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Abstract
Simulation studies are becoming increasingly impor-
tant for the evaluation of complex statistical methods.
They tend to represent idealized situations. With our
framework, which incorporates dependency structures
using copulas, we propose multidimensional simula-
tion data with marginals based on different degrees
of heterogeneity, which are built on different ranges
of distribution parameters of a zero-inflated negative
binomial distribution. The obtained higher and lower
variation of the simulation data allows to create lower
and upper distribution functions lead to simulation data
containing extreme points for each observation. Our
approach aims at being closer to reality by considering
data distortion. It is an approach of examining clas-
sification quality in case of measurement distortions
in gene expression data and might propose specific
instructions of calibrating measuring instruments.
Keywords: Simulation studies, Copula, Imprecise
probabilities, Lower and upper distribution function,
Distorted measurements, Classification, Single-cell
RNA-sequencing data, Statistical genetics

1. Introduction

In the context of gene expression there are up to 30%
of measurements with missing data, as Yang et al. [16]
indicate. This phenomenon can be traced back to the failure
of measuring low read counts and the stochastic nature
of gene expression. But it is not only known that gene
expression in the lower range of the count data is difficult
to measure. Another property of the sequencing procedure,
which is the process of measuring gene expression, is that
the upper sequencing range of the gene expression is also
more sensitive to outliers. Therefore, measurements of
gene expression do not always reflect reality which justifies
the motivation of incorporating distortion of measuring
tendencially higher and lower values into simulation data.

In this paper we show how the extent of different degrees
of heterogeneity as well as distorted measurements with
and without dependence structure affect the quality of a
typical procedure in single-cell genetics concerning the

classification of two subpopulations.

Thus, we will create three different scenarios for
each subpopulation which represent a homogeneous
and a heterogeneous population as well as a mixture of
both. The homogeneous population will be constructed
containing the smallest range of possible gene expression,
whereas the heterogeneous population allows for a higher
variability of possible gene expression. The mixture of
both populations allows values with a range lying in
between these populations. The pointwise lower and upper
distribution functions were formed over the simulation
data of the three scenarios for each target group. These
are inspired by imprecise probability theory and should
express the situations that compared to the real data
situation, higher and lower ribonucleic acid (RNA) values
were measured during the sequencing procedure.

Each of the created simulation situations based on
the three scenarios as well as the distorted data will be
analysed assuming that the genes are independent of each
other, but also assuming the same dependence structure as
the one given by the scRNA-sequencing data set provided
by the authors Kolodziejczyk et al. [6]. The generation of
simulation data allows keeping the dependence structure
between genes as well as the marginal distributions. For
the choice of the marginal distribution we decided to use
the zero-inflated negative binomial distribution (ZINB) as
it approximates best the measurement of gene expression
in the context of single-cells (= read counts) [see 15]. If
the dependence structure was not taken into account but
simulated under independence, these high-dimensional
data would lead to dependence structures of individual
genes that cannot be controlled. This might have an
influence on the classification results. With our approach
it can be ensured that each of both target groups have the
same dependence structures between the individual genes
as in the used real data. This approach allows to set the
focus explicitly on the simulated values. Thus, it is possible
to examine the influence of distorted measurements in
detail.
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For each simulation study with and without dependence
structure containing different numbers of genes we want
to evaluate the classification quality that a single-cell is
correctly assigned to the respective subpopulation. This
is done by taking the adjusted Rand index (ARI) [see e.g.
13], which is equal to 1 when the classification perfectly
corresponds to the given single-cell populations and 0 in
case of random assignment.

The paper is organized as follows. In Section 2, the
construction of simulation data reflecting the different
degrees of heterogeneity based on the marginal distribu-
tions of ZINB are described. Section 3 describes how we
use the theory of lower and upper distribution functions
to generate distorted data reflecting more or less reliable
data based on the scenarios presented in Section 2. Taking
the dependence structure of genes into account in the
simulation data by using copulas can be found in Section
4, which also contains the notation and theory of copulas.
The results of the final simulation data are summarized
in Section 5, followed by the conclusion, discussion and
outlook in Section 6.

All the conducted steps presented below are based on
appropriate packages of the R program (version 3.5.1) or
were implemented in R by the first author.

2. Situations Reflecting Different Degrees of
Heterogeneity

The aim of this section is to determine the influence of un-
reliable meausurements on the classification quality in the
view of two subpopulations. We introduce a new framework
of creating simulation data by defining three different sce-
narios for each subpopulation respectively, representing a
homogeneous (Scenario 1) and a heterogeneous population
(Scenario 3) as well as a transition scenario of those (Sce-
nario 2). This leads total to three simulation data (Scenario
1, Scenario 2, Scenario 3) containing two subpopulations
n(1)= 250 and n(2)= 250.

2.1. Use of Reference Data for Different Degrees of
Heterogeneity

The original single-cell data set of Kolodziejczyk et al. [6]
that was used as reference contains 295 single-cells of
single-cell population 1 and 250 single-cells of single-cell
population 2. Based on the gene expression of each of
these subpopulations, the target groups of the simulation
data were constructed. The sample size was chosen
close to the publicly available, real single-cell RNA-seq
data set of Kolodziejczyk et al. [6] to represent realistic
scenarios in our simulations. The simulation data were also
inspired by the quantiles of the estimated parameters of the

original genes following a zero-inflated negative binomial
distribution for the underlying structure of our scenarios.

The choice of the zero-inflated negative binomial
distribution is based on recent research that states that
the marginal distribution of gene expression can be
approximated best by the zero-inflated negative binomial
distribution following Wagner et al. [15]. Therefore,
the parameters describing a zero-inflated negative bino-
mial distribution were respectively estimated from the
real data based on the single-cells belonging to each
of the two single-cell populations. The zero-inflated
negative binomial distribution is a mixture of a point
mass at zero and the negative binomial distribution as
count distribution. This allows an inflation of observing
a zero read count, which is represented by the first
summand. The second summand stands for the nega-
tive binomial distribution, e.g. Kleiber and Zeileis [5], [17]:

fZINB(X j = x) =

{
π j +(1−π j) fNB(0) if x = 0
(1−π j) fNB(x) if x ∈ N

with

X j: Random variable describing
the counts of the j-th gene (j = 1, ..., m)

π j: Weight of the zero-inflation
x: Observed read count
µ: Mean
φ : Shape parameter

For the generation of the simulation data, a general-
ization of the negative binomial distribution was used
which is a mixture of Poisson distributions with a gamma
distributed Poisson rate. The corresponding probability
density function is the following:

fNB(x) = f (x|µ,φ) = Γ(x+φ)
Γ(φ)·x! ·

µx·φφ

(µ+φ)x+φ

This generalization of the negative binomial distribution
allows φ to be continuous. In the implementation we use
the parameters µ ∈ R+, describing the expectation of the
negative binomial distribution and its dispersion parameter
φ ∈ R+. The parameter π will describe the fraction of
zero-inflation as introduced above.

For our simulation data, we focused on genes that
follow a zero-inflated-negative binomial distribution in
both subpopulation 1 and subpopulation 2. We excluded
genes with a proportion of 80 % or more zeros and with
read counts never exceeding the value 2 over all measured
single-cells. Genes not having a zero-inflation of their
measurements are fitted to a negative binomial distribution.
Applying these calculations to the originally 30 200



available genes, 26 856 genes are in compliance with these
criteria, which leads to 26 856 estimates of the parameter
vector for the negative binomial or zero-inflated negative
binomial distribution per target group using the R package
emdbook [1]. The construction of this simulation study is
based on all the 7225 genes that fulfilled the criteria above
following a zero-inflated negative binomial distribution in
both subpopulations of the reference data.

2.2. Undistorted Simulation Data

In order to simulate from an imprecise setting we consider
different scenarios with different interval widths, which are
determined by the different parameter intervals of µ ,φ and
π for each scenario in target group 1 (Group 1) and target
group 2 (Group 2).

The simulation design based on the quantiles of the es-
timated parameters of the 7225 genes will generate simu-
lation data that are ZINB distributed. Scenario 1 describes
the most homogeneous scenario, which is the reason for the
determination of the narrowest parameter interval which
leads to the smallest difference in the range of values in the
subsequent sampling process. Accordingly, Scenario 3 is
constructed as the broadest parameter interval, since it is
intended to represent the most heterogeneous scenario. The
transition Scenario 2 lies in between Scenario 1 and Sce-
nario 2. As shown in Table 1 the difference in quantiles for
both target groups increases for each scenario of parameter
µ (Sc. 1: 45%, Sc. 2: 60%, Sc. 3: 70%) as well as for φ and
π (Sc. 1: 10%, Sc. 2: 20%, Sc. 3: 30%).

µ φ π

Sc. Group 1 Group 2 Group 1, Group 2 Group 1, Group 2
1 [35%-80%] [15%-60%] [45%-55%] [45%-55%]
2 [25%-85%] [10%-70%] [40%-60%] [40%-60%]
3 [20%-90%] [5%-75%] [35%-65%] [35%-65%]

Table 1: Quantiles of the estimated ZINB parameters of the
reference data that are used for the construction
for each scenario of target group 1 and target
group 2.

Based on simulation studies we investigated the influence
of the different parameters towards clustering quality and
came to the result that the parameter µ has the highest
influence on the clustering quality, which was the reason for
allowing a broader range for Scenario 1-3. This means more
variation for this parameter during the sampling process as
well as a higher range of Scenario 2 and 3 compared to the
remaining parameters. In order to facilitate the detection
of a difference between the two target groups based on a
lower number of genes (m = 50,100,500) as in the real
setting, target group 2 was constructed with lower values
as target group 1. The remaining parameters were based on

the same quantiles for each target group as they do not play
a decisive role with regard to the classification result.

Based on the determined quantile ranges of the parame-
ters µ , φ and π , we construct the corresponding parameter
intervals from the reference data for group 1 (see values
Table 2) and group 2 (Table 3):

Sc. µ1 φ1 π1
1 [45, 293] [0.27, 0.47] [5.30*10−7, 0.01 ]
2 [27, 397] [0.24, 0.55] [3.65*10−7, 0.04]
3 [19, 576] [0.18, 0.78] [2.28*10−7, 0.08 ]

Table 2: Constructed intervals of the ZINB parameters of
each scenario describing group 1.

Sc. µ2 φ2 π2

1 [12, 112] [0.27, 0.47] [4.85*10−7, 2.11*10−5 ]
2 [6, 171] [0.23, 0.55] [3.26*10−7, 2.91*10−2]
3 [2, 217] [0.17, 0.82] [2.18*10−7, 6.11*10−2 ]

Table 3: Constructed intervals of the ZINB parameters of
each scenario describing group 2.

For both subpopulations, the parameters describing the
marginal distribution (ZINB) of each gene for target group
1 and group 2 are obtained by drawing out of the possible
ranges for each parameter, assuming a discrete uniform
distribution. The described procedure (see Table 2 and
Table 3) is conducted for each of the three scenarios.

This leads to parameter set for group 1:

θ
(1) = {µ(1)

1 ,φ
(1)
1 ,π

(1)
1 ,µ

(1)
2 ,φ

(1)
2 ,π

(1)
2 ,µ

(1)
3 ,φ

(1)
3 ,π

(1)
3 },

and equivalent for group 2:

θ
(2) = {µ(2)

1 ,φ
(2)
1 ,π

(2)
1 ,µ

(2)
2 ,φ

(2)
2 ,π

(2)
2 ,µ

(2)
3 ,φ

(2)
3 ,π

(2)
3 }.

Based on the m sampled parameters θ
(1)
l for each

scenario l of target group 1 and θ
(2)
l for target group 2, the

simulation data are constructed by generating n1 = 250
and n2 = 250 random numbers out of a zero-inflated
negative binomial distribution for m genes. As a final step,
the individual subgroups are joined such that simulation
data with the dimension ((n1 +n2) x m) are created. This
represents the situation of "No dependence structure" of
the undistorted simulation data.



3. Constructing Distorted Data via Lower
and Upper Distribution Functions

In this subsection the simulation data with distortion built
on the constructed scenarios will be presented. These up-
wardly and downwardly distorted data are based on the
gene-wise lower (Fj

(g)) and upper (Fj
(g)) distribution func-

tions according to Montes et al. [7] for each target group
g (g = 1,2). Therefore, we derive functions Fj

(g), Fj
(g):

R→[0,1], by

Fj
(g)(x) = in f{F(g)

j (x) : F(g)
j ∈F

(g)
j },

Fj
(g)
(x) = sup{F(g)

j (x) : F(g)
j ∈F

(g)
j }.

The set of possible distribution functions of each gene of
each target group (F (g)

j ) is limited to the three different
scenarios.

We will investigate simulation data being biased upwards
as well as being biased downwards. Therefore, we deter-
mine F̂j and F̂j on the read counts x of the gene-wise upper
and lower estimated distribution functions for each single-
cell of the constructed simulation data set representing the
different scenarios l for group g

F̂j
(g)
(x) = inf

l=1,2,3
F̂j

(g)
(x | θ (g)

l ),

F̂j
(g)
(x) = sup

l=1,2,3
F̂j

(g)
(x | θ (g)

l )

and consider the concatenation of the determined gene
expression of all the single-cells over all m genes as
distorted data.

This means, that in contrast to the classical imprecise
probability definition of considering the set of all possible
distribution functions constituting the lower and upper
distribution function, we take the infimum and supremum
distribution value of each single-cell for each gene over the
three constructed scenarios. This means that the distorted
data are generated according to the lower and upper
distribution functions. This approach leads to gene-wise
distribution functions that are no longer distributed to
ZINB. The intention behind the construction of these
distorted data is that we want to analyse the effects on
the quality of clustering in case we obtained tendencially
decreased read counts with the measuring instrument or
increased read counts. It will be investigated how the
distribution of these biased read counts is changed by
taking the upper and lower distribution function. This is
illustrated for target population 1 in Figure 1 and target
population 2 in Figure 2 using the cumulative distribution
function.

The lower distribution function (blue) reflects the situa-
tion of read counts being biased upwards for fictional gene
3. Given the instrument has a tendency to measure smaller
values is represented by the upper distribution function
(red) in the following two figures:

Figure 1: Lower and upper cumulative distribution func-
tion of simulated gene 3 for group 1 using the
statistical software R [9].

Figure 2: Lower and upper cumulative distribution func-
tion of simulated gene 3 for group 2 using the
statistical software R [9].



Applying the described procedure of lower and upper
distribution functions on m genes and combining them as
described in the case of the undistorted data leads to the
distorted simulation data with "No dependence structure".

With regard to these distortions in both directions, we
will later analyse the classification results without depen-
dence structure and with dependence structure. This brings
us to the last extension of our simulation data, described in
the next subsection of taking the dependence of genes into
account.

4. Dependence Structure Using Copulas

Since the marginals in gene expression data have already
been studied quite well and the dependence structure can be
estimated on the basis of real data sets, the use of copulas
for the construction of our simulation data is justified.
Thus, the idea using copulas in a gene-based context in
our simulation data leads to a construction of generating
univariate marginal distributions Fg

j for each gene j
keeping the underlying univariate marginal distributions
Fj as well as keeping the same dependence structure as
in the real data set for both target groups. Based on this
motivation, the principle of copulas will be introduced
in the first step based on the distribution function for
two genes of group g. The described application will be
extended towards distorted measurements, but first of
all we would like to briefly recall on the concept of copulas.

Given a function C fulfills the following aspects (1)-(3)
and allows a mapping of [0,1] x [0,1]→ [0,1], then C can
be well described as a copula, e.g. Nelsen [see 8] :

(1) C(F(g)
1 , F(g)

2 ) = C(0, F(g)
2 ) = 0, ∀ F(g)

1 , F(g)
2 ∈ [0,1]

(2) C(F(g)
1 ,1) = F1 and C(1,F(g)

2 ) = F(g)
2 ∀ F(g)

1 , F(g)
2 ∈ [0,1]

(3) C(F(g)
1 (x2),F

(g)
2 (x2))-C(F(g)

2 (x2),F
(g)
2 (x1))−

C(F(g)
1 (x1),F

(g)
2 (x2))+C(F(g)

1 (x1),F
(g)
2 (x1))≥ 0,

∀F(g)
1 (x1)≤ F(g)

1 (x2),F
(g)
2 (x1)≤ F(g)

2 (x2)

In order to obtain the joint distribution function
F(g)

X (x1, ...,xm) in higher dimensions m for one target
group, one can construct a copula function over all
marginal distributions. Sklar [12] states that one can find a
copula function of family v over all marginal distributions,
which leads to the joint distribution function, that keeps the
univariate marginal distributions:

F(g)
X (x1, ...,xm) =Cv(F

(g)
1 (x1),F

(g)
2 (x2), ...,F

(g)
m (xm))

This theorem will be later used for the creation of
undistorted datasets respecting the dependence structure.

With the introduction of copulas it is possible to consider
non-linear dependence structures [see 8]. Based on the
fact that gene expression below a certain limit cannot be
measured during the sequencing procedure, it is assumed,
that genes tend to have a higher correlation in the low value
range. There might also be a dependence in the higher
value range as genes can contain outliers and extreme
single-cells might tend to have genes with extremely high
gene expression.

For example, it is possible that the Pearson correlation
in the data is very low, but if one takes a closer look at a
scatter plot of two genes, it could show a high dependence
structure, as it is the case with the reference data. This
observation can be explained by an underlying non-linear
dependence in the data, which is considered using copulas.

4.1. Use of Reference Data for Dependence Structure

For the construction of the dependence structure using
a copula, we assume the dependencies of m genes from
the original count data of Kolodziejczyk et al. [6] as true.
The built copula represents the joint distribution of the
originally observed m genes and remains fixed for each
simulation study (with fixed m). The dependence structure
obtained by the real data, is based on both single-cell
populations in order to prevent group specific effects.

With the use of the VineCopula R package of Schep-
smeier et al. [10], the structure is generated by the R-vine
tree which is maximized over the edges of the spanning
tree with regard to the empirical Kendall’s tau τ̂i j:

max ∑
edges ei j∈ spanning tree

| τ̂i j |,

with a spanning tree as a tree which is based on all nodes.

In each simulation data set, the allowed copula families
of constructing the tree are based only on the specified
copula family for each target group using the same genes
in the original data for both subpopulations. The structure
selection algorithm of Dissmann et al. [2] constructs all
possible pairwise copulas of the given copula family
and chooses those parameters which correspond to the
maximum likelihood estimation.

4.2. Simulation Data With Dependence Structure

For each simulation study, the situation of assuming
the genes to be independent will be defined as "No
dependence structure". With the use of the terms "Gaussian
Cop", "Clayton Cop" and "Frank Cop", we designate the
simulation data keeping the same marginals like in the "No



dependence structure" setting and sample out of the built
copulas for respecting the same data structure using the
Gaussian copula, the Clayton copula and the Frank copula.

The application of each copula with the defined
dependence structure for each scenario as well as for
the constructed distorted data sets, generates a common
distribution function. For each of the scenarios one can
generate the simulation data by applying the quantile
function with the sampled parameters for each gene. In the
case of the distorted data, we do not have the parametric
marginals anymore as they are no longer zero-inflated
negative binomially distributed. So we computed in
accordance to the upper and lower cumulative distribution
function, the lower and upper quantile function in order
to sample from the joint distribution, keeping the same
marginals.

In addition to the classical construction of copulas intro-
duced above, the copulas will also be used for undistorted
datasets, actually for downwardly distorted count data and
for upwardly distorted count data. Following the fact, that
Fj

(g) and Fj
(g) are again cumulative distribution functions,

allows to determine the joint distribution over all m genes
by using the following copula construction of family v [see
7, 14]:

Cv(F1
(g), ...,Fm

(g)) and Cv(F1
(g)
, ...,Fm

(g)
)

5. Results

This lead to the final simulation data with and without
dependence structure for distorted and undistorted data
and for different numbers of genes m. Each of these
combinations was analyzed on the basis of 50, 100 and 500
genes. All the simulation studies contained 500 single-cells
with 250 single-cells representing each target group. For all
simulation studies, we first classified the gene expression
assuming there is no dependence structure between the
genes. In addition, we studied the influence of different
copulas (Gaussian, Clayton and Frank copula) fitted to the
same original count data, given the same number of genes.
Taking the same dependence structure over each target
group as in the reference data, allowed a better comparison
of the simulation studies as we focused on the marginal
distributions and decided to keep the fitted structure fixed
over each simulation design. This applied not only to the
distorted data, but also to each scenario.

Before presenting the classification results, we want
to point out the intention behind the construction of the
different simulation datasets once again. The simulation
data of each scenario represents different ranges of

possible read counts. Scenario 1 allows the smallest range
of parameters for the ZINB distribution and therefore
represents the most homogeneous scenario. Scenario 3
contains the broadest range of possible parameters and
therefore reflects the most heterogeneous data situation of
all the scenarios, containing also the most homogeneous
scenario (Scenario 1). As the range of the parameters
for Scenario 2 lies in between the one of Scenario 1 and
3, one can state that Scenario 2 is a transition scenario
from homogeneous to heterogeneous. The simulation data
set which was created by the lower distribution function
represents the data set situation of measuring tendencially
higher read counts. With the construction of the upper
distribution function, one aims to reconstruct read counts
that are tendencially biased downwards.

In the following, a k-means clustering of the mclust R
package of Scrucca et al. [11] is performed creating two
clusters with and without using the dependence structures
of the Gaussian, Clayton and Frank Copula. For evaluating
the clustering quality, the adjusted Rand index is applied,
which is also implemented in the R package mclust. In
accordance to the undistorted data, the assumption that the
single-cells of different target groups are independently
distributed is still valid for distorted data. Therefore it
does not cause any problem to simply merge the data sets
constructed for each target group to obtain a whole data set
containing both subpopulations for each simulation data
set.

5.1. Results of the Undistorted Data

Based on the construction of the undistorted data, which
are represented by the three scenarios, one can assume that
detecting the different subpopulations might be easier in
the third scenario compared to the second and first scenario.
This assumption can be confirmed in the case of the in-
dependent settings for 50, 100 and 500 genes with regard
to the adjusted Rand Index, which is displayed in Table
4 , 5, and 6. In case of considering dependence structures
in the simulation data, this statement is only valid for the
simulation data of all investigated numbers of genes using
the Gaussian copula and for the Clayton copula in the di-
mension of using 500 genes. All in all, one can state that in
the lowest dimension, the Gaussian copula performs best
for scenarios tending to be more heterogeneous. In case of
a very homogeneous data situation it seems as if the choice
of the Frank copula was the best. With 100 and 500 genes,
the Frank copula performs best in every scenario.



Scenario 1 Scenario 2 Scenario 3
No dependence structure 0.32 0.49 0.55

Gaussian Cop 0.46 0.53 0.63
Clayton Cop 0. 42 0.41 0.38
Frank Cop 0. 60 0.47 0.53

Table 4: ARI for the simulation data for n1= 250, n2= 250,
m= 50 (Simulation study 1 of undistorted data
only).

Scenario 1 Scenario 2 Scenario 3
No dependence structure 0.52 0.71 0.87

Gaussian Cop 0.68 0.70 0.70
Clayton Cop 0. 42 0.41 0.38
Frank Cop 0. 92 0.80 0.91

Table 5: ARI for the simulation data for n1= 250, n2= 250,
m= 100 (Simulation study 2 of undistorted data
only).

Scenario 1 Scenario 2 Scenario 3
No dependence structure 0.65 0.85 0.98

Gaussian Cop 0.88 0.88 0.93
Clayton Cop 0.49 0.49 0.51
Frank Cop 1 1 0.99

Table 6: ARI for the simulation data for n1= 250, n2= 250,
m= 500 (Simulation study 3 of undistorted data
only).

To conclude at this stage, one has to pay attention to the
choice of the right copula. Especially in the case of simu-
lation data, one should not create independent simulation
data as a simplification of reality. One should rather pay
attention to the right choice of copulas which can achieve
better results compared to an independence structure.

5.2. Results of the Distorted Data

In the following, we describe the classification results of
the distorted data, which can be found in Table 7, Table 8,
and Table 9. The clustering performance of the distorted
data was always better in case of using the lower distribu-
tion function compared to the upper distribution function
in the setting of an independence structure as well as in
the setting of the Gaussian, Clayton and Frank copula. In
addition, one can state that with the use of the lower dis-
tribution functions the clustering performance gets better
with an increase of the dimension. The only exception is
the clustering performance of the Frank copula using 100
genes instead of 50 genes, which leads to a decrease of
the adjusted Rand index from 0.63 to 0.61. In case of the
lower distribution function, the Clayton copula performs
the worst. Choosing the best performance in using 50 and

100 genes, one obtains the best classification result using
an independence structure. In the highest dimension of 500
genes, the Frank copula performs best.

Lower Distribution Upper Distribution
No dependence structure 0.80 0.14

Gaussian Cop 0.49 0.41
Clayton Cop 0.29 0.24
Frank Cop 0.63 0.20

Table 7: ARI for the simulation data for n1= 250, n2= 250,
m= 50 (Simulation study 1 of distorted and undis-
torted data).

Lower Distribution Upper Distribution
No dependence structure 0.90 0.18

Gaussian Cop 0.49 0.35
Clayton Cop 0.34 0.24
Frank Cop 0.61 0.17

Table 8: ARI for the simulation data for n1= 250, n2=
250, m= 100 (Simulation study 2 of distorted and
undistorted data).

Lower Distribution Upper Distribution
No dependence structure 0.93 0.30

Gaussian Cop 0.75 0.27
Clayton Cop 0.47 0.14
Frank Cop 0.97 0.01

Table 9: ARI for the simulation data for n1= 250, n2=
250, m= 500 (Simulation study 3 of distorted and
undistorted data).

The performance of clustering having tendencially lower
read counts is not going to be interpreted because the results
are quite bad and can almost be compared to a random
assignment of observations to the target groups.

6. Conclusions, Discussion and Outlook

6.1. Conclusions

With the construction of the upwards and downwards
distorted data of the three scenarios it was possible to
generate distorted simulation data. The values of the upper
distribution functions reflect the situations containing
lower gene expression, whereas the lower distribution
functions contain upper distortions of the simulated values
of each scenario. Due to the fact that only positive values
(including zero) can be generated out of the ZINB means
that the deviations in the upper measuring range can
vary distinctively more than in the lower range of values.
In connection with the measured gene expression, the



immense outliers are often also addressed in the analysis
of real scRNA-seq data sets. This is another indication
that the simulation data might represent well the real data
situation of single-cells.

One can state for the classical simulation studies that
choosing the right copula can improve the clustering
performance. Specifying the effect of different copulas on
distorted data requires further analysis.

The phenomenon of the natural ranges of the lower
distribution and upper distribution simulation data might be
the explanation for the bad performance of the simulation
data of the upper distribution. This leads to the conclusion
that in the extreme case of measuring always the highest
value one allows higher variation of gene expression
which leads to an easier distinction of the target groups.
Whereas in the case of measuring tendentially always
the lowest value only brings little variation of gene
expression and leads to less adequate classification results.
In accordance to this statement, we have seen that the
clustering performance tends to be better, the more
heterogeneous the data are. We can further conclude that
the clustering behaviour of the undistorted data improves,
the more genes are used. This fact can also be observed
in the case of using lower distributions but that does not
apply to the distortion based on the upper distributions for
the reasons already mentioned.

The proposed approach has been a first step to provide
simulations showing consequences of distorted measure-
ments towards the ability of assigning single cells to the
right group membership. The approach has been designed
to represent the extreme cases of distorted data. For a more
in depth investigation into each direction of distortion it
might be appropriate to continue developing tools of deter-
mining distortion based on well defined scenarios.

6.2. Discussion and Outlook

With the decision of creating simulation data based on
quantiles, we set the focus on genes with a tendency
of a homogeneous gene structure without outliers since
imprecise measurement might play a higher role in these
situations. Therefore, the range of obtained results might
nicely reflect the imprecision of the real measurements
of gene expression. In case of using the lower (upper)
distribution function, the tendency of measuring always
higher (lower) gene expression than the real one, might
reflect the measurement error of an instrument that has the
tendency of measuring higher (lower) gene expression.

The construction of distorted simulation data might
nicely correspond to the idea that the measured gene
expression can be distorted into both directions. Especially

the case of having strong outliers can have a high impact
on the classification result. With our simulation studies, we
investigated the clustering behaviour based on maximal
500 genes, but in reality there are several thousands of
genes to analyse. Choosing the lower and upper distribution
function, constructed by the infimum and supremum of
different distribution functions, might not be a valid choice
in a higher dimension setting anymore. Given we would
generate the lower and upper distribution functions in even
higher-dimensional settings and given we still have the
three defined scenarios, then the proportion of those read
counts, which are located at the respective boundaries of
the value range, would increase. Thus, the final clustering
would take place increasingly on read counts with very
little gene expression or on genes with very strong outliers,
depending on the construction of the respective scenarios.

Further research should focus more on the role of lower
and upper distribution functions in the context of p-boxes
[see 3, 4], describing a whole set of scenarios and on
decision procedures relying on the whole induced credal
set. Thus, for a future project, it would be interesting
how a construction of a less clear scenario would affect
the clustering performance. Another point that could be
discussed, is how to improve the sampling procedure
underlying the simulation, in order to use simulations
closer to the idea of truly interval-valued probability, but
this is a general topic that clearly goes far beyond the scope
of this paper.

Regarding the dependence structure, one could further
determine the influence of the used copula families
using vine copulas, especially in a distorted setting. As
a further step, it would also be of interest to look at the
defined scenarios with the help of imprecise copulas [see 7].

Concerning the application of the obtained results, one
imaginable conclusion of this simulation study would
be whether it might be worth to calibrate measuring
instruments further down or being more precise in the
higher value range of count data. As extreme outliers often
occur during the measurement of single-cell RNA gene
data, it is not a surprise, that this tends to have an impact
on the clustering result. Our tool might help to analyze the
consequences of distorted measurements and might help
to give assessments of how distorted measurements could
affect the quality of the classification result. In addition,
with a more precise investigation of the impact of outliers
on the classification results it can be studied whether these
outliers are useful for classification or not.

In accordance with our classification results, measuring a
tendency of lower read counts than reality does not result in
worse clustering performance at least in a low dimensional



context. So, the current state-of-the-art, which tends to miss
low read counts, has a lower impact than misspecifying
high read counts. Based on our new findings, we question
the current approach of calibrating measuring instruments
in the low sequencing ranges and demand further analyses
that also take distortions in the higher measuring range into
account.
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