distribution over the expected
values.
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1. Introduction

There have been many suggestions for how to deal with
the strong requirements of most decision models to provide
precise information, such as the theory of capacities, prob-
abilistic logic, sets of probability measures, interval prob-
abilities, evidence and possibility theories, fuzzy meas-
ures, preference rankings, extended elicitation methods and
higher-order probability theory (see for example [2], [14],
[5], [6], [12], [20], [3], [16], [19], [13] to name just a few in
the extensive literature in the fields). Often, these theories
require significant mathematical knowledge on the part of
the decision-maker, and sometimes include relatively harsh
methods for discriminating between decision alternatives.
Furthermore, the computational complexity can be high
in various respects, as argued in some of our earlier work
(for an extensive background, see e.g. [7], [4], [10]. The
purpose of this paper is to discuss the ideas behind the
interactive software tool DecideIT 3.0 and the underlying
framework for evaluations under risk subject to incomplete
input data and to briefly showcase it. The software is able to
evaluate decision situations specified by imprecise utilities
and probabilities and qualitative estimates between these
components. It is a substantial improvement over earlier
versions of the program, see, e.g., [9], and it has recently
been used in large scale projects for energy policy mod-
elling in Jordan and Morocco, cf. [11], [8], [17]. A key
idea is the use of higher-order distributions of belief, which

allows for better discriminating between the alternatives in
the decision tree.

2. Representation

The components of a decision tree T are a root node (also
called a decision node), a set of probability nodes (rep-
resenting uncertainty) and consequence nodes (the final
outcomes). The probability and consequence nodes are
normally assigned unique probability and value distribu-
tions, but this can of course be generalised to cases where
there is imprecise or incomplete information with respect
to probabilities and consequence or alternative values. User
statements may be range constraints or comparative state-
ments, which are translated into systems of inequalities
in a constraint set. Probability and utility statements are
collected in a node constraint set. User statements have
the forms of range constraints, e.g., a probability or value
yi lies between a1 and a2, and comparisons: yi is larger
than y j by a difference from d1 to d2. When specifying an
interval, the actual beliefs in the values are presumably not
uniformly distributed. One way to formalise this is to in-
troduce belief distributions that indicate the strengths with
which we believe in these different values. We use different
distributions for probabilities and values because of the nor-
malisation constraints for probabilities; natural candidates
are the Dirichlet distribution for probabilities and two- or
three-point distributions for values. The properties of the
Dirichlet distribution as a parameterised family of continu-
ous multivariate probability distributions makes it suitable
for this purpose. We use a slightly different form, namely
the bounded Dirichlet distribution over a (normally user-
specified) range instead of the interval [0,1] and paramet-
erised so that the distribution of belief is uniform over the
simplex. Bounded beta distributions are then derived from
this, yielding four-parameter beta distributions. Thus, we
define a probability belief distribution through a bounded
Dirichlet distribution f (ai,ci,bi) where ci is the estimated
most likely probability and where ai and bi are the bound-
aries for the support of the distribution (ai < ci < bi) (cf.
[18]). For the utilities/values (i.e. without normalisation
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constraints), the generalisation to trapezoids is straightfor-
ward. The baseline distribution is a two-point distribution
(uniform or trapezoidal) which can be extended to a three-
point distribution (triangular). When a decision-maker has
no reason to make any other specific assumptions, for in-
stance when there is large uncertainty in the underlying
belief distributions involved, a two-point distribution mod-
elling the upper and lower bounds (the uniform or trapezoid
distributions) seems to be reasonable. Rather, when modal
outcomes can be estimated to some extent, the beliefs are
better represented by three-point distributions. Popular dis-
tributions like Beta and Erlang generally give rise to res-
ults similar to triangular distributions. For instance, [15]
considers some frequently employed distributions. Here,
we assume that we only have limited sample data, essen-
tially the minima, maxima, and modal values. The mean
value of a number of three-point value belief distributions
f (ai,ci,bi) is µ(λ ) = (ai +bi +λci) / (λ +2), where Beta
usually employs λ = 4 and Erlang employs λ = 3, with
λ = 1 for triangular distributions and λ = 0 for a two-point
uniform or trapezoid distribution as special cases. For prac-
tical real-life purposes, there is usually no reason to use any
three-point distribution other than a triangular distribution
since the risk of underestimation is kept lower.

3. Evaluation

The evaluation model is based on the resulting belief dis-
tribution over the generalised expected utility, i.e., given a
decision tree T and an alternative Ai the expression

E(Ai) =
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nim−2

∑
im−1=1

pii1i2...im−2im−1

nim−1

∑
im=1

pii1i2...im−2im−1imuii1i2...im−2im−1im

(where m is the depth of T corresponding to Ai, nik is the
number of possible outcomes following the event with prob-
ability pik , p...i j ..., j ∈ [1, . . . ,m] denote probability vari-
ables, and u...i j ... denote utility variables) is the expected
utility of alternative Ai in T .

Note that even when we assume that the expectations are
estimated a large number of times (due to repeated decision
making, such as the assumption of going concern in busi-
ness administration) and can consequently be approximated
by a normal distribution, there are three observations in par-
ticular that should be considered:

• The resulting distributions will be approximately nor-
mal only when the original distributions are symmet-
ric, which of course is not usually the case for beta
and triangular distributions. The result will instead be
skew-normal.

• Even if the original distributions are symmetric, the
non-linear multiplication operator breaks the sym-
metry. The result will again be approximately skew-
normal.

• To obtain a resulting approximate normal distribution,
both the original distributions and their aggregations
must allow for long tails. In general, this is not the
case here; the estimates have lower and upper bound-
aries due to the fact that we use bounded Dirichlet
distributions and uniform and triangular distributions,
yielding approximately truncated normal distributions.

We therefore employ skew-normal distributions to gen-
eralise the normal distribution of belief by allowing for
non-zero skewness, i.e. asymmetry. This is accomplished
in the traditional way by introducing a shape parameter α ,
where α = 0 represents the standard normal distribution,
and α = 1 yields the distribution of the maximum of two
independent standard normal variates. We can then con-
veniently represent truncated (skew-)normal distributions
as probability distributions of (skew-)normally distributed
random variables that are bounded. The skewness of the dis-
tribution increases with the absolute value of α , and when
|α| →∞, we get folded normal or half-normal distributions.
Distributions are right-skewed when α > 0 and left-skewed
when α < 0. When the sign of α is changed, the density is
reflected about x = 0. The skew-normal density function
with location ξ , scale ω , and shape parameter α is

f (x) =
2
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ω

)
Φ

(
α(
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)
The use of a skew-normal belief distribution together with
the three observations above and the principle of going con-
cern is called the B-normal (business normal) method. By
this assumption, there is no need to select case-specific dis-
tributions in modelling decision situations. To employ the
B-normal method, the skewed distribution must be aligned
to give the same variance and expected value as its un-
skewed counterpart and must display the correct shape
(skew). Assume that the desired expected value is E(X),
the desired variance is σ2, and the desired skew is s. The
alignment (matching) of the B-normal distribution is then
done in three steps:

• Obtain the shape parameter α that describes the
desired skew s of a skew-normal distribution. The
user specifies the shape indirectly by indicating the
skew of the individual distributions, since entering
a most likely (modal) number in addition to min-
imum and maximum numbers indirectly indicates the
skew (asymmetry) for each variable. This skew is sub-
sequently propagated along the decision tree;

• Once the shape parameter α is determined, this
changes the variance of the B-normal distribution com-



Figure 1: Pairwise comparison of alternatives

pared to a normal distribution. Adjust the scale para-
meter ω until the variance of the B-normal distribution
is σ2 and thus coincides with the corresponding nor-
mal distribution;

• When the shape and variance have been determined,
this in turn changes the expected value of the distribu-
tion. To obtain the desired expected value E(X), use
the standard formula for the mean of a skew-normal
distribution and solve for the location parameter ξ .

This procedure will yield the parameters α , ω2, and ξ , and
once these have been obtained the B-normal distribution
is parametrically determined. From this distribution, the
belief (or confidence) in the different expected values can
be determined in the same way as with standard normally
distributed information. Together with the principle of go-
ing concern, in which decision-making is carried out on a
repeated basis, this is the core of the method that underlies
the evaluations. The distribution of belief in expected val-
ues resulting from the decision-maker’s input is conveyed
to the user via the GUI (graphical user interface).

4. The GUI
Among the main additions for DecideIT 3.0 are the func-
tionality to enter ordinal and cardinal rankings interpreted
using surrogate weights [8] and the evaluation of expec-
ted values by the distribution of belief in addition to the
earlier distribution-free evaluations [9]. The assessments
can be entered in the form of fixed numbers, intervals with
or without modal points, and ordinal or cardinal rankings.
If desired, the decision situation can be modelled using
several criteria, with each criterion potentially containing
a decision/event tree. Figure 1 is from the analyses in the
project [17] and shows a comparison of all alternatives
with a pairwise ranking based on the belief in superiority
(higher expected value) for each of the two alternatives in

each pair. A green square represents that at least 90% of
the belief mass resides with the horizontal alternative, and
a yellow one between 75−90%. This way, a ranking of all
alternatives is obtained. The software is available for free
for academic and other non-commercial purposes [1].
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