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Abstract

A model of upper conditional previsions for bounded
and unbounded random variables with finite Choquet
integral with respect to the Hausdorff outer and inner
measures is proposed in a metric space. They are de-
fined by the Choquet integral with respect to Hausdorff
outer measures if the conditioning event has positive
and finite Hausdorff outer measure in its dimension,
otherwise, when the conditioning event has Hausdorff
outer measure equal to zero or infinity in its Hausdorff
dimension, they are defined by a 0-1 valued finitely,
but not countably, additive probability.
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1. Introduction

The theory of coherent upper conditional previsions has
been developed by Walley ([24], [23]) for bounded random
variables, but the possibility to consider arbitrary random
variables has been investigated in literature (Troffaes and de
Cooman [20],[21], Troffaes [22]). There is no requirement
of continuity for a coherent prevision P, that is coherence
does not imply that given a sequence of random variables
X, converging point-wise to the random variable X then
P(X,, ) converges to P(X).

One of the motivating issues to propose a new model
of coherent prevision which is continuous is that when
coherent, real-valued previsions are not continuous from
below, that creates the awkward situation where the agent
is prevented from assigning equal previsions to each pair
of equivalent (unbounded) random variables.

It implies that coherent previsions preclude indifference
between equivalent random variables as may occur for
random variables with geometric distribution (Seidenfeld
etal. [19]).

A way to avoid this problem, when the coherent prevision
has an integral representation with respect to a coherent
probability u, is to require that coherent conditional previ-
sion satisfies the Monotone Convergence Theorem, which
assures the convergence of [ X,d to [ Xdu when the se-
quence X, converging point-wise to the random variable
X.
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In this paper coherent upper conditional previsions de-
fined by Hausdorff outer measures, are introduced, in a
metric space, for bounded and unbounded random vari-
ables with finite Choquet integral with respect to the Haus-
dorff outer and inner measures and the following results
are proven:

a) coherent upper conditional previsions are continuous
from below and they satisfy the Monotone Conver-
gence Theorem when the conditioning event has pos-
itive and finite Hausdorff outer measure in its Haus-
dorff dimension s. Denoted by /* the s-dimensional
Hausdorff outer measure and by S the o-field of all
h*-measurable sets a consequence of the continuity
from below is that the restrictions to the class of all
S-measurable random variables on B of the coherent
upper conditional previsions coincide with expectation
so that positive boost function avoids and the problem
of losing indifference between random variables with
the same distribution can be solved;

b) if Q is a set with positive and finite Hausdorff outer
measure in its Hausdorff dimension coherent up-
per prevision P satisfies the disintegration property
P(X) = P(P(X|B)) on every non- null partition B;

¢) all monotone set functions on (B) which are sub-
modular, continuous from below and which repre-
sent as Choquet integral a coherent upper condi-
tional prevision defined on a linear lattice F, agree
on the set system of weak upper level sets M =
{{X >x}|X €F,x € R}, with the coherent upper
conditional probability u*(A) = % for A € (B).

The necessity to propose a new tool to define coherent
upper conditional previsions arises because they cannot be
obtained as extensions of linear expectations defined, by
the Radon-Nikodym derivative, in the axiomatic approach
[1]; it occurs because one of the defining properties of the
Radon-Nikodym derivative, that is to be measurable with
respect to the o-field of the conditioning events, contradicts
the necessary condition for the coherence [7, Theorem 1]
P(X|B) = X for every B-measurable random variable.



2. Coherent Upper Conditional Previsions
Defined by the Choquet Integral with
Respect to Hausdorff Outer Measures

In this section coherent upper and lower conditional previ-
sions are defined on the class of all bounded and unbounded
random variables with finite Choquet integral with respect
to the Hausdorff outer and inner measures. These upper
conditional previsions are defined by the Choquet integral
with respect to Hausdorff outer measures if the condition-
ing event has positive and finite Hausdorff outer measure in
its dimension; otherwise they are defined by a 0-1 valued
finitely, but not countably additive probability.

2.1. Coherent Upper Conditional Previsions

Let Q be a non empty set, let B be a partition of Q. A
random variable is a function X : Q — R = RU {+eo};
for every B € B denote by X|B the restriction of X to B
and by sup(X|B) the supremum of values that X assumes
on B. Coherent upper conditional previsions are functional
defined on a linear space by the axioms of coherence ([24]).

Definition 1 Coherent upper conditional previsions are
Sunctionals P(-|B) defined on a linear space K, such that
the following axioms of coherence hold for every X and Y
in K and every strictly positive constant A :

1) P(X|B) < sup(X|B);

2) P(AX|B) = AP(X|B) (positive homogeneity);
3) P(X +Y|B) < P(X|B) + P(Y |B) (subadditivity);
4) P(I3|B) = 1.

Definition 2 Given a partition B and a random variable
X € L(Q), a coherent upper conditional prevision P(X|B)
is a random variable on Q equal to P(X|B) if ® € B.

Definition 3 A bounded random variable is called B-
measurable or measurable with respect to a partition B if
it is constant on the atoms of the partition.

The following necessary condition for coherence holds
[24, p. 292]:

Proposition 4 If for every B belongs to B P(X|B) are
coherent linear previsions and X is B-measurable then
P(X|B) =X

Suppose that P(X|B) is a coherent upper conditional
prevision on L(B). Then its conjugate coherent lower con-
ditional prevision is defined by P(X|B) = —P(—X|B). Let
K be a linear space contained in L(B); if for every X be-
longing to K we have P(X|B) = P(X|B) = P(X|B) then
P(X|B) is called a coherent linear conditional prevision

[3,4, 11, 15, 16] and it is a linear, positive and positively
homogenous functional on K [24, Corollary 2.8.5].

The unconditional coherent upper prevision P = P(-|Q)
is obtained as a particular case when the conditioning event
is Q. Coherent upper conditional probabilities are obtained
when only 0-1 valued random variables are considered.

A coherent upper conditional probability (g on #£(B) is

i) submodular or 2-alternating if ug(AUE) + ug(AN
E) < up(A)+ ug(E) for every A,E € (B);

i) continuous from Dbelow if lim;.Upg(A;) =

up(lim;,A;) for any increasing sequence of
sets {A;}, with A; € @(B).

2.2. Hausdorff Outer Measures

Outer measures are non—negative, monotone set-functions
that are sub-additive (Munroe [14]) so they duplicate basic
property of upper probability for sets. Hausdorff outer mea-
sures are examples of outer measures defined in a metric
space.

Let (Q,d) be a metric space. The diameter of a non

empty set U of Q is defined as |U| = sup{d(x,y) (XY €
U} and if a subset A of Q is such that AC |J;U; and 0<

|U;| < & for each i, the class {U,-} is called a d-cover of A.

Let s be a non-negative number. For § > 0 we define
hy 5(A) = infy;, |U[', where the infimum is over all §-

covers {U,-}.

The Hausdorff s-dimensional outer measure of A ([17],
[12]) denoted by A*(A), is defined as

h*(A) = lims_,ohs 5(A).

This limit exists, but may be infinite, since 4, 5(A) in-
creases as 0 decreases. The Hausdorff dimension of a set
A, dimg(A), is defined as the unique value, such that

H(A) = 0 if 0 < s < dimp (A),
W(A) =0if dimp(A) < s < oo.

2.3. Choquet Integral

We recall the definition of the Choquet integral ([2], [5])
with the aim to define upper conditional previsions by Cho-
quet integral with respect to the dimensional Hausdorff
outer measures and to prove their properties. The Cho-
quet integral is an integral with respect to a monotone set
function. Given a non-empty set Q@ and denoted by £(Q),
the family of all subsets of  , a monotone set function

1 p(Q) 5 R =R, U {+oo} is such that 4(2)=0 and if
A, Be p(Q) with ACB then t(A) < u (B). Given a mono-

tone set function i on S C o(Q) the outer set function of
u is the set function u* defined on the whole power set

#(Q) by



u*(A) =inf{u(B) : BOA;B <€ S},A € p(Q)

The inner set function of u is the set function u, defined
on the whole power set #£(Q) by

1.(4) = sup {u(B)|B C A:B € S} ,A € p(Q)

Let 1 be a monotone set function defined on () and
X: Q-5 R=RU {—00, +°°} an arbitrary function on Q.
Then the set function

Gux(x)= u{(o eQ:X(w) >x}

is decreasing and it is called decreasing distribution func-
tion of X with respect to (. If u is continuous from below
then Gy x (x) is right continuous.

In particular the decreasing distribution function of X
with respect to the Hausdorff outer measures is right con-
tinuous since these outer measures are continuous from
below. A function X : Q — R is called upper p-measurable
if Gy« x (x) = Gy, x(x). Given an upper y-measurable ran-
dom variable X :Q — R with decreasing distribution func-
tion G, x (x), the Choquet integral of X with respect to
is defined if () < oo through

JXdp = [°(Gux(x) — 1(Q))dx+ [5 Gux(x)dx

The integral is in R or can assume the values —oo, o0 and
‘non-existing’.
For upper p-measurable random variable X we have

JXdy = [Xdu* = [Xdu.,.

For non upper p-measurable random variables the Cho-
quet integral can be defined by the outer and inner measures
generated by .

If X > 0 or X <0 the integral always exists. In particular
for X > 0 we obtain

[Xdu= [y Gux(x)dx
If X is bounded and u(Q) = 1 we have that

JXdp = [y (Gux (x) = Ddx+ 5% Gy x (x)dx

If p is a o-additive measure the Choquet integral coin-
cides with the usual definition except for infinite measures.

Definition 5 A random variable X is Choquet integrable
with respect to a monotone set function U if the Choquet
integral is finite, that is

Cho

—oo < [MXdU < 40

A coherent upper conditional prevision can be repre-
sented as Choquet integral with respect to a coherent upper
conditional probability u if and only if ¢ is submodular
([8][Proposition 1]). A random variable is Choquet inte-
grable with respect to a submoduar coherent upper condi-
tional probability u if the coherent upper prevision of X
with respect to u if finite.

Definition 6 A random variable X is Choquet integrable
with respect to a submodular coherent upper probability |l
if the Choquet integral [ Choxa W is finite that is

—eo <P(X) = [T Xdp < +o0

Example 1 Ler (Q,d) be the Euclidean metric space
where Q = [0, 1]. Let Q be the set of rational numbers.
The unbounded random variable X defined by

[ 4w if  xeQn[01]
X(“’)_{ 1 if xeR-0n[o,1]

is Choquet integrable with respect to o which is defined
by the 1-Hausdorff measure.

By the the conjugacy property, i.e. P(X) = —P(—X) a dual
definition of Choquet integral random variable can be given

Definition 7 A random variable X is Choquet integrable
with respect to a submodular coherent upper probability |
if and only if

—oo < [(=X)dt < oo

So a random variable X is Choquet integrable with re-
spect to a submodular coherent upper conditional proba-
bility u if and only if the random variable —X is Choquet
integrable with respect to the conjugate lower conditional
probability fr. If a random variable X is Choquet integrable
with respect to a lower conditional probability fr defined on
£(Q) it does not imply that X is Choquet integrable with
respect to the conjugate upper conditional probability L.

Proposition 8 A random variable X is Choquet integrable
with respect to a supermodular coherent lower conditional
probability [y if and only if the random variable —X is
Choquet integrable with respect to the conjugate upper
conditional probability Up.

Proof Since X is Choquet integrable with respect to a
coherent lower conditional probability [I, by Definition 6
we obtain

—oo < [Xdlly < Fo0 & —co < [(=X)dlp < oo

2.4. The Model

A new model of coherent upper conditional previsions for
bounded random variables, has been introduced and its
properties have been proven in Doria [6], [7], [8], [9], [10].



Theorem 9 Let (Q,d) be a metric space and let B be a
partition of Q. For B € B denote by s the Hausdor{f dimen-
sion of the conditioning event B and by h’® the Hausdorf{f s-
dimensional outer measure. Let mp be a 0-1 valued finitely
additive, but not countably additive, probability on $(B).
Thus, for each B € B, the function defined on (B) by

P(AB):{ Tem  if 0<K(B)< e
mp(ANB) if h*(B) € {0,+}

is a coherent upper conditional probability.

If B € B is a set with positive and finite Hausdorff outer
measure in its Hausdorff dimension s the fuzzy measure

g defined for every A € @(B) by uj(A) = % is a co-
herent upper conditional probability, which is submodular,
continuous from below and such that its restriction to the -
field of all u; measurable sets is a Borel regular countably
additive probability.

The coherent upper unconditional probability P = i,
defined on (Q) is obtained for B equal to Q.

If B = Q we denote up by u and the Choquet integral by
fCh() Xd u.

Definition 10 Let L*(B) be the class of random variables
which are Choquet integrable with respect | and with
respect to lp.

Theorem 11 Let iy the coherent upper conditional prob-
ability defined in Theorem 2 and let Iy its dual. Then the
class L*(B) of random variables Choquet integrable with
respect [y and with respect to [y, is a linear space.

Proof We have to prove that for every random variables
X andY € L*(B) and VP € R the random variables X +Y
and BX belong to L*(B). The coherent upper conditional
probability uj defined in Theorem 2 is submodular and
continuous from below thus by the Subadditivity Theorem
([5, Theorem 6.3]) we have

5 (XY )dugy <[5 Xdpg+ [5"Ydug < oo

Since the dual py of pp is defined by the Hausdorff
inner measure and it is continuous from above then by the
Superaddivity Theorem (Denneberg [5, Corollary 6.4]) we
have that

_°°<fBCh0XdﬁE+ BCh()YdﬁzS
< J5 (X +Y)dlg <[5 (X +Y)d;

so if Xand Y are Choquet integrable then also X 4 Y is
Choquet integrable since —oo < | BC (X +Y)dug < 4oo

Moreover for any X € L*(B), let § > 0, by the positive
homogeneity and asymmetry of the Asymmetric Choquet

integral we have

—oo < B [ Xdpg, < [57° BXdIiy <
<[5 BXduj; = B [5" Xdpy < +oe.

Let B <0

Eh”(EX)dué =- BC’”(—IiX)dﬁE =
—(=B) J§" Xdmy < —(—B) [" Xdpj < +oo.

It implies
—oo <[5 (BX)dpjy < +oo
|

Theorem 12 Let (Q,d) be a metric space and let B be
a partition of Q. For B € B denote by s the Hausdorff
dimension of the conditioning event B and by h® the Haus-
dorff s-dimensional outer measure. Let mp be a 0-1 valued
finitely additive, but not countably additive, probability on
#(B). Then for each B € B the functional P(X|B) defined
on the linear space L*(B) by

ﬁ [z Xdh® if 0<h*(B)< +oo

P(X'B):{ mg if h(B) € {0,+oo}

is a coherent upper conditional prevision.

Proof Since L*(B) is a linear space we have to prove that,
for every B € B the functional P(X|B) satisfies conditions
1)-4) of Definition 1. From the definition of P(X|B) we have
that for every conditioning event B the upper conditional
prevision P(-|B) satisfies properties 1) and 2) of Definition
1. Moreover property 3) follows from the given definition
in the case where B has Hausdorff measure equal to zero
or infinity. If B has finite and positive Hausdorff outer
measure in its dimension then property 3), follows from the
Subadditivity Theorem ([5] Theorem 6.3) since Hausdorff
outer measures are monotone, submodular and continuous
from below. From the definition we have P(B|B) =1. W

When the conditioning event B has Hausdorff outer mea-
sure in its Hausdorff dimension equal to zero or infinity,
an additive conditional probability is coherent if and only
if it takes only O — 1 values. Because linear previsions on
L(B) are uniquely determined by their restrictions to events,
the class of linear previsions on L(B) whose restrictions to
events take only the values 0 and 1 can be identified with
the class of 0 — 1 valued additive probabilities defined on
all subsets of B which are in one-to-one correspondence
with filter as established in Walley [24, Section 2.9.8 ].

If the conditioning event B has positive and finite Haus-
dorff outer measure in its Hausdorff dimension the func-
tional P(X|B) is monotone, comonotonically additive, sub-
modular and continuous from below.

In Denneberg [Theorem 8.1] [5] the following result has
been proven:



Theorem 13 (Monotone Convergence Theorem) Let UL be
a monotone set function on a ¢-field F properly contained
in @(Q), which is continuous from below. For an increas-
ing sequence of non negative, F-measurable random vari-
ables X,, in L*(B) the limit function X = limy_.X, is F-
measurable and limy,_. [ X,du = [Xdu.

Remark 1 It is not restrictive to consider in the Monotone
Convergence Theorem sequence of non-negative random
variables since any random variable X can be decomposed
in two comonotonic functions which are its positive part
X7 and its negative part X~ given by:

XT=0vX; X =(-X)"
where \ is the maximum so that X =X+t —X".

Theorem 14 Ler (Q,d) be a metric space and let B be
a partition of Q. For every B € B denote by s the Haus-
dorff dimension of the conditioning event B and by h® the
s-dimensional Hausdorff outer measure. Let F C o(Q) be
a o-field and let K be the class of all F-measurable ran-
dom variables. If B has positive and finite Hausdorff outer
measure in its dimension then the functional defined as
in Theorem 12 is continuous from below, that is given an
increasing sequence of non negative random variables X,,
of K converging point-wise to the random variable X we
have that limy_,.P(Xn|B) = P(X|B).

Proof If B has positive and finite Hausdorff outer mea-
sure in its Hausdorff dimension s we have that P(X|B) =
ﬁ JpXdh'. Since each s-dimensional Hausdorff outer
measure is continuous from below then by the Monotone
Convergence Theorem it follows that the given upper con-
ditional prevision is continuous from below, that is

limy—P(Xn|B) = limn_,iﬁ [ Xndh* =

gy JpXdh' =P(X|B).

Example 2 Ler (Q,d) be a metric space and let B be a
partition of Q. For every B € B denote by s the Haus-
dorff dimension of the conditioning event B and by h® the
s-dimensional Hausdorff outer measure. Let F be the -
field of h*-measurable sets and let K be the class of all
F-measurable random variables. If B has positive and fi-
nite Hausdorff outer measure in its dimension then the
functional defined as in Theorem 12 is continuous from
below, that is given an increasing sequence of non negative
random variables X, of K converging point-wise to the ran-
dom variable X we have that lim,_.P(Xn|B) = P(X|B).

Corollary 15 When the conditioning event has positive
and finite Hausdorff outer measure in its Hausdorff di-
mension the coherent upper conditional prevision defined
in Theorem 12 preserves equivalence between unbounded
random variables with the same distribution.

3. Different Convergences of Coherent
Upper Previsions

It is important to note that, if the convergence of the se-
quence X, of random variables to X is not point-wise as re-
quired in the Monotone Convergence Theorem, we cannot
avoid positive boost function. If for example X, converges
in probability to X ([1] p. 274) and coherent (conditional)
previsions are defined to be continuous with respect to
convergence in probability then for unbounded random
variables, prevision cannot be equal to the expectation and
b(X) = P(X)— E(X) is positive. It occurs because conver-
gence in probability does not assure the convergence of the
integral (see Example 3) so that, for unbounded measur-
able random variables, prevision may be not equal to the
expectation and b(X) = P(X) — E(X) is positive.

The convergence in probability can be extended to an
upper probability u (it is called u-stochastic convergence
in Denneberg [5] p. 97)

Definition 16 Given a coherent upper probability L, a se-
quence X, of random variables converges in [L upper prob-
ability to the random variable X if Ve >0

limy— 1ol (0 € Q| X, (0) — X (w)| > €) =0.

In the paper of Troffaes and de Cooman ([20]) the prob-
lem to extend any given coherent lower prevision to a set
including some unbounded random variables is investi-
gated. Moreover a theory of conditional coherent lower
prevision for random quantities, including unbounded ones
is introduced in Troffaes ([22]). In ([20]) the authors con-
struct a limit procedure, approximating unbounded random
variables by bounded ones. They extend the notion of con-
vergence in probability to an upper probability and call
it convergence hazy since it is similar to the limit proce-
dure of the Dunford integration. The lower prevision can
be defined for an arbitrary random variable X that is the
limit, according to the hazy convergence, of a sequence of
bounded random variables X,,. The lower prevision of X is
defined as the limit of the lower prevision of X, and can
be written as the Dunford integral that is an integral with
respect to a finitely additive probability. For this reason this
integral does not satisfy the Monotone Convergence Theo-
rem. Moreover the limit procedure proposed in ([20]) does
not assure the continuity of the (lower) prevision and so it
cannot be used to solve the problem of losing equivalence
between unbounded random variables with the same dis-
tribution. It occurs because the proposed method is based
on the convergence in probability; in fact even if we define
the prevision by the integral with respect to a countably
additive probability instead of a merely finitely additive
probability as occurs with the Dunford integral, we have
that the convergence in probability does not assure the
convergence of the integral and so the continuity of the
prevision as shown by the following example.



Example 3 Let (Q,F,P) be the probability space with Q=
[0,1], F the Borel c-field of [0,1] and P equal to the
Lebesgue measure on F. Denote by 1(0. 1 the indicator
function of the interval (0, % ) and consider the sequence
of random variables X,, = nZI(O_ 1 We have that X,, con-
verges in probability to X = 0, but [ XdP = 0 while the
limy_sco [ XydP = limy_scon = oo,

4. Disintegration Property of a Coherent
Upper Conditional Prevision Defined with
Respect to Its Associated Hausdorff Outer
Measure

In this section the coherent upper conditional prevision
P(X|B), defined in Theorem 10, is proven to satisfy the dis-
integration property with respect to every non-null partition
B if Q is a set with positive and finite Hausdorff outer mea-
sure in its Hausdorff dimension. In Doria [9] the following
theorem has been proven. Disintegration property for co-
herent linear previsions has been investigated in Seidenfeld
et al. [18] and for coherent lower and upper conditional
previsions in Miranda et al. [13] and Doria [9].

Definition 17 Let Q be a set with positive and finite Haus-
dorff outer measure in its Hausdor{f dimension t and let B
be a countable subclass of disjoint subsets of Q. The chain
M(B*) generated by the subclass B* is defined as the class
containing @, Q and the following sets

Ci=B,,..C,=C,_1UB,,....C = U:lr:an
In Doria [9] the following result has been proven.

Theorem 18 Ler Q be a set with positive and finite Haus-
dorff outer measure in its Hausdorff dimension t and and let
Ug be the coherent upper conditional probability defined

on @(Q) by us = %forA € o(Q). Given a countable
subclass B* of Q containing disjoint sets, denote by A the

o-field generated by the chain M(B*). Then each B € B is
ug-measurable.

Definition 19 Let Q be a set with positive and finite Haus-
dorff measure in its Hausdorff dimension t. Let B be a
partition of Q and let B* be the subclass of B of sets B
with positive upper coherent probability U, thus B is a
non-null partition if u&(Q —Upcp<B) =0.

Theorem 20 Let Q be a set with positive and finite Haus-
dorff outer measure in its Hausdorff dimension t. Thus the
coherent conditional prevision P(X |B) defined in Theorem
10 satisfies the disintegration property on every non-null
partition B of Q.

Proof Q is a set with with positive and finite Hausdorff
outer measure in its Hausdorff dimension ¢ so that the re-

striction Ug(+) = % to the o-field of the A’-measurable

sets, of the upper unconditional probability defined in The-
orem 12, is a countably additive probability. Moreover,
since B is a non-null partition, there is at most a non-empty
countable subclass B* of B of sets B with positive upper
coherent probability ug. By Theorem 18 these sets are
ug-measurable.

Since every random variable X and every constant ¢ in
L*(Q) are comonotonic, we consider the two comonono-
tonic classes C = {P(X|B),c} and C; = {X,c} so that by
Proposition 10.1 of [5] there exist two additive set functions
o, and o on (), which agree with i’ on the o-field of
h'-measurable sets, such that

JoP(X|B)dh' = [o P(X|B)da
and
JpXdh' = [ IpXdh' = [ IpXda = fBXdOt’.

Then for every random variable X € L*(Q) the disintegra-
tion property is satisfied for every non-null partition B since
the following equalities hold:

P(P(X|B)) = ﬁg) [ Pximyan =

- 7@ /Q P(X|B)da =
- & (e 2 ) i -

1 1 .
- BGZB* /B Xda = s /Q Xdh' = P(X).

5. Uniquness of the Representing Coherent
Upper Conditional Probability

Given a metric space (Q,d) we can determine conditions
1 (AB)
h%(B)
where /° is the s-dimensional Hausdorff outer measure, is
the unique fuzzy measure that represents a coherent upper
conditional prevision P(-|B) as Choquet integral.

In Denneberg ([5] Chapter 13), representation theorems
for functionals with minimal requirements on the domain
are examined. Let F be a class of random variables such
that

under which the upper conditional probability y* =

a’) X > 0 for all X € F (non negativity)
b)) aX,XNa,X —XNacFifXcF,acR"

¢) XANY,XVYif X,Y €F (lattice property).



In Proposition 13.5 of ([5]) it is proven that if a functional
I', defined on the domain F, is monotone, comonotonically
additive, submodular and continuous from below then I' is
representable as Choquet integral with respect to a mono-
tone, submodular set function which is continuous from
below. Furthermore all set functions on () with these
properties agree on the set system of weak upper level sets
M={{X>x}|X € FxeR}.

The uniqueness of the representing set function is due to
the fact that the function I'(X A x) determines the distribu-
tion function G, x of an upper (-measurable and positive
random variable X with respect to any set function p rep-
resenting I" since G, x = %F(X Ax) for X € F and for
all x € R If Gy x is right continuous then Gy x is the
derivative from right of [(X Ax)du ([5] Lemma 13.1). If
the domain F is a linear lattice containing all constants this
result can be extended to every bounded random variable.
In fact if X is < O then, since X is bounded, there exists a
constant k suchthatY =X —kecFandY =X -k >0so
that Gy = £T(Y Ax). (Doria [7])

In the next theorem it is proven that if B has positive and
finite Hausdorff outer measure in its dimension s and the
coherent upper conditional prevision P(+|B) is monotone,
comonotonically additive, submodular and continuous from
below then the upper conditional probability defined by the
s-dimensional Hausdorff outer measure 4’ is the unique
monotone set function on the set system of weak upper level
sets M = {{X > x} |X € F,x € R}, which is submodular,
continuous from below and representing P(+|B) as Choquet
integral.

Theorem 21 Let (Q,d) be a metric space and let B be
a partition of Q. For every B € B denote by s the Haus-
dorff dimension of the conditioning event B and by h® the
Hausdorff s-dimensional outer measure. Let F C L*(B) be
a linear lattice of non-negative random variables on B.
If B has positive and finite Hausdorff outer measure in
its dimension and the coherent upper conditional previ-
sion P(:|B) on F is monotone, comonotonically additive,
submodular and continuous from below then P(-|B) is rep-
resentable as Choquet integral with respect to a monotone,
submodular set function which is continuous from below.
Furthermore all monotone set functions on (B) with these
properties agree on the set system of weak upper level
sets M = {{X > x} |X € F,x € R}, with the coherent up-

per conditional probability u*(A) = h;x(?lg) for A € o(B).

Proof F is a linear lattice containing all constants then
conditions a’), b’) and c¢’) are satisfied. So from Propo-
sition 13.5 of [5] we obtain that the functional P(-|B) is
representable by a monotone, submodular, continuous from
below set function. Moreover all set functions with these
properties agree on the set system of weak upper level sets
M={{X>x}|X €F,xeR}. [ |

Every ¢-dimensional Hausdorff outer measure is mono-
tone, submodular and continuous from below but the func-
tional P(-|B) is representable only by the s-dimensional
Hausdorff measure, whre s is the Hausdorff dimension
of the conditioning event, for this reasoning it is called
Hausdorff outer measure associated with P(-|B). In fact the
following cases can be considered:

t < s; the functional P(-|B) cannot be represented by
the Choquet integral with respect to /' because in this
case we would have P(B|B) = [,dh' = h'(B) = o and
it is a contradiction since P(-|B) is a coherent upper
conditional prevision.

t > s then h'(B) = 0; so the functional P(:|B) cannot
be represented by the Choquet integral with respect to
the t-dimensional Hausdorff outer measure because in
this case P(-|B) would be equal to 0 on L x (B) and so
it would not be a coherent conditional prevision since
it does not satisfy the condition P(B|B) = 1, necessary
for the coherence.

So all monotone set functions on &(Q) which are submod-
ular, continuous from below and represent the functional
P(-|B) agree on the set system of weak upper level sets with

the coherent upper conditional probability ©*(A) = ’:A.(ég) .

6. Conclusions

The aim of this paper is to extend the model of coherent
upper conditional previsions defined by Hausdorff outer
measures to domains containing unbounded random vari-
ables. Since the class of the bounded and unbounded ran-
dom variables which admit Choquet integral is not a linear
space, first it is proven that the class L*(B) of all random
variables which have finite Choquet integral with respect
to the coherent upper conditional probability tg and with
respect to its conjugate lower conditional probability is a
linear space. Then, if the conditioning event B has posi-
tive and finite Hausdorff outer measure in its Hausdorff
dimension, a coherent upper conditional prevision P(X|B),
defined as Choquet integral with respect to its associated
Hausdorff outer measure on these domains is proven to
satisfy the Monotone Convergence Theorem. Given a non-
null partition B the coherent upper conditional prevision
P(X|B) is proven to satisfy the disintegration property. The
coherent upper conditional probability g defined by Haus-
dorff outer measure and all monotone set functions which
are submodular and continuous from below and represent
a coherent upper conditional P(X|B), defined on a linear
lattice of random variables contained in L*(B), are proven
to coincide on the class of all weak upper level sets. This re-
sult represents a strong connection between coherent upper
conditional probability defined by Hausdorff outer measure
and other monotone set functions which represent the same
coherent upper conditional prevision.
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