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Abstract

The paper summarizes the author’s experience in dealing
with the Dempster-Shafer theory relating to reliability
assessments and demonstrates how to make component
and system reliability assessments based on the theory of
coherent imprecise previsions. The procedure of prior
imprecise probability elicitation of components is based
on analogical reasoning, and two cases of precise and
imprecise probabilities of prototypes are considered.
Cases of combining different reliability judgements on
the same component are analyzed. The formulae obtained
for system reliability assessments allow getting the lower
and upper probabilities without the presumption of a
conditional independence. An example of system
reliability calculating was considered.
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1 Introduction

Obtaining grounded, explanatory and credible prior
reliability assessments is an important task. As a matter of
fact, the decision to put a technical object into operation
is based on exclusively prior assessments of reliability,
risk and other attributes. This issue is most prominent for
large-scale and unique installations and actions, failures
of which can lead to dramatic losses. No specific failures
precede putting a technical installation into operation.
Furthermore, for non-repeatable actions, prior
assessments will be final, being unchangeable in the
future due to the absence of failures. In many cases, rare
occurrences cannot constitute representative samples with
the aim of making substantially more precise posterior
assessments compared to prior ones. That is, the
expectations of representative samples will not come true
and we cannot count on post-action qualifications and,
therefore, have to seek faithful methods and theories to
get prior reliabilities of components and systems.

Some introspective analysis can demonstrate that in
complicated situations of decision making we cannot
determine what actions are more preferable. This happens
when we suffer from a lack of subject matter knowledge.
This indeterminacy is natural and should be taken into
consideration when modeling. A precise probabilistic
analysis always gives a determinate decision, and it
cannot be considered a faithful reflection of reality. The
use of precise probabilities might be dangerously
misleading when making crucial decisions. This issue is
related directly to reliability and risk analyses of large-
scale potentially hazardous installations.

Imprecise probabilities are intended to make prior
assessments and allow for reliability experience and
model indeterminacy that is caused by the state of
information at hand. They are therefore sometimes
referred to as the models of the state-of-knowledge
uncertainty. There are several theories of imprecise
probabilities and they work differently in practice, in
reliability practice in particular. The Dempster-Shafer
theory of evidence and the theory of possibility have been
considered to be the most promising theories for
reliability and safety assessments, however they have
been under frequent serious criticism by experts in the
area of safety and reliability analyses.

The objective of the paper is to give some summaries of
the author’s experience in dealing with the Dempster-
Shafer theory relating to reliability assessments and to
demonstrate how to solve some reliability problems with
the help of the theory of coherent imprecise previsions.

2 Experiences in the Dempster-Shafer
Theory

The criticism of the Dempster-Shafer theory is based on
several points. The first is the failure of Dempster’s rule
of combination to produce rational results in the case of
inconsistent combined pieces of information. Another
crucial argued disadvantage of this rule is its inability to
combine opinions of different people with overlapping



experiences, making it hardly applicable in safety
analysis practice [8]. Furthermore, it turned out that the
theory could produce inferences that are formally
incoherent [5]. The conclusion in [8] is that the usefulness
of the Dempster-Shafer theory and the theory of
possibility in probabilistic safety assessments is very
doubtful at this time and that this theory should be
subjected to the same degree of scrutiny as that applied to
the theory of probability.
Attempting to implement the Dempster-Shafer and
possibility theories into risk and reliability analyses, the
authors of the paper also encountered some difficulties
that could not be solved in the frameworks of these
theories. The main experienced drawbacks are described
below. (Details on the concepts of the Dempster-Shafer
theory can be found, for example, in [4]).

2.1 Combination of Homogeneous Bodies of Evidence

The combination of knowledge in a rational way is
essential to prior reliability and safety assessments.
Therefore a reliable rule of combination is required to
work with homogeneous, heterogeneous, consistent and
inconsistent pieces of information. Let us consider a case
of the combination of homogeneous judgements where it
seemed the rule produces good results.

There aren judgements on an eventA in the form of
simple support functions,Belk(A)=pk, where k=1,…,n.
Source basic assignmentsmk obtained from the support
functions are:mk(A)=pk, mk(Ω)=1-pk, k=1,…,n. From
Dempster’s rule of combination the following result for
combined value of basic probability assignmentm1…n(Ω)
can be obtained
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It is observed thatm1…n(Ω) tends to zero asn tends to
infinity. Sincem1…n(Ω) → 0 asn → ∞, hencem1…n(A) →
1, sincem1…n(A) = 1- m1…n(Ω). This result tells us that
independently of the valuesBelk(A) the combined belief
function will be close to1 when the number of combined
belief functions is large. This conclusion renders the
results of the combination irrational when combining
many experts’ opinions.

2.2 Combination of Inconsistent Pieces of
Information

Let there be two conflicting bodies of evidence for the
same eventB, Bel1(B) = PA1, Pl1(B) = 1, Bel2(B) = 0,
Pl2(B) = PA2 andPA1 > PA2. WhenPA1 is close to0 and
PA2 is close to1, these belief functions represent the fact
that expert 1 strongly feels that eventA will occur; on the
other hand, expert 2 strongly feels that it will not occur.
Basic probability assignments for this case arem1(B) =

PA1, m1(B∪Bc) = m1(Ω) = 1 - PA1, m2(B
c) = 1 - PA2,

m2(B∪Bc) = m2(Ω) = PA2, whereBc is the complement of
B. In combining these two bodies of evidence we can see
that there is one conjunction equal to∅, B ∩ Bc = ∅.
Therefore the probability massm1(B)m2(B

c) should be
distributed between the rest of mass probabilities by
renormalization of the basic probability assignment
through the constantρ = (1 - m1(B)m2(B

c))-1 = (1 - PA1(1 -
PA2))

-1. Thus, the new assignment ism1,2(B) = ρ PA1 PA2,
m1,2(B

c) = ρ (1 - PA1)(1 - PA2), m1,2(B∪Bc) = m1,2(Ω) = ρ
(1 - PA1)PA2. Eventually we getBel(B) = ρ PA1 PA2, and
Pl(B) = ρ (PA1 PA2 + (1 - PA1)PA2) = ρ PA2. The result
tells us if, for example,Bel1(B) = PA1 = 0.9 andBel2(B

c)
= PA2 = 0.1, then the combination isBel(B)=0.47 and
Pl(B)=0.526. This should be considered intuitively
inconsistent, since the two extremely conflicting opinions
are combined to form quite strong consensus.

2.3 Judgements Admitted in Elicitation

The diversity of direct judgements admitted in a theory of
imprecise probabilities is an important point relating to
reliability assessment practice. When making judgements
in the framework of the Dempster-Shafer theory we must
bear in mind the following interpretations of belief
functions and basic assignment:Bel(A)measures the total
belief that the special element is inA, whereasm(A)
measures the amount of belief that one commits exactly
to A alone (Shafer [4] and Yager [9]). In fact, the analysts
must pose their questions to the experts in such a manner
that the experts have to judge whether a special unknown
element is confined inA or not. In some practical
situations it would be difficult to adjust an issue in a
manner matching the idea of the theory. For example, I
could not find a way of constructing a belief function
from the evidence: ‘The reliability of component B is at
least as probable as the reliability of prototype A’, where
A’s reliability is imprecise, that is,Bel(A)andPl(A) were
known for A. This kind of comparative evidence appears
when comparing the reliabilities of two analogous
components. It is obvious that this is evidence that could
be useful for prior assessments, but it is difficult to
construct the belief and plausibility functions. This is just
one example, and there are many more situations where
we can suffer from the poor variety of probability
judgements to express beliefs in whatever forms are most
natural and meaningful for the experts.

The judgement of conditional independence is needed in
most problems to cope with systems reliability
assessments. In fact, this judgement is a strong structural
constraint that should be justified and not taken for
granted as is often the case. In doing prior assessments it
is difficult sometimes to decide in advance whether
events are dependent or not. It is a worthy feature of a
theory of probability to leave room for making systems
reliability assessments without constraining the analysts
with the necessity of making arbitrary or ungrounded



conclusions. The Dempster-Shafer theory does not
possess this feature, but the theory of possibility and
coherent imprecise probabilities does. It is clear that the
cost of a weaker judgement is a lower precision, but in
some problems it might be enough and definitely more
faithful representation.

2.4 Dependence of Imprecision on the Amount of
Information.

One of big advantages that are expected from employing
a theory of imprecise probability is the dependence of
upper and lower probabilities on the amount of
information at hand. For reliability and risk assessments
the most important post-action source of information is
the number of failures that have happened. The question
arises: How can we model the dependence ofBel andPl
functions on the number of occurrences that have
happened? Since the theory is built on the terms of basic
assignments, we have to embed this dependence on the
number of occurrences in the basic probability numbers
m. But these probability masses are precise, which makes
it difficult to find a straightforward way to allow for this
obvious dependence.

As a final remark, Dempster’s rule of combination can
produce formally incoherent inferences [5], which can
negatively effect some practical decisions through
incurring sure loss.

The above observations regarding to the Dempster-Shafer
theory of evidence should be known for those who are
going to use the theory in reliability and safety
assessments.

3 Imprecise Prior Reliability Assessments

The latest theory of coherent imprecise probabilities [5],
[6], [7] appears to take into account the previous
experience in the field, avoid the disadvantages of the
predecessors and represent more comprehensive and
flexible tools for practitioners.

3.1 Key Concepts of the Theory

(Details on the theory can be found in [5]). The
mathematical theory of imprecise probabilities is based
on abehavioral interpretationand the three fundamental
principles: avoiding sure loss, coherence and natural
extension. The basic concept relating to the behavioral
interpretation is the concept of agamble.

A gambleis a bounded real-valued function defined on
domain Θ. A gamble should be interpreted as a reward
whose value depends on the uncertain stateθi∈Θ,
i=1,…,n. If you accept the gambleA, then at some later
time the true stateθk will be determined and you will
receive the rewardA(θk), in units of utility.

The probabilistic models on which the theory is based are
lower previsions and their corresponding upper
previsions. In this paper we will consider a particular case
of gambles for which the reward can be either 0 or 1. In
this case lower and upper previsions are calledlower and
upper probabilitiescorrespondingly. Alower probability
P is a real-valued function defined on some class of
gamblesK, whereK is called the domain ofP. P(A) is
interpreted as a supremum price you are willing to pay for
the gambleA, which pays 1 unit if eventA occurs (and
nothing otherwise). Thus each event is identified with a
gamble, and for both an event and a gamble we will keep
the same notation. Theupper probabilitycan be written

as )(1)( cAPAP −= , where Ac is the set-theoretic
complement ofA.

G(A)= A-P(A) is called themarginal gambleon A, since
G(A)+ε is desirable to you for all positiveε. That is,G(A)
is “almost desirable”, we will denote alsoG(A) ∈ D,
whereD is a set of almost desirable gambles.

Throughout this paper the following definition of the
natural extension is implicit (it is a consequence of the
lower envelope theorem [6]). So, the classM=M(D)

consists of all linear previsionsP such thatP(A) ≥ 0 for
all A in D. (When the lower and upper probabilities
coincide and are coherent, they are calledlinear
probabilities and denoted byP(A)). ProvidedD avoids
sure loss,M is a non-empty set and the natural extension
consists of all gamblesA, such thatP(A)≥ 0 for all P in
M. The corresponding lower and upper previsions are

defined byP(A)=min{P(A): P∈M} and P (A)=max{P(A):
P∈M}.

The rule of combination of several sources of information
discriminates between consistent and inconsistent
judgements/models. The combined lower and upper
previsionsP and P for the two consistent judgements
P1(A), P1 ( A ) and P2(A), P2( A) are defined as follows
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This rule is called theconjunction rule.

For inconsistent judgements an alternative rule can be
used that is called theunanimity rule. According to this
rule, the combined lower and upper previsionsP and P
are:
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3.2 Analogy-Based Procedure of Reliability
Elicitation

In [2], [3] an analogical approach to prior reliability
elicitation was offered and briefly described. The main
idea of the approach was to analyze analogous
components (prototypes), the reliabilities of which are
known. Then, through a procedure of comparing
dissimilarities and similarities of the component of
interest with the analogs, to elicit reliability assessments
that, how it was shown, can be only of imprecise nature.
We will consider below that the analogical analysis has
been done and we deal with the outcomes of it. The
outcomes of this analysis can be of four types

1) Pr(B) ≥ Pr(A),
2) Pr(B) ≤ Pr(A),
3) Pr(B)∼ Pr(A), (3)
4) indeterminacy,

where symbol “∼” means indifference between the two
gambles A and B (lack of difference or distinction
between them, that is, we cannot see any reason to assert
that the reliability of B will be either higher or lower than
A). Pr(A) is a shortened designation of the phrase
“Probability of an eventA”, andA denotes a success state
of the prototype A andAc is the failure of A.B and Bc

denote success and failure states for the analogous
component B. In a broad sense, if an event or a kind of
behavior meets a predetermined criterion, whatever the
criterion is, then we say it is a success. If the criterion is
violated, then a failure occurs [10].

Consider two different cases of prototypes’ reliabilities:
when they are precise and imprecise.

3.3 Precise Prototypes’ Reliabilities

Let PA denote a known prototype’s precise reliability. For
precise probabilities of prototypes the first two outcomes
of (3) can be rewritten 1)Pr(B) ≥ PA, 2) Pr(B) ≤ PA.
Behavioral interpretation and results in terms of lower
and upper probabilities of these judgements are presented
respectively as follows:1) PA is a maximal price which
can be paid for gambleB, that is(B - PA) ∈ D (D is a set
of almost desirable gambles)� P(B – PA) = P(B) – PA ≥
0 � P(B)=min{P(B):P(B)≥PA}=PA, and P (B )=
max{P(B):P(B)≥ PA}=1 ; 2) PA is a minimal selling price
for B, that is(PA - B) ∈ D� P(PA - B) = PA - P(B) ≥ 0�
P(B)=min{P(B):P(B)≤PA}=0 , and P (B )=max{P(B):P(B)
≤ PA}= PA; 3) any of two gambles is desirablePA - B and
B - PA, that is (PA – B) ∈ D � (see No. 2)P(B)=0 and
P (B )=PA, and (B-PA) ∈ D � (see No. 1)P(B)=PA, and
P (B )=1. The combination of the two generated models
according to (1) givesP(B)=P (B )=PA; 4) beliefs about
two events (gambles) are indeterminate when the events
A andB are not equivalent for us, but between which we

cannot figure out preference. Experts’ and our choices are
simply not determined by the current state of mind or
knowledge.

We can only see the result of prior reliability elicitation
by use of two forms[0,PA] or [PA,1].

Consider now two prototypes A1 and A2 with reliabilities
PA1 andPA2 (PA1 ≠ PA2) and a component B, analogous to
both A1 and A2. To take advantage of having the two
sources of reliability information on the component of
interest B, the two evidences have to be combined into a
single imprecise probability model. The possible cases of
relations betweenPA1, PA2 andPr(B) can be as follows:

1. Pr(B) ≥ PA1, Pr(B) ≥ PA2, PA1≤ PA2 � P1(B) = PA1,
P1 (B )=1 andP2(B) = PA2, P2( B) = 1

2. Pr(B) ≤ PA1, Pr(B) ≤ PA2, PA1≤ PA2 � P2(B) = 0,
P1 (B ) = PA1 andP1(B) = 0, P2( B) = PA2

3. Pr(B) ≥ PA1, Pr(B) ≤ PA2, PA1≤ PA2� P1(B) = PA1,
P1 (B ) = 1, andP2(B) = 0, P2( B)= PA2

4. Pr(B) ≥ PA1, Pr(B) ≤ PA2, PA1 ≥ PA2� P1(B) = PA1,
P1 (B ) = 1, andP2(B) = 0, P2( B)= PA2

5. Indifference with two prototypes meansPr(B) = PA1

and Pr(B) = PA2, which is nonsense and cannot be
further processed

Case 1. In this case the two judgements are consistent and
we must use the conjunction rule of combination (1). The
result of combining the two intervals, one of which is
included within the other[P1(B),1] ⊃ [P2(B),1], is the
interval[P(B),1] = [P 2(B),1] = [PA2,1].

Case 2. In this case the two judgements are also
consistent and we must use the conjunction rule of
combination (1). The result of combining the two
intervals[0,P1 (B )] ⊂ [0,P2( B) ] is the interval[0,P (B )]

= [0, P2( B) ] = [0,P A2] .

Case 3. The source underlying intervals are not included
within one another but their intersection is not equal to∅,
i.e., [0, P2( B) ] ∩[P1(B),1] ≠ ∅. This means the two
judgements are consistent and we have to use the same
conjunction rule of combination (1). The result of
combining the two intervals is the interval
[P(B),P (B )]=[P1(B),P2( B) ]=[PA1,PA2].

Case 4. For this case[0, P2( B) ] ∩[P1(B),1] = ∅, which
means that the first model says (or the first expert) that
the eventBc is highly probable, but the second model
(expert) considers the opposite eventB as highly
probable. The two models are inconsistent, and we have
to use the unanimity rule (2). The result of combining is
maximally imprecise[P(B),P (B )]=[0,1] and states our
complete ignorance concerning the reliability of the
analogous component B. Complete ignorance is modeled
by vacuous probabilities P(B)=0and P (B )=1. (How we
could see earlier this case of combination of the two



inconsistent models was crucial for Dempster’s rule of
combination).

Consider three prototypes Ai, i=1,2,3 with their known
precise reliabilitiesPA1<PA2<PA3. Let the analogy-based
elicitation give the following results: Pr(B)≥PA1,
Pr(B)≤PA2, and Pr(B)≥PA3. Results of combining these
three intervals are different depending on the sequence of
combination. If the sequence is{[0, P2( B) ] ⊕ [P1(B),1]}⊕
[P3(B),1], where ⊕ denotes “combination”, then the
result of the combination is the interval
[P(B),1]=[P 1(B),1]=[PA1,1]. If the sequence is
{[P 1(B),1]⊕ [P3(B),1]}⊕ [0,P2( B) ] , then the result is the
interval [0,1] , i.e., vacuous probabilities (complete
ignorance).

When all of the three intervals are consistent, for
example, Pr(B)≥PA1, Pr(B)≥PA2, Pr(B)≤PA3, and
PA1<PA2<PA3, the combined interval is unique and more
precise compared to all the three combining underlying
judgements, that is[P1(B),1]⊕[P2(B),1]⊕[0,P3( B) ] =
[P2(B), P3( B ) ] . It should be stressed that when
combining more than two judgements, we must do it
pairwise.

Having analyzed the above results, the following
generalization can be accomplished.

There are n judgements on the reliability of the
componentB - [0,P i] , i= 1,…l, and [Pj,1], j=l+ 1,…,n.
The combined intervals for different possible cases are
presented below:

1. [0,P 1] ⊆…⊆ [0,P n] � P(B)=0, P (B )=P 1

2. [P1, 1] ⊆…⊆ [Pn, 1] � P(B) = P1, P (B )=1

3. [0,P 1] ⊆…⊆ [0,P l] and[Pl+1,1]⊆…⊆[Pn,1]:

a) if Pn ≥ P 1 andP l ≤ Pl+ 1� P(B) = 0, P (B )=1,
b) if Pn ≥ P 1 and P l ≥ Pl+ 1 � P(B)=0,

P (B ) = { }ili
i

PP:Pmin ≤+1 ,

c) if Pn ≤ P 1 and P l ≤ Pl+ 1 �

P(B)= { }jj
j

PPP :max 1 ≥ , P (B ) = 1,

d) if Pn ≤ P 1 andP l ≥ Pl+ 1�

P(B)= { }jj
j

PPP :max 1 ≥ ,

P (B ) = { }ili
i

PPP :min 1 ≤+ .

These results can be extended for general intervals of
[Pi,P i] , where 0 ≤ Pi ≤ P i ≤ 1 for any i=1,…,n. The
generalization can be done if we take into account that
according to the conjunction rule (1), any interval[Pi,P i]
may be represented as the combination of two intervals
[0,P i] ⊕[Pi,1]. That is, source combined probability
intervals always may be represented as set of intervals of

the forms [0,P ] and [P,1], and, hence, the above
algorithm can be considered as general algorithm of
interval combination.

3.4 Imprecise Prototypes’ Reliability

The above-described procedure of eliciting and
combining reliabilities from analogous components dealt
with the precise probabilities of prototypes. Let us
consider a more general case when prototypes are
qualified by imprecise models; that is, lower and upper
reliabilities P(Ai) and P ( Ai ) of the success states of
components Ai, i=1,…,nare known.

When the reliability of prototype A is qualified by the
two numbersP(A) andP ( A ) the analogical procedure of
prior reliability elicitation must be constructed to be able
to distinguish cases compared to precise prototypes’
reliability. If, for example, the result of the judgements is
Pr(B) ≥ Pr(A), then we should be sure whether it is
possible to make a more precise judgement ofPr(B) ≥
P ( A ). If not, we have to accept the judgement ofPr(B) ≥
Pr(A). Thus, the following outcomes must be considered:
1) Pr(B) ≥ P ( A ), 2) Pr(B) ≥ Pr(A), 3) Pr(B) ≤ P(A), 4)
Pr(B) ≤ Pr(A), 5) Pr(B)∼Pr(A) and6) indeterminacy.

Once we have arrived at one of these conclusions, we can
translate them into statements about classD, of the
almost-desirable gambles and corresponding lower and
upper probabilitiesP and P . So, correspondingly we
have:

1. (B -P ( A )) ∈ D � P(B -P ( A )) = P(B) -P ( A )≥ 0
� P(B)=min{P(B): P(B) ≥ P ( A )}= P ( A ), and
P (B )=max{P(B):P(B) ≥P ( A )}=1, that is Pr(B) =
[ P ( A ),1];

2. (B – A) ∈ D � P(B-A)=P(B)-P(A) ≥ 0 �

P(B)=min{P(B): P(B) ≥ P(A)}= P(A), and
P (B )=max{P(B):P(B) ≥ P(A)}=1, that is Pr(B) =
[P(A),1];

3. (P(A) – B)∈ D � P(P(A) – B) = P(A) – P(B)≥ 0
� P(B)=min{P(B): P(A) ≥ P(B)} = 0, and
P (B )=max{P(B): P(A)≥ P(B)} = P(A), that isPr(B)
= [0, P(A)] ;

4. (A – B) ∈ D � P(A – B) = P(A) – P(B)≥ 0 �
P(B)=min{P(B): P(A) ≥ P(B)}= 0, and P (B )=
max{P(B):P(A) ≥ P(B)}= P ( A ), that is Pr(B) =
[0,P ( A )] ;

5. (A – B)∈ D� P(B) = 0 andP (B )= P ( A ) (see No.
4)
(B – A)∈ D� P(B) = P(A) andP (B )=1 (see No.2).
The combination of these two models according to
(1) yieldsP(B) = P(A) andP (B )= P ( A ).

6. Indeterminacy does not suppose any solution.



4 Systems Reliability

Quantitative systems reliability analysis is based on
Boolean algebra, where the events either occur or do not
occur. Most systems can be viewed as sets of series and
parallel subsystems from reliability standpoint. Defining
how to calculate the reliability of series and parallel
systems with imprecise probabilities will cover a wide
range of practical tasks and lay down a principle
foundation for systems reliability assessing.

Let us say that there are two eventsA, B ⊂ Θ. Imprecise
probabilitiesP(A), P ( A ), P(B) and P (B ) are known and
satisfy the coherence constraints0 ≤ P(A) ≤ P ( A )≤ 1 and
0 ≤ P(B) ≤ P (B )≤ 1. What are the formulae for
calculating P(A∪B), P(A∩B), P (A∪B), and P (A∩B)
depending onP(A), P ( A ), P(B) and P (B )? (The events
A∪B and A∩B characterize a series and parallel system
success states correspondingly).

Unlike conventional theory, the lower and upper
probabilities of the unions and intersections (depending
on the lower and upper probabilities ofX and Y) can be
obtained without the judgement of conditional
dependence or independence. This possibility can be
important when we are completely ignorant of conditional
dependence. When considering the array of judgements,
the judgement of logical independence is the weakest
structural constraint for a system. It is reasonable to
expect that the results based on the stronger structural
judgement are more precise compared to the weaker one.

4.1 Series and Parallel Reliability Structures

The knowledge of system S consists of two components
A and B, each of which has two statesA, Ac and B, Bc,
generates a structure onΘ such that all of the events
A∩B, A∩Bc, Ac∩B andAc∩Bc are non-empty. In this case
the two eventsA and B are calledlogically independent
[1] and [5].

We say that the two components are connected in series if
the failure of either one of the components causes an
immediate failure of the system, or, otherwise, the system
Ss is in a success state if the both components Aand B
are in a success state, that isSs=X∩Y (see, for example,
[10]). For this system the task is to calculateP(A∩B) and
P (A∩B). The expressions for doing it are the following
[5]:

])B(P)A(P,max[)BA(Pl 10 −+=∩
)]B(P),A(Pmin[)BA(Pl =∩

Designation ‘Pl’ with the subl indicates that the resulting
probabilities are obtained based on the judgement of
logical independence.

A system Sp of two components A and B is connected in
parallel if the system fails only if both components fail,
or, otherwise, the system Sp is in a success state if either
A or B is in a success state, that is,Sp=A∪B. For this
system the task is to calculateP(A∪B) andP (A∪B).

)]B(P),A(Pmax[)BA(Pl =∪ ,

)]B(P)A(P,min[)BA(Pl +=∪ 1 .

General expressions for calculating the imprecise
probabilities of the two kinds of the systems have been
obtained. So, for a system consisting ofn components
connected inserieswe have
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For a system consisting ofn components connected in
parallel

�
�
�

�
�
�

�

>

≤
=

=

�

��

=

==

=

= ≤≤

1)(if1

1)(if)(

)(

,)]([max)(

1

11

1

1
1

n

i
i

n

i
i

n

i
in

i
il

n

i
i

ni
il

AP

APAP

AP

APAP

�

�

(5)

The imprecision ∆= P − P of the both systems is
nonlinear function components imprecise probabilities.
Qualitatively the behaviour of the imprecise probabilities
of series and parallel systems can be characterized as
follows. If component reliability for series systems is
close to 1, then the lower probability of the system
converges to zero very quickly asn increases; the upper
probability differs from 1 if there is at least one
component in the system the upper reliability of which is
less then 1. The upper reliability of a parallel system
converges very quickly to 1 asn increases; now the lower
probability is greater than zero if at least one component
has a lower reliability greater than 0.

Now consider the case of conditional independence.

Using the generalized Bayes rule (for details on the rule
see [2]) for two independent eventsA and B through
natural extension we can get the following equations:



Pc(A∩B)=P(A)P(B),
Pc(A∩B)= P (A)P (B),

Pc(A∪B)=P(A)+P(B)-P(A)P(B), (6)
Pc(A∪B)= P (A)+ P (B)-P (A)P (B),

where the subc indicates that the resulting probabilities
are obtained based on the judgement of conditional
independence.

It is easy to check thatPl(A∩B) ≤ Pc(A∩B), Pc(A∩B) ≤
Pl (A∩B) andPl(A∪B) ≤ Pc(A∪B), Pc(A∪B) ≤ Pl (A∪B).
This means that imprecision in the case of the judgement
of conditional independence is less that what would have
been expected.

Consider an example of a systems of three components,
the structure function of which isS=A1∩(A2∪A3), where
S is a success state of the system S, see Fig. 1.

A2

A1

A3

Figure 1: Reliability structure of a system of three
components

Under the conditions P(A1)=P(A2)=P(A3)=P and
P (A1)= P (A2)= P (A3)= P the imprecise probabilities of
S are calculated through the expressionsPl(S)=max{0,
[P(A1)+max(P(A2),P(A3))-1]}=max(0,2P-1), Pl (S) = min

{ P (A1),P (A2),P (A3)}= P , Pc(S)=P(A1)[P(A2)+P(A3)−
P(A2)P(A3)]=P (2P−P2) and Pc (S)=P (A1)[ P (A2)+ P (A3)

− P (A2)P (A3)]= P (2P − P 2). These functions are
graphed in Fig. 2. It is seen that models based on the
judgement of conditional independence are substantially
more precise compared to those based on logical
independence. So, for arbitraryP1 and P1 ∆c1= Pc1(S) -

Pc1(S) < ∆l1= Pl1 (S) - Pl1(S). Even though the reliability of
components in a system are precise, the judgement of
logical independence generates imprecise probabilities.

On the basis of formulae (4) and (5) an algorithm for
quickly calculating the lower and upper reliabilities of a
system composed of components connected both in series
and parallel has been worked out and its performance has
been checked for some systems tasks.

5 Conclusions

1. The work described in this paper summarizes briefly
some of the author’s experiences in employing imprecise
probabilities for reliability and risk assessments. Multiple
attempts to implement the Dempster-Shafer theory of
evidence in reliability practice have failed due to the
serious disadvantages found. Some of them, for example,
the combination of inconsistent judgements can be
corrected in principle, but most of them, not. The
disadvantages of the theory make it problematical for
doing reliability assessments.

2. The other theory of coherent imprecise previsions
appeared to be a practical and applicable reliability
analysis tool. It provides clear and tractable results when
combining reliabilities from different prototypes even
though the bodies of evidence are inconsistent. A way of
transition from the results of analogical comparative
judgements to imprecise probabilities with behavioral
interpretation was demonstrated.

3. System reliability assessments were restricted by
considering the sets of components connected in series
and parallel. On the basis of the theory of coherent
imprecise probabilities we now have some practical
results that cannot be obtained within the framework of
conventional probability and the Dempster-Shafer theory.
So, the formulae were obtained that allow for getting the
lower and upper probabilities without the presumption of
conditional independence, which can be useful for doing
rough and quick assessments when we are ignorant or in
doubt about the independence of components in a system,
or we know that the components are dependent but do not
know to what extent. For some practical tasks it can be
satisfactory and a cheap way of solving the issue. If there
are grounds to judge conditional independence of
components in a system, the lower and upper are more
precise and can be calculated according to the formulae
provided.

Acknowledgement

This work was completed at the Center for Intelligent
Systems, State University of New York at Binghamton,
where the author, hosted by Professor George Klir,
studied as a Fulbright Scholar. The author expresses his
deep gratitude to the Lipsmeyers for their versatile
support and help, to George Klir, whose aura of creativity
and kind advice were a source of constant
encouragement, and to Yevgeny Filimonov for his
valuable comments.



S
System A1 A2

reliability A 3

1

Pl ( S )

Pl
s

Pc
s

Pc(S) & Pc( S )

∆ l
s

∆c
s

Pc
s

Pl(S)

Pl
s

Component

0 P P 1 reliability

Figure 2: Upper and lower probability functions for both conditionally independent
and logically independent components for a system of three components

References

[1] De Finetti B. Theory of probability, Vol. 1. English
translation of Teoria delle Probabilita (1970). Wiley,
London, 1974.

[2] Kozine I. and Lauridsen K. “Improving Reliability
Estimates Based on Generic Data”. In:Probabilistic
Safety Assessment and Management, edited by
Cacciabue C. and Papazoglou I.A., Springer-Verlag
London, pp. 1444-1452, 1996.

[3] Kozine I. Analogical Reasoning for Reliability
Analysis Based on Generic Data.Reliability
Engineering and System Safety, 54:59-64, 1996.

[4] Shafer G. A. Mathematical Theory of Evidence.
Princeton University Press, NJ, 1976.

[5] Walley P. Statistical Reasoning with Imprecise
probabilities. Chapman and Hall, 1991.

[6] Walley P. Measures of Uncertainties in Expert
Systems.Artificial Intelligence, 83: 1-58, 1996.

[7] Walley P. Statistical Inferences Based on a Second-
Order Possibility Distribution. Int. J. General
Systems, 26(4): 337-383, 1997

[8] Wu J.S., G.E. Apostolakis and Okrent D.
Uncertainties in System Analysis: Probabilistic
versus Nonprobabilistic Theories. Reliability
Engineering and System Safety, 30: 163-181, 1990.

[9] Yager R. Entropy and Specificity in a Mathematical
Theory of Evidence.Intern. J. of General Systems,
9(4): 249-260, 1983.

[10]Zacks S. Introduction to reliability analysis:
probability models and statistical methods. Springer-
Verlag, 1992.


