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Abstract
An inferential model encodes the data analyst’s de-
grees of belief about an unknown quantity of interest
based on the observed data, posited statistical model,
etc. Inferences drawn based on these degrees of belief
should be reliable in a certain sense, so we require the
inferential model to be valid. The construction of valid
inferential models based on individual pieces of data
is relatively straightforward, but how to combine these
so that the validity property is preserved? In this paper
we analyze some common combination rules with re-
spect to this question, and we conclude that the best
strategy currently available is one that combines via a
certain dimension reduction step before the inferential
model construction.
Keywords: belief function; conditioning; Dempster’s
rule; Dubois and Prade’s rule; plausibility function;
random set; statistical inference.

1. Introduction

Let Y1 denote observable data, not necessarily scalar, and
let there be a posited statistical model for Y1 depending on
a parameter θ ∈ Θ. Observed data, the statistical model,
and perhaps other things, e.g., a Bayesian prior distribution,
can be used to define a degrees of belief measure for the un-
known parameter θ . This mapping from data, model, etc.,
to degrees of belief is called an inferential model and, as
the name suggests, is intended to be used for statistical in-
ference; see Section 2.1. Our notion of statistical inference
is the process by which data informs an analyst’s beliefs in
assertions about the parameter θ . Although these beliefs are
necessarily subjective—specific to the analyst—we agree
with Reid and Cox (2015) that “calibrated inferences seem
essential.” Therefore, we insist that these beliefs satisfy
an objective validity property (Section 2.2) which implies
frequentist error rate control and, more generally, reliable
inferences for scientific applications. Interestingly, validity
cannot hold for additive degrees of belief, i.e., probabilities,
so we focus exclusively here on non-additive beliefs. Con-
struction of a valid inferential model, using random sets,
was first proposed in Martin and Liu (2013) and then fur-
ther developed in Martin and Liu (2016); a brief overview
is given in Section 2.3.

Now suppose there is second piece of data, Y2, indepen-
dent of the first, whose distribution depends on the same un-
known parameter θ . One can produce an inferential model
for θ based on both Y1 and Y2 but, since they both carry
information about θ , it makes sense to combine the two
in some way. This paper investigates different combina-
tion strategies. A first combination strategy that comes to
mind is Dempster’s rule; see, e.g., Shafer (1976, Ch. 3)
and Dempster (2008, 2014). Here, however, we demon-
strate that Dempster’s rule does not preserve the validity
property. Next we consider a combination strategy coming
from possibility theory (Dubois and Prade, 1988) and show
that, while it does preserve validity in the examples we
consider—and we conjecture that this validity-preservation
holds more generally—it sacrifices in terms of efficiency.
Therefore, since we insist on validity, and desire efficiency,
some other combination strategy is needed.

The two combination strategies discussed above work by
combining the Y1- and Y2-based inferential models. A dif-
ferent approach would be to carry out the combination step
directly on the data, i.e., before constructing the individual
inferential models, and we consider two such strategies in
Section 4. There we show that an approach to combina-
tion based on dimension reduction is able to achieve both
validity and efficiency. In Section 5 we apply this dimen-
sion reduction strategy in two examples, demonstrating the
validity and efficiency of the resulting inferential model.
Some concluding remarks are given in Section 6.

2. Inferential Models

2.1. Definition

For data Y and statistical model M = {PY |θ : θ ∈Θ}, con-
sisting of a family of possible distributions for Y , indexed
by a parameter θ , suppose the goal is to make inference on
θ based on the observation Y = y. An inferential model is
simply a map from these inputs (and possibly more) to a
belief function defined on the parameter space Θ, i.e.,

(y,M , . . .) 7→ by : 2Θ→ [0,1],

with by( /0) = 0 and by(Θ) = 1. Then, by(A) is interpreted
as the data analyst’s degrees of belief about the hypothesis
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A⊆ Θ based on data Y = y, relative to the posited model,
etc. The above mapping is left vague so as to cover many
familiar modes of inference within one inferential model-
ing framework: e.g., Bayesian inference, which includes a
prior distribution for θ and updates according to Bayes’s
formula; generalized fiducial inference (e.g., Hannig et al.,
2016), which includes a data-generating equation and norm;
and the approach in Martin and Liu (2016) described below,
which includes a data-generating equation and an appro-
priate random set. The distinguishing feature of the latter
approach is that the direct incorporation of a random set
ensures that the inferential model output is a non-additive
belief function. Non-additivity turns out to be important in
the context of statistical inference, as we discuss next.

2.2. Validity Property

It was recently shown in Balch et al. (2017) that inferential
models that produce additive beliefs, i.e., probabilities, as
output suffer from what is called false confidence. That is,
there always exists false hypotheses to which the inferential
model tends to assign large beliefs. So if one agrees with
Reid and Cox that systematically misleading inferences
should be avoided, as we do, then it is necessary to consider
non-additive inferential models; see, also, Martin (2019).
But non-additivity alone is not enough, some additional
constraints are needed.

An inferential model is said to be valid if ∀ α ∈
(0,1), ∀ A⊆Θ

sup
θ 6∈A

PY |θ{bY (A)> 1−α} ≤ α. (1)

In words, assigning high belief to false hypotheses—those
that do not contain the true θ—is a rare event relative to the
posited model. This prevents false confidence and, thereby,
systematically misleading conclusions.

Define the dual function py(A) = 1−by(Ac). Here, fol-
lowing Shafer (1976), we will refer to by and py as belief
and plausibility functions, respectively. Since (1) covers all
hypotheses, an equivalent condition can be expressed in
terms of plausibility: ∀ α ∈ (0,1), ∀ A⊆Θ

sup
θ∈A

PY |θ{pY (A)≤ α} ≤ α. (2)

In words, this says that hypotheses which are not false—
those that contain the true θ—will tend to be assigned
relatively high plausibility.

The validity property offers a sort of calibration, so that
it is clear what it means for a hypothesis to have “small”
plausibility. It also immediately leads to decision proce-
dures with guaranteed control on the frequentist error rates.
In particular:

• the test that rejects H0 : θ ∈ A if and only if py(A)≤ α

has Type I error probability no more than α;

• and the set {ϑ : py({ϑ})> α} has coverage probabil-
ity at least 1−α .

Our main goal is to produce valid inferential models, but
since a valid inferential model is not necessarily unique, a
notion of efficiency may help to identify a best valid model.
For example, a hypothesis test which never rejects the null
hypothesis is trivially valid, but clearly inefficient. Formally,
we may think of efficiency as the extent to which the the
outer inequality holds in (2). If this inequality actually holds
with equality, then there is no loss of efficiency, whereas if
this inequality is strict, then there is some loss of efficiency.

2.3. Constructing Valid Inferential Models

It turns out that some care is needed to construct a valid
inferential model. To our knowledge, what follows is the
only general construction.

A-step Define an association consistent with the posited
model. That is, introduce a function a such that data Y from
distribution PY |θ can be simulated by the algorithm

Y = a(θ ,U), U ∼ PU , (3)

where U ∈ U is an auxiliary variable and its distribution,
PU , is known, i.e., does not depend on any parameters.
Given a, define the set-valued maps

Θy(u) = {ϑ : y = a(ϑ ,u)}, u ∈ U.

P-step Introduce a suitable random set S, with distri-
bution PS, taking values in 2U, designed to predict the
unobserved value of the auxiliary variable U.

C-step Finally, combine Θy and S to get a new random
set

Θy(S) =
⋃
u∈S

Θy(u). (4)

Then the distribution of Θy(S), as a function of S∼ PS, for
fixed y, determines the inferential model output:

by(A) = PS{Θy(S)⊆ A}.

Under certain conditions on the user-specified S, it can be
shown that the inferential model constructed above achieves
the validity property in (1). Indeed, the required condition
is that the plausibility contour for S be calibrated to PU in
the sense that γ(U)≥st Unif(0,1), as a function of U ∼ PU ,
where γ(u) = PS(S 3 u) is the coverage function. While
this condition might be unfamiliar, it is actually relatively
easy to arrange; in fact, the random sets in the examples
that follow are all simple, and yet they satisfy the sufficient
conditions of the aforementioned theorem. For more on
this random set calibration property, see Chapters 4–5 of
Martin and Liu (2016).



2.4. Simple Normal Example

Suppose data Y has distribution PY |θ = N(θ ,1). Construc-
tion of a valid inferential model is straightforward in this
case, but we give the details here for illustration.

A-step Write Y = θ +U, where U ∼ PU = N(0,1), which
is fully known. This yields Θy(u) = {y−u}, a singleton.

P-step Since the target is an unobserved draw from
N(0,1), it makes sense to introduce a random set that is
symmetric around 0. Here we take

S= {u : |u| ≤ |Ũ |}, Ũ ∼ N(0,1).

Note that γ(u) = 2{1 − Φ(|u|)}, so γ(U) is exactly
Unif(0,1) when U ∼ N(0,1).

C-step Putting the two previous pieces together gives

Θy(S) = {ϑ : |y−ϑ | ≤ |Ũ |}, Ũ ∼ N(0,1). (5)

Then, for example, the corresponding plausibility contours
are given by

py({ϑ}) = 2{1−Φ(|y−ϑ |)}, (6)

where Φ is the standard normal distribution function.

3. Combination Strategies
Suppose we have two independent data points, Y1 and Y2,
both of which carry information about the same parameter
θ ; note that it is not necessary that the statistical models
for the two be identical, e.g., in regression, the response
variables have different distributions, due to the explanatory
variables, but the parameters are the same in both models.
We can construct valid inferential models for θ based on
y1 and y2 individually using the strategy described above,
but then how to combine?

3.1. Dempster’s Rule

Dempster’s rule says to combine by working with the inter-
section of the random sets defined by (4), conditioned on
the event of no conflict. That is, Dempster’s belief function
bD

y (A) for the combined inferential model is

PS1,S2

{⋂2
i=1 Θyi(Si)⊆ A

∣∣∣⋂2
i=1 Θyi(Si) 6=∅

}
, (7)

where y = (y1,y2) and PS1,S2 is the joint distribution of
(S1,S2) under S1 ∼ PS1 and S2 ∼ PS2 , assumed indepen-
dent; see, e.g., Section 4.1 in Kohlas and Monney (1995).

The question here is if the two individual inferential
models are valid, will combining them via Dempster’s rule
preserve their validity? Denœux and Li (2018) discuss the
construction and application of belief functions with certain
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Figure 1: Plausibility contours based on the two individ-

ual observations, y1 = 6.13 and y2 = 7.72 (gray),
along with those based on Dempster’s combina-
tion rule (red); Dubois and Prade’s rule (green,
Section 3.2); the naive rules based on r = 2 (blue)
and r = ∞ (cyan, Section 4.1); and the optimal
rule (black, Section 4.2).

calibration properties but they do not investigate their com-
bination via Dempster’s rule. It turns out that Dempster’s
rule does not preserve validity, as the following example
demonstrates.

Let Y1 and Y2 be independent and identically distributed
(iid) N(θ ,1), and write pyi for the plausibility function in
(6) based on random set Si, i = 1,2. To combine these two
valid inferential models, we can insert the random sets (5)
into the Dempster’s rule formula (7). Here we write out
the plausibility contour for the combined inferential model
based on Dempster’s formula. This is a rather tedious cal-
culation but, in the end, for y = (y1,y2) Dempster’s plausi-
bility contour pD

y ({ϑ}) equals

4{1−Φ(|y1−ϑ |)}{1−Φ(|y2−ϑ |)}
1−{Φ(2−1/2|y1− y2|)−Φ(−2−1/2|y1− y2|)}2 .

To visualize this, Figure 1 plots this Dempster’s rule-based
combined plausibility contour, the two individual plausi-
bility contours in (6), and a few others to be defined later.
As expected, the peak of the combined plausibility contour
is directly in between the two individual peaks, but the
magnitude of the peak is much smaller, a consequence of
the wide spread between the two data points in this case.

To the main question about validity of the combined
inferential model, if validity did hold, then we would ex-
pect that pD

Y ({θ}), for the true θ , would have distribution
stochastically no smaller than uniform. However, as we see
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Figure 2: Distribution function α 7→ PY |θ{p•Y ({θ})≤ α}
for plausibility contours based on Dempster’s
rule (red), Dubois and Prade’s rule (green), and
the naive rule with r = ∞ (cyan), and the opti-
mal (black); the distribution function for r = 2 is
under the black line.

in Figure 2, based on 104 samples of Y = (Y1,Y2), its dis-
tribution is situated considerably far to the left of uniform.
Therefore, we can safely conclude that the combined infer-
ential model, based on Dempster’s rule, does not satisfy the
validity property.

That Dempster’s rule fails preserve the validity prop-
erty is perhaps not surprising, since that rule was devel-
oped without any sort of calibration properties in mind.
As the example above reveals, Dempster’s rule yields
plausibility contour values, pD

Y ({ϑ}) that tend to be too
small. In particular, we desire pD

Y ({θ}) to be relatively
large at the true θ , but Figure 2 shows that its distribution
is concentrated in [0.3,0.6], with virtually no mass near
1. What would make the pD

Y ({θ}) values larger? Ideally,
Θy1(S1)∩Θy2(S2) would contain θ for all/most realiza-
tions of S1 and S2, but this is not automatic. Indeed, since
S1 and S2 are independent, it is possible to have one wide
and one narrow, in which case Θy1(S1)∩Θy1(S2) misses
ȳ and, likely, θ too. Unfortunately, conditioning on the
intersection being non-empty does not correct for this.

3.2. Dubois and Prade’s Rule

Equation (63) in Dubois and Prade (1988) gives a formula
for combining two (or more) possibility distributions. Since
the two valid inferential models constructed above are
based on nested random sets, the corresponding plausibility
contours are possibility distributions, so we can combine
them using Dubois and Prade’s formula. For the case of

two plausibility contours, the rule is relatively simple:

pDP
y ({ϑ}) =

py1({ϑ})∧ py2({ϑ})
supt py1({t})∧ py2({t})

,

where “∧” is the min operator. The idea behind this rule is
that the minimum shrinks the individual plausibility con-
tours towards a central region where both are relatively
large; then the denominator is just a normalizer that makes
the maximum value 1. In that normal example, this expres-
sion simplifies:

pDP
Y ({ϑ}) =

pY1({ϑ})∧ pY2({ϑ})
pY1({Ȳ})

, (8)

where Ȳ = (Y1 +Y2)/2 is the average; in the denominator,
Y1 could be replaced by Y2, both expressions would have the
same numerical value. A plot of this function for a single
pair of observations is shown in Figure 1 and its peak at ȳ
and tighter spread than the individual plausibility contours
is clear.

Again the question is if this combination strategy can
preserve the validity property of the individual inferential
models being combined. It turns out that, at least for the nor-
mal example considered here, validity is preserved under
Dubois and Prade’s rule.

Let (W1,W2) := (pY1({θ})∧ pY2({θ}), pDP
Y ({θ})), the

numerator of the plausibility function and itself, at the true
θ value. After some routine-but-tedious calculation, it can
be shown that the joint density of (W1,W2) is given by

w1

w2
2

φ(Φ−1(1−w1/2)−2Φ−1(1−w1/2w2))

φ(Φ−1(1−w1/2w2))
,

for 0 ≤ w1 ≤ w2 ≤ 1 where φ = Φ′ denotes the standard
normal density function. By numerically integrating first
over w1 and then over the region W2 ≤ w2, we produce
the distribution of pDP

Y ({θ})) shown in Figure 2. Since the
distribution function of pDP

Y ({θ})) is strictly larger than
a uniform, validity is preserved under combination, but
the figure shows signs of inefficiency. It is possible for the
plausibility values to be smaller, hence a narrower plau-
sibility contour, without sacrificing validity. But this and
Figure 1 both suggest that there may not be much room for
improvement.

4. Alternative Combination Strategies
4.1. Naive Approach

It was mentioned above that nothing about the inferential
model construction was specific to having only a single
data point. So a naive strategy is to write the association
as the pair/system of associations based on the individual
data points. In that normal mean example in Section 3, this
yields an auxiliary variable U = (U1,U2), a pair of indepen-
dent standard normals, to be predicted with a random set.



With only a single N(0,1) auxiliary variable, the symmetric
interval random set was most natural, but with even just a
pair, there are lots of reasonable choices. Two that we will
consider here are

S= {u : ‖u‖r ≤ ‖Ũ‖r}, Ũ ∼ N2(0, I2), r = 2,∞.

That is, we consider random sets shaped like circles and
squares, both can be viewed as generalizations of the sym-
metric random interval used in Section 2.4. With a little
bit of effort, the inferential models based on the circle and
square random sets can be derived and their respective
plausibility contours are given by

pN
y ({ϑ}) =

{
1−F2(‖y−ϑ12‖2

2) r = 2
1−{2Φ(|y1−ϑ |∨|y2−ϑ |)−1}2

1−{2Φ(2−1|y1−y2|)−1}2 r = ∞,

where y = (y1,y2) denotes the pair of observations, Fk de-
notes the chi-square distribution function with k degrees of
freedom, and “∨” is the max operator. It follows from the
general theory in Martin and Liu (2016) that both are valid,
but the two differ in very important ways.

To see how the two differ, first note that, for the r = ∞

case, Figure 2 shows that the distribution is to the right
of Unif(0,1), which confirms validity, but suggests ineffi-
ciency. In the r = 2 case, pY ({θ}) has exactly a Unif(0,1)
distribution when θ is the true parameter, but its plausibility
contour, displayed in Figure 1, still suggests inefficiency
since its tails are wider than the optimal contour. To better
understand this inefficiency, suppose that ϑ is inside the
usual 95% confidence interval, i.e.,

√
2|ȳ−ϑ |< 1.96.

Then the plausibility contour for the r = 2 case satisfies

pN
y ({ϑ}) = 1−F2(‖y− ȳ12‖2

2 +2|ȳ−ϑ |2)
> 1−F2(‖y− ȳ12‖2

2 +1.962).

In this case, ‖y− ȳ12‖2
2 tends to be close to 1, hence less

than 1.962, which implies pN
y ({ϑ})> 0.05. So we can con-

clude that the 95% plausibility interval, based on r = 2,
contains the usual 95% confidence interval (with high prob-
ability), hence inefficiency. Figure 1 plots this plausibility
contour (r = 2) against the “optimal” one, among others,
and the former’s wider spread is a consequence of the inef-
ficiency just described.

4.2. A More Efficient Approach

The above inefficiency is a result of having to predict a
two-dimensional auxiliary variable, U , for only a scalar
parameter, θ . This suggests that efficiency can be gained
by reducing the dimension, but how? The key insight, first
discussed in Martin and Liu (2015), is that, when the aux-
iliary variable has higher dimension than the parameter,

certain features of it are actually observed. Those observed
features do not need to be predicted, hence an opportunity
to effectively reduce the dimension. Moreover, by condi-
tioning on the values of those observed features, prediction
of the unobserved features can also be improved, hence
even more efficiency gains.

In cases where there is information about a common
parameter, θ , coming from multiple sources, it is possible to
rewrite the baseline association, Y = a(θ ,U), with U ∼ PU
of dimension greater than that of θ , as

Tθ (Y ) = b(θ ,τ(U)) and H(Y ) = η(U),

for suitable one-to-one mappings y 7→ (Tθ (y),H(y)) and
u 7→ (τ(u),η(u)); often T can be chosen free of θ , but see
Section 5.2. The motivation for making such a change is
that the second component does not involve θ , i.e., the
feature η(U) of U is observed, even though U is not. This
implies that we only need to predict the lower-dimensional
τ(U) with a random set and, moreover, we can condition
on the observed value of η(U) to sharpen those predictions.
This process will be described below, after we discuss how
to find the aforementioned mappings.

There are a number of ways to identify these mappings,
the most common being based on sufficient statistics. How-
ever, in certain non-regular cases, like the example in Sec-
tion 5.2, sufficiency may not lead to a satisfactory reduction
in dimension, so some more sophisticated techniques are
needed. Here we focus on an approach based on solving a
suitable differential equation.

Start by noticing that the unobserved U be a solution
uy,θ to the equation y = a(θ ,u). So in order for η(U) to
be observable, it must be that η(uy,θ ) is not sensitive to
changes in θ . In other words, it must be that

∂η(uy,θ )

∂θ
= 0.

Of course, we can apply the chain rule to re-express this as

∂η(u)
∂u

∣∣∣
u=uy,θ

·
∂uy,θ

∂θ
= 0, (9)

which is advantageous since the derivative of uy,θ with
respect to θ is often relatively straightforward. (The di-
mensions of the objects in the above display are left am-
biguous here because they can vary from one context to
another.) Sometimes it is possible to solve this equation
via guess-and-check, in other cases more formal strategies,
such as the method of characteristics (e.g., Polyanin et al.,
2002), are needed. Once η is found, τ can be identified
by the one-to-one constraint; similarly, H is determined by
H(y) = η(uy,θ ) and then T can be worked out too by its
connection to H and τ .

Given the pair (τ,η), we make a change of auxiliary
variable, to V1 = τ(U) and V2 = η(U). Then the A-step



proceeds by specifying the set-valued map Θy(v1) = {ϑ :
T (y) = b(ϑ ,v1)}. The relevant distribution is that of V1,
given V2 = h, derived from PU , where h = H(y) is the
value corresponding to the observed data Y = y. So, for the
P-step, introduce a random set S= S(h) designed to predict
a realization from PV1|V2=h. Finally, the C-step combines
the A- and P-step results to get a new random set Θy(S

(h))
and gets a corresponding belief and plausibility function
just like before,

by(A | h) = PS(h){Θy(S
(h))⊆ A,} and

py(A | h) = 1−by(Ac | h).

As a quick illustration, consider the example with a
pair of observations Y = θ12 +U . Solving for u gives
uy,θ = y− θ12 and differentiating with respect to θ give
∂uy,θ/∂θ = −12, a constant vector. So we need η to be
such that ∂η(u)/∂u is, say, a 2×2 matrix that sends con-
stant vectors to 0. One option is to take η(u) = Mu, where
M = I2−2−1121>2 is the matrix that projects onto the space
orthogonal to 12. Then the feature of U that is observed
is the “residuals,” i.e., U −Ū12 = Y − Ȳ 12. In the normal
case, V1 = τ(U) = Ū is independent of the residuals, η(U),
so conditioning is unnecessary. The result is an inferential
model based on Ȳ = θ +V1, the obvious choice based on
sufficiency, which corresponds to the plausibility contour
displayed in Figure 1.

5. Examples
5.1. Normal Fixed-Effects Model

Consider a generalization of the simple normal exam-
ple above, namely, the fixed effects model where Y =
(Y1, . . . ,Yn) and Yi∼N(θ ,σ2

i ), independent, with σi known,
i = 1, . . . ,n. Start with a baseline association

Yi = θ +σiUi, Ui ∼ N(0,1), i = 1, . . . ,n.

From here, it is straightforward to follow the approach
described in Section 2.4 and get plausibility contours,
pyi({ϑ}), for each individual observation and then combine
them according to Dubois and Prade’s rule to get pDP

y ({ϑ}).
See below for more on this.

Towards a potentially more efficient solution, follow the
approach outlined in Section 4.2. That is, start by writ-
ing uy,θ = diag(ω)(y−θ1n), where ω = (σ−1

1 , . . . ,σ−1
n )>.

Clearly, the derivative is ∂uy,θ/∂θ =−ω , a constant vector,
so a solution to the differential equation (9) is η(u) = Mu,
where M = I−‖ω‖−2

2 ωω> is a projection onto the space
orthogonal to ω . A complementary function is τ(u) =
ω>u/‖ω‖2

2, and the baseline association can be rewritten
as

T (Y ) = θ + τ(U) and H(Y ) = η(U),

where T (y) = ‖ω‖−2
2 ∑

n
i=1 ω2

i yi and H(y) = diag(ω)(y−
T (y)1n). In this case, it is easy to see that τ(U) and η(U)
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Figure 3: Plot of the plausibility contours for the n = 3

individual data points (gray), the combination
based on Dubois and Prade’s rule (green), and
that in (10) for the normal fixed-effects model.

are independent—so conditioning has no effect—and V =
τ(U) has a normal distribution with mean 0 and variance
‖ω‖−2

2 . Using the same random set as in Section 2.4, we
arrive at a combined plausibility contour

p?y({ϑ}) = 2
{

1−Φ
(
‖ω‖−1

2 |T (y)−ϑ |
)}

. (10)

For a quick comparison of this combined inferential
model compared to that based on Dubois and Prade’s
rule above, see Figure 3 for a plot of the plausibility con-
tours for a single data set consisting of n = 3 observations
with σ = (1,2,4). Both combined plausibility contours hit
roughly the center of the three observations, and have a nar-
rower spread—both about the same—than the individual
contours, a result of the information gained from combi-
nation. However, the peak of pDP

y is at a different point
than that of p?y , but it turns out that the latter, T (y), is the
maximum likelihood estimator, which is optimal. Figure 4
plots the distribution function of pDP

Y ({θ}) and p?Y ({θ}),
where θ is the true value, and again we see that Dubois
and Prade’s rule preserves validity but suffers some loss of
efficiency.

5.2. Curved Normal Model

Suppose we have n iid samples from a curved normal dis-
tribution, i.e., N(θ ,θ 2), where the common θ in both the
mean and variance is unknown; see, e.g., Searls (1964),
Khan (1968), and Gleser and Healy (1976). This problem is
non-regular in the sense that the minimal sufficient statistic
is two-dimensional while the parameter is one-dimensional.
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Figure 4: Plot of the distribution function α 7→
PY |θ{p•Y ({θ}) ≤ α} for Dubois and Prade’s
rule (green) and the dimension reduction rule
(black) in the normal fixed effects model.

Therefore, an estimator is necessarily not a sufficient statis-
tic, so some information would be lost without some non-
trivial adjustments. The usual strategy is to work with the
conditional distribution of the estimator, given the value of
an ancillary statistic (e.g., Fraser, 2004; Ghosh et al., 2010;
Reid, 1995, 2003). The approach here, based on ideas in
Section 4.2, is similar in spirit, but different in terms of
both the rationale and the particular form of the solution.
The more general version of this problem, as discussed in
Brazauskas and Ghorai (2007), can be handled similarly.

Start with a baseline association in terms of the two-
dimensional minimal sufficient statistic, Y = (Y1,Y2),
namely,

Y1 = θ + |θ |U1 and Y2 = |θ |U2, (11)

where Y1 and Y2 denote the sample mean and standard
deviation, respectively, with U1 ∼N(0,n−1) and U2

2 ∼ (n−
1)−1ChiSq(n− 1), independent. For a given y = (y1,y2),
we have u = uy,θ = |θ |−1(y1−θ ,y2)

>, and differentiating
with respect to θ gives

∂u
∂θ

=−θ
−1(sign(θ)+u1,u2

)>
,

where sign(θ) ∈ {−1,+1} denotes the sign of θ . Then it
is easy to see that

η(u) = u−1
2
(
sign(θ)+u1

)
has a derivative that is orthogonal to ∂u/∂θ , hence is a
candidate solution to our problem. It is slightly troubling
that this η depends on the parameter, through sign(θ), but

there are two ways to resolve this. Here, only for simplicity,
we will assume that sign(θ) is known, which is not unrea-
sonable, but one can alternatively employ the localization
technique in Martin and Liu (2015, Sec. 6) that allows for
certain dependence on the parameter.

To complete specification of the mappings, note that
τ(u) = u1/u2 complements η in the sense that, together,
they make a one-to-one mapping. Moreover,

H(y) := η(uy,θ ) =
sign(θ)+ |θ |−1(y1−θ)

|θ |−1y2
=

y1

y2
,

the ratio of sample mean to variance. Finally, we take Tθ ,
depending on θ in this case, to be Tθ (y) = y−1

2 (y1−θ).
Next, let V1 = τ(U) and V2 = η(U); also write h= y1/y2

for the observed value of V2. Then we need the conditional
distribution of V1, given V2 = h, derived from the distribu-
tion of U described above. The calculation is somewhat
tedious, but the density gh for that conditional distribution
is given by

loggh(v1) = const+3log
∣∣ 1

h−v1

∣∣− n
2

( v1
h−v1

)2

+(n−2) log
( sign(θ)

h−v1

)
− n−1

2

( 1
h−v1

)2
,

where sign(θ)/(h−v1)> 0. We are now ready to complete
the construction.

A-step Write the dimension-reduced association as
Tθ (Y ) = V1, where V1 ∼ gh. This defines the mapping
v1 7→Θy(v1) = {ϑ : Tϑ (y) = v1}.

P-step For the random set that aims to predict the unob-
served value of V1, we suggest the highest-density region,
namely,

S(h) = {v1 : gh(v1)≥ gh(Ṽ1)}, Ṽ1 ∼ gh,

C-step Combine the two previous steps to get

Θy(S
(h)) = {ϑ : gh(Tϑ (y))≥ gh(Ṽ1)}, Ṽ1 ∼ gh,

and compute the belief and plausibility as discussed above.
In particular, for ϑ > 0 the plausibility contour is given by

py({ϑ}) = PV1|V2=h{gh(V1)≤ gh(Tϑ (y))}. (12)

A plot of the plausibility contours using the above ap-
proach and Dubois and Prade’s formula based on a sample
of size n = 10 from the curved normal distribution with
θ = 2 is shown in Figure 5. In this case, Dubois and Prade’s
rule combines the two separate plausibility contours based
on the baseline association for the mean and standard de-
viation in (11). As a follow-up, we carried out a small
simulation experiment to compare the performance of this
inferential model to that based on a high-quality fiducial
solution. We simulated 10,000 data sets of size n = 10
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Figure 5: Plot of the plausibility contours in the curved
normal example in Section 5.2, with n = 10 and
θ = 2 the true value: the plausibility contour in
(12) (black), the contours based on the associa-
tion in (11) (gray), and Dubois and Prade’s rule
combining the two (green).

with θ = 2 as the true value and computed 95% confidence
intervals for each method. Table 1 reports the estimated
coverage probability and mean lengths of these intervals.
As we can see, the inferential model hits the coverage prob-
ability target, a consequence of the validity property, while
the fiducial solution falls a bit short. As expected, in order
to achieve the target coverage probability, our proposed
intervals have to be a bit longer, but this is a small price to
pay for provable coverage claims.

Table 1: Coverage probability and mean length of interval
estimates derived from the generalized fiducial
approach in Pal Majumdar and Hannig (2015)
compared with that of the valid inferential model
constructed in Section 5.2.

Coverage probability Mean length

Fiducial 0.932 1.45
IM 0.946 1.56

6. Conclusion

The first part of this paper considered the combination
of valid inferential models via the rules of Dempster and
Dubois and Prade. The conclusion was that, unfortunately,
Dempster’s rule did not preserve validity while Dubois and
Prade’s rule did preserve validity but with a slight loss of
efficiency. This, of course, is not an exhaustive list of the
available combination rules, and future work will not only
investigate the validity-preservation properties of Dubois
and Prade’s rule but also dig deeper into the belief function
combination literature for alternative rules; we thank the
reviewers for suggesting Daniel (2000), Smaradanche and
Dezert (2006), Smets and Kennes (1994), and Yager (1987).

We went on to consider different combination strategies
based on auxiliary variable dimension reduction, which
allows one to achieve both validity and efficiency. At a
high level, the main difference between the two classes
of combination rules considered here is that the first carry
out the combination after the individual inferential models
have been constructed, whereas the second class does the
combination before the inferential model construction. An
interesting question, to be explored elsewhere, is if there
exists a combination rule, operating on the individual in-
ferential models themselves, not on the raw data, that can
achieve both validity and efficiency. This is important be-
cause, in certain cases, such as meta-analysis applications,
one may not have access to the raw data, only the inferential
models reported from the individual analyses.
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