
On the basis of the results obtained by means of the
evidential tests, the doctor can now update the prob-
abilities of the hypotheses Hi ; i.e. he assesses the
conditional probabilities P (HijE). Then he needs to
check again coherence of the whole assessment includ-
ing the latter and the former probability evaluations.

When prior probabilities and likelihood are jointly co-
herent, the doctor can get formulas representing each
posterior probability (of a disease Hi given an evi-
dence E) by Bayes' theorem

P (HijE) =
P (Hi)P (EjHi)

P (E)
;

but the denominator P (E) cannot by computed by
the usual \disintegration" formula, since the Hi's are
not a partition. Nevertheless we can express P (E)
in terms of the atoms, but this representation is not
unique, since the corresponding linear system may
have more than just one solution: computing up-
per and lower bounds of P (E) we get, respectively,
lower and upper bounds for the posterior probabili-
ties P (HijE) .

8 Conclusions

Thanks also to some crucial examples concerning
medical diagnosis, we have been able to show that
in our setting we can privilege a gradual assignment
of the relevant probabilities: these values are not nec-
essarily unique (they may be also the result of coher-
ent extensions to new conditional events) and possibly
belong to suitable closed intervals (for unconditional
events, this result is known as de Finetti's fundamen-
tal theorem of probabilities: it essentially rules the set
P of all probabilities extending (coherently) a given
P ). Usually, probability assessments are not uniquely
singled-out by the initial information and data that
have been taken into account in each relevant situ-
ation, so that we need dealing also with upper and
lower probabilities.
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P�(Ej jHj) =

P
r

Ar�Ei^Hi

P i
�(Ar)

P
r

Ar�Hj

P i
�(Ar)

if j = i

and moreover Ai
�0 � Ai

�" for �0 > �" ; while
P i
�"(Ar) = 0 if Ar 2 A

i
�0 :

Actually, it is possible to build the classes fP i
�g as

solutions of sequences of systems (one for each condi-
tional event EijHi 2 C) similar to the following :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

X
r

Ar�Ei^Hi

P i
�(Ar) = P�(EijHi)

X
r

Ar�Hi

P i
�(Ar) ;

�
if P i

��1(Hi) = 0
�

X
r

Ar�Ej^Hj

P i
�(Ar) � P�(EjjHj)

X
r

Ar�Hi

P i
�(Ar) ;

�
if P i

��1(Hj) = 0
�

X
r

Ar�H
�
0;i

P i
�(Ar) = 1

:

This procedure suggests, as in the case of probabili-
ties, an actual algorithm to prove the consistency (co-
herence) of a lower probability assessment on a �nite
set of events.

Obviously, a partial lower probability assessment has
more \chance" than a probability assessment to ful�l
consistency (i.e., coherence), since systems with in-
equalities have more solutions than those with only
equalities. But the relevant check is computationally
more burdensome (in fact we must repeat the same
procedure n times, where n is the number of the given
conditional events).

Remark - The partial assessment (lower probability)
p� contains two values equal to zero: now, since these
must be taken { to go on in the updating process
{ as new \prior" assignments, we can realize how is
crucial (also from a practical point of view) to have
a theory that privileges the possibility of managing
conditioning events of zero probability (which appear
in the \new" likelihood).

7 Generalized Bayes Inference

The procedure applied to the previous speci�c exam-
ples can be put forth in general, to handle uncertainty
in the process of automatic medical diagnosis. The
proposed interactive procedure initially refers to

(i) a family of hypotheses (that is, events represented
by suitable propositions) supplied by the physician:
they correspond to possible diseases Hi (i = 1; 2; :::; n)
which could explain a given initial piece of informa-
tion referring to the speci�c situation (anamnesis). No
structure and no simplifying and unrealistic assump-

tion (such as mutual exclusiveness and exhaustivity)
is required for this family of events;

(ii) all logical relations between these hypotheses, ei-
ther already included in the knowledge base, or given
by the doctor on the basis of the speci�c situation;

(iii) a probability assessment on the given set of hy-
potheses. Clearly, this is not a complete assessment,
since these events have been chosen as the most natu-
ral according to the doctor's experience: they do not
constitute, in general, a partition of the certain event

, and so the extension to other events of these proba-
bility evaluations is not necessarily unique. Moreover,
a doctor often assigns degrees of belief directly to sets
of hypotheses (for example, one may suspect that one
of the diseases the patient su�ers from is an infec-
tious one, but he is not able to commit any belief to
particular infectious diseases);

(iv) a data base consisting of conditional events EjK
and their relevant probabilities p = P (EjK), where
each event K is a possible disease which is in some
way related to the given hypotheses Hi, while each
evidence (acquired or assumed) E (that can be looked
on as an event) comes from a suitable evidential test.
These probabilities p could have been obtained by
means of relevant frequencies and should be recorded
in �les of the diagnostic center.

Then, once this preliminary preparation has been
done, the �rst step of our procedure consists in build-
ing the family of atoms (generated by the hypotheses
H1;H2; :::;Hn): they are a partition of the certain
event, but they are not the \natural" events to which
the doctor is willing to assign probabilities. Neverthe-
less these atoms are the main tool for checking the co-
herence of the relevant assessment: in fact coherence
amounts to �nding on the set of atoms (by solving a
linear system) a probability distribution (not neces-
sarily unique) compatible with the given assignment.
If the assessment turns out not being coherent, the
doctor can be driven to a di�erent assignment based
on the relevant mathematical relations contained in
the corresponding linear system.

On the contrary, coherence of the probabilities P (Hi)
allows to go on by checking now the coherence of
the whole assessment including also the probabilities
P (EjK). This requires the introduction of new atoms,
possibly taking into account all logical relations in-
volving the evidences E and the hypotheses Hi. In
particular, some of the latter may coincide with some
K. As the previous examples (Sect.6) have shown, the
whole assignment (prior probabilities and likelihood)
can be incoherent even if the two separate assessment
were not.



The doctor now draws out from his data base the
likelihood

P (EjH1) =
3

10
; P (EjHc

3
) =

1

3
:

Then the process of learning from data starts by build-
ing the new atoms

B1 = A1^E
c ; B2 = A2^E

c ; B3 = A3^E
c = A3 ;

B4 = A4 ^E
c ; B5 = A5 ^E

c ; B6 = A1 ^E ;

B7 = A2 ^E ; B8 = A4 ^E ; B9 = A5 ^E ;

and to check coherence we need to consider the fol-
lowing system (T") with unknown yi = P (Bi)
8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

y1 + y2 + y4 + y6 + y7 + y8 =
1

2

y1 + y2 + y3 + y6 + y7 =
1

3

y1 + y6 =
1

5

y1 + y2 + y3 + y4 + y6 + y7 + y8 =
3

5

y6 + y7 + y8 =
3

10
(y1 + y2 + y4 + y6 + y7 + y8)

y7 + y8 + y9 =
1

3
(y2 + y3 + y4 + y5 + y7 + y8 + y9)

9X
i=1

yi = 1

yi � 0 :

This system has solutions, i.e., given � and � with

7

60
� � �

7

30
;

7

30
� � � � �

4

15
� � ;

a solution is

y1 =
19

60
�� ; y2 = �+��

7

30
; y3 =

1

10
; y4 =

4

15
�� ;

y5 =
2

5
� � ; y6 = ��

7

60
; y7 =

4

15
� � � � ;

y8 = � ; y9 = � :

Then \global" coherence (i.e., referring to prior and
likelihood jointly) allows Bayesian updating P (HijE) ;
i = 1; 2; 3. But notice that in this case we lack the
usual representation (\disintegration" formula)

P (E) =
3X
i=1

P (Hi)P (EjHi) ;

since the hypotheses do not constitute a partition. On
the other hand P (E) can be obtained by summing the
probabilities of the atoms contained in E, that is

P (E) = P (B6) + P (B7) + P (B8) + P (B9) =

= y6 + y7 + y8 + y9 =
3

20
+ � ;

and so it ranges in the interval [ 4
15
; 23
60
]. Therefore, by

straightforward computations, we have

9

23
� P (H1jE) �

9

16
; 0 � P (H3jE) �

7

23
;

while the evaluation of P (H2jE) requires resorting
(since the likelihood P (EjH2) is not given) to

P (H2 ^E) = P (B6) + P (B7) =
3

20
� � ;

to be divided by P (H2), so that, �nally, we obtain

0 � P (H2jE) �
9

20
:

Clearly,

p� =
� 9

23
; 0; 0

	
; p� =

� 9

16
;
9

20
;
7

23

	

are, respectively, a (coherent) lower and a (coherent)
upper conditional probability of HijE (i = 1; 2; 3).
Recall that a coherent lower (upper) conditional prob-
ability is a function P� (P �) such that there exists a
non-empty family P = fPig of coherent conditional
probabilities on C whose lower (upper) envelope is P�
(P �).

Now we could go on by updating again the condi-
tional probabilities P (HijE), given, for example, the
new event

F=taking the medicine M against asthma
increases tachycardia

with
; 6= E ^ F ; H2 ^H

c
1
^ F = ; :

Obviously, the doctor has in the data base some rel-
evant likelihood: nevertheless the checking of coher-
ence cannot proceed as before, since we start now with
an upper and lower probability (the \old" posteriors,
that now should be taken as priors). So the Theorem
of Sect.4 cannot be applied: for the sake of brevity,
we do not report all the necessary computations, that
are based on the following Theorem, given in [8]:

Theorem - Let C be an arbitrary �nite family of
conditional events. For a real function P� on C the
following two statements are equivalent:

(i) the function P� is a coherent conditional lower
probability on C;

(ii) denoting by Ao the relevant set of atoms, there
exists, for any EijHi 2 C (at least) a class of prob-
abilities fP i

o; P
i
1; : : :g, each probability P i

� being de-
�ned on a suitable subset Ai

� � A0, such that for any
EjjHj 2 C there is a unique P i

� with
X

r
Ar�Hj

P i
�(Ar) > 0

P�(EjjHj) �

P
r

Ar�Ei^Hi

P i
�(Ar)

P
r

Ar�Hj

P i
�(Ar)

if j 6= i



H1 ^H2 ^H3 = ; ;

H1 ^H
c
2
^Hc

3
= ; ;

Hc
1 ^H2 ^H

c
3 = ; ;

Hc
1
^Hc

2
^H3 = ; ;

Correspondingly, we have only the four atoms

A1 = H1^H2^H
c
3
^Hc

4
; A2 = H1^H

c
2
^H3^H

c
4
;

A3 = Hc
1
^H2^H3^H

c
4
; A4 = Hc

1
^Hc

2
^Hc

3
^H4 :

The doctor makes the following probabilistic assess-
ments

P (H1) =
1

3
; P (H2) =

1

4
; P (H3) =

5

12
; P (H4) =

1

2
:

To check its coherence, we refer to the system (S 0)
with unknowns xr = P (Ar),

(S 0)

8>>>>>>>>>>>><
>>>>>>>>>>>>:

x1 + x2 =
1

3

x1 + x3 =
1

4

x2 + x3 =
5

12

x4 =
1

2

4X
i=1

xi = 1

xi � 0 :

This system has a unique solution

x1 =
1

12
; x2 =

1

4
; x3 =

1

6
; x4 =

1

2
:

Let now E be the event

E=an X-ray test is su�cient for a reliable
and decisive diagnosis

so that

H4 � E ; H1^H2 � E ; H1^H3 � Ec ; H2^H3 � Ec :

The doctor assigns the likelihood

P (EjH1) =
1

3
; P (EjHc

1) =
1

6
:

If we update the (prior) probability P (H1) by the
above likelihood through Bayes' theorem, we get
P (H1jE) =

1

2
. But now (contrary to the previous sit-

uation of Example 1) this updated probability of H1

is not coherent with the given probabilities of H2 and
H3. Notice in fact that the atoms obtained when we
take into account the new event E are exactly those
generated by the events Hi, so that to check coher-
ence we need to study the solvability of the system
(S") with unknowns xr = P (Ar)

(S")

8>>>>>>>>>>>><
>>>>>>>>>>>>:

x1 =
1

2
(x1 + x4)

x4 =
1

2

x1 + x3 =
1

4

x2 + x3 =
5

12

4X
i=1

xi = 1

xi � 0 :

But the �rst two equations give x1 =
1

2
, hence x3 < 0,

so this system is inconsistent.

Remark { The next example shows that it is possi-
ble to update (prior) probability by Bayes rule, also
in unusual situations (such as when we assume that
the diseases are not mutually exclusive), if coherence
of the \global" (i.e. prior and likelihood together)
assessment holds.

Example 3. A patient arrives at the hospital showing
symptoms of choking. The doctor considers the fol-
lowing hypotheses concerning the patient situation:

H1=cardiac insu�ciency
H2=asthma attack

H3=cardiac lesion caused by asthma

The doctor does not regard them as mutually exclu-
sive; moreover, he assumes the following natural log-
ical relation:

H3 � H1 ^H2 :

Correspondingly, we have the atoms

A1 = H1 ^H2 ^H3 ; A2 = H1 ^H2 ^H
c
3
;

A3 = Hc
1
^H2 ^H

c
3
; A4 = H1 ^H

c
2
^Hc

3
;

A5 = Hc
1
^Hc

2
^Hc

3
:

The doctor makes the probability assessments

P (H1) =
1

2
; P (H2) =

1

3
;

P (H3) =
1

5
; P (H1 _H2) =

3

5
:

To check its coherence, we refer to the following sys-
tem with unknowns xr = P (Ar)

8>>>>>>>>>>>><
>>>>>>>>>>>>:

x1 + x2 + x4 =
1

2

x1 + x2 + x3 =
1

3

x1 =
1

5

x1 + x2 + x3 + x4 =
3

5

5X
i=1

xi = 1

xi � 0

which has a unique solution

x1 =
1

5
; x2 =

1

30
; x3 =

1

10
; x4 =

4

15
; x5 =

2

5
:

Let now E be the event

E=taking the medicine M against asthma
does not reduce choking symptoms

so that

H2 ^H
c
1 ^E = ; :



This (partial) assessment is coherent, since the func-
tion P can be extended from the three given events
to the set of relevant atoms in such a way that P is
a probability on the algebra generated by them (see
Sect.2), i.e. there exists a solution of the following
system with unknowns xi = P (Ai)

(S )

8>>>>>>>>><
>>>>>>>>>:

x1 + x2 =
1

2

x1 + x3 + x4 =
1

5

x4 =
1

8

5X
i=1

xi = 1

xi � 0 :

For example, given �, with 0 � � � 3

40
, a solution is

x1 = � ; x2 =
1

2
� � ; x3 =

3

40
� � ;

x4 =
1

8
x5 =

3

10
+ �:

The doctor considers now the event

E = pressing in particular points of the abdomen
does not increase pain

and he gives the following relevant logical and proba-
bilistic information

E ^H3 = ;

P (EjH2) =
2

5
; P (EjHc

2) =
1

8
:

Obviously, the latter assignment is coherent, since it
refers to a (trivial) partition (with respect to the con-
ditioning events). If we update the (prior) probability
ofH2 by means of the above likelihood (through Bayes
theorem), we get

P (H2jE) =
4

9
:

This new probability of H2 is coherent with the pre-
vious probabilities of H1 and H3. To prove that, con-
sider the atoms obtained when we take into account
also the new event E :

B1 = A1 ^E ; B2 = A2 ^E ; B3 = A3 ^E ;

B4 = A1 ^E
c ; B5 = A2 ^E

c ; B6 = A3 ^E
c ;

B7 = A4 ^E
c ; B8 = A5 ^E ; B9 = A5 ^E

c :

To check coherence we consider the following system
(T ) (see the system (S�) following the Theorem of
Sect.4), with unknowns yi = P (Bi)

(T )

8>>>>>>>>><
>>>>>>>>>:

y1 + y2 + y4 + y5 =
1

2

y7 =
1

8

y1 + y3 =
4

9
(y1 + y2 + y3 + y8)

9X
i=1

yi = 1

yi � 0 :

It is easily seen that the system (T) has (in�nite) so-
lutions and, since there are also solutions such that

y1 + y2 + y3 + y8 > 0 ;

this is su�cient to ensure that the assessment is coher-
ent. This is true even if we take into account the up-
dating of the probability of H3, that is P (H3jE) = 0:
in fact this corresponds to ignoring the second equa-
tion of system (T).

But to consider this assessment as an updating of the
previous one can be a too hasty (and wrong) conclu-
sion, since the value of P (H2jE) has been obtained
by considering in fact as \prior" the assessment

P (H2) =
1

5
; P (Hc

2
) =

4

5
;

and not that actually given by the doctor, which in-
volves also the evaluation of P (H1) and P (H3). The
updating of that assessment obviously requires that
the \whole" prior and the likelihood must be jointly
coherent. Instead in this case coherence does not hold:
considering the following system

(T 0)

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

y1 + y2 + y4 + y5 =
1

2

y1 + y3 + y4 + y6 + y7 =
1

5

y7 =
1

8

y1 + y3 =
2

5
(y1 + y3 + y4 + y6 + y7)

y2 =
1

8
(y2 + y5)

9X
i=1

yi = 1

yi � 0 ;

simple computations (solving for y1 + y3 the fourth
and the second eq. and inserting this and the third
eq. into the second one) show that it does not admit
solutions, so that the assessment is not coherent.

The following example shows that even the \local"
coherence of prior and \pseudoposterior" obtained in
the previous example was just accidental.

Example 2. A patient feels a severe back-ache to-
gether with lack of sensitiveness and pain in the left
leg; he had two years before a lung cancer that was
removed by a surgical operation. The doctor con-
siders the following exhaustive hypotheses concerning
the patient situation:

H1=crushing of L5 and S1 vertebrae
H2=rupture of the disc

H3=inammation of nerve-endings
H4=bone tumor

The doctor does not regard them as mutually exclu-
sive; moreover, he assumes some logical relations:

H4 ^ (H1 _H2 _H3) = ; ;



(where n is the cardinality of the set C of condi-
tional events) and m unknowns (the number of rel-
evant atoms). From a theoretical point of view, it
seems that the \nicest" situation should correspond
to the �rst statement under (v), i.e. to solve only one
system, �nding at the �rst step a solution satisfying
(9). Nevertheless, notice that to make easier the com-
putational procedure it is more suitable not looking for
such a solution, but trying instead to solve \smaller"
systems, in the sense of having a smaller number of
equations (possibly only two), but { more important
{ a smaller number of unknowns, since the main com-
putational problem is to build the atoms.

In fact, we should choose, at each step, solutions
in which there are many suitably chosen unknowns
P�(Ar) equal to zero by taking those Ar's contained in
as many as possible conditioning events Hi's (call Hj

the remaining ones): the best situation would be when
the Ar 's are contained in all Hi's except one. Then
each system would reduce to a system having only
a few equations (possibly two) { that is only those
which refer to the Hj's and which express P (EjjHj)
by means of the relevant probability P� { plus the last
one requiring that the sum of the probabilities of the
atoms must be equal to 1.

In conclusion, since solving a system by giving the
value zero to some unknowns (in such a way that
some equations are trivially satis�ed) is the same as
solving a system with only the remaining equations,
the ensuing nontrivial solutions may be clearly related
only to the \bigger" atoms generated by some of the
events: so we can adopt a strategy able to reduce
(drastically, in the most common cases) the number
of atoms needed to check coherence. This possibil-
ity { of checking coherence \locally" to get \global"
coherence { is also strictly connected with the exis-
tence of logical relations among the given events, and
it is then useful to �nd suitable subfamilies that may
help to \decompose" the procedure: in other words,
we need to build only the atoms generated by these
subfamilies. An outline of this procedure is in [1].

5 Coherent Extensions

Another fundamental result is the following (also dis-
cussed in [6], [9]): if C is a given family of conditional
events and P a corresponding assessment, then there
exists a (possibly not unique) coherent extension of
P to an arbitrary family G of conditional events, with
G � C, if and only if P is coherent on C. In particular,
if K = C [ fEjHg and P (EjH) = p, coherent assess-
ments of p are all values of a suitable closed interval
[p�; p

�] � [0; 1], with p� � p�).

Then, given a �nite family

C = fE1jH1; : : : ; EnjHng

of conditional events and a new one EjH, we proved
in [6] (giving also the relevant algorithm, which
has been improved in [9] exploiting zero probabili-
ties) that these two bounds can be characterized as
in�mum and supremum, respectively, of probabili-
ties P (E�jH�) and P (E�jH�) of suitable conditional
events that are logically dependent on C, i.e. such that
the events E�;H�; E

�;H� are union of atoms gener-
ated by E1; : : : ; En;H1; : : : ;Hn. In particular, E�jH�

and E�jH� are, respectively, the \maximum" and the
\minimum" conditional event logically dependent on
C satisfying

E�jH� � � EjH � � E�jH� ;

the inclusion � � between conditional events is de-
�ned as

AjH � � BjK () AH � BK and BcK � AcH :

This inclusion has a numerical counterpart (proved in
[6]), that is AjH � BjK: this is an inequality between
the random variables representing the two conditional
events by means of (5).

6 Some Crucial Examples

We start by analizing some examples of medical diag-
nosis to show how a hasty Bayesian updating of prob-
ability assessments can lead to wrong conclusions, so
that it is better, in speci�c circumstance, to avoid its
use.

Example 1. A patient feels serious generalized abdom-
inal pains, fever and retchs. The doctor puts forth the
following hypotheses concerning the possible relevant
disease:

H1 = ileus
H2 = peritonitis

H3 = acute appendicitis,
with an ensuing local peritonitis

Moreover the doctor assumes a natural logical condi-
tion such as H3 � Hc

1^H2 : Correspondingly we have
then �ve atoms

A1 = H1 ^H2 ^H
c
3 ; A2 = H1 ^H

c
2 ^H

c
3 ;

A3 = Hc
1
^H2 ^H

c
3
; A4 = Hc

1
^H2 ^H3 ;

A5 = Hc
1 ^H

c
2 ^H

c
3 :

The doctor initially gives these probability assess-
ments:

P (H1) =
1

2
; P (H2) =

1

5
; P (H3) =

1

8
:



(ii) t(�jH) is a (�nitely additive) probability on G for
any given H 2 Bo ;

(iii) t
�
(E ^A)jH

�
= t(EjH) � t

�
Aj(E ^H)

�
, for every

A 2 G and E, H 2 Bo, E ^H 6= ; :

Condition (i) is equivalent to the following

(i') t(HjH) = 1, for every H 2 Bo :

So we can identify t(EjH) with the conditional prob-
ability P (EjH) and there is no need to introduce it as
the ratio of the (unconditional) probabilities P (E^H)
and P (H), assuming positivity of the latter. This al-
lows to deal with conditioning events of zero proba-
bility, a situation which in many respects represents a
very crucial feature (even in the case of a �nite fam-
ily of events): dropping any positivity condition, the
class of admissible conditional probability assessments
and that of possible extensions are larger, the ensu-
ing algorithms are more exible, the management of
stochastic independence (conditional or not) avoids
many of the usual inconsistencies related to logical
dependence.

4 Coherent Conditional Probability

What about an assessment P on an arbitrary set C of
conditional events? Similarly to the case of uncondi-
tional probabilities, we will say that the assessment
P (�j�) is coherent if, given C0 � C, with C0 = G � Bo

(G a Boolean algebra, B an additive set), it can be
extended from C to C0 as a conditional probability. In
[2], [6] and [9] it has been proved and extensively dis-
cussed the following

Theorem - Let C be an arbitrary �nite family of
conditional events and Ao denote the relevant set of
atoms. For a real function P on C the following two
statements are equivalent:

(i) P is a coherent conditional probability on C;

(ii) there exists (at least) a class of probabilities
fPo; P1; : : :g, each probability P� being de�ned on a
suitable subset A� � A0, such that for any EijHi 2 C
there is a unique P� withX

r
Ar�Hi

P�(Ar) > 0

(6) P (EijHi) =

P
r

Ar�Ei^Hi

P�(Ar)

P
r

Ar�Hi

P�(Ar)
;

moreover A�0 � A�" for �0 > �" and P�"(Ar) = 0 if
Ar 2 A�0 .

Notice that the classes of probabilities fP�g are in�-
nite in general; in particular we have the uniqueness

only in the case that C is the Cartesian product of two
Boolean algebras.

In the quoted papers it is proved in a constructive
way the equivalence between conditions (i) and (ii).
This proof sketches an algorithm to test coherence of
an assessment P , based on the equivalence between
condition (ii) and the compatibility of a sequence of
systems (S�) with unknowns P�(Ar) � 0, Ar 2 A�,

(S�)

8>>>>>><
>>>>>>:

X
r

Ar�Ei^Hi

P�(Ar) = P (EijHi)
X

r
Ar�Hi

P�(Ar)

�
if P��1(Hi) = 0

�
;

X
r

Ar�H
�
0

P�(Ar) = 1

where P�1(Hi) = 0 for all Hi's, and H�
o denotes, for

� � 0, the union of the Hi's such that P��1(Hi) = 0;
so, in particular,

(7) Ho
o = Ho = H1 [ : : :[Hn :

On the basis of the previous results, the \algorithm"
needed for an actual checking of the coherence of a
probability assessment can be implemented along the
following steps:

(i) given a set C of n conditional events E1jH1 , : : : ,
EnjHn , supply all the known logical relations among
the events E1; : : : ; En, H1; : : : ;Hn (so that the cardi-
nalitym of the relevant set Ao of atoms will be usually
much less than 22n);

(ii) given the assessment

(8) pi = P (E1jH1); : : : ; pn = P (EnjHn);

introduce the system (S�);

(iii) Put � = 0 in (S�);

(iv) if (S�) has no solutions, the assessment (8) is not
coherent and must be revised;

(v) if (S�) has a solution P�(Ar) such that

(9) P�(Hi) =
X

r
Ar�Hi

P�(Ar) > 0

for every Hi speci�ed in the �rst line of (S�), then the
assessment (8) is coherent and each P (EijHi) can be
represented by (6), while if it has only solutions such
that

(10) P�(Hi) = 0 for some Hi

proceed as follows:

(vi) represent by (6) those P (EijHi) such that Hi

satis�es (9), then put � + 1 in place of �, and go to
steps (iv) and (v) until the exhaustion of the Hi's.

The above procedure consists in solving a sequence
of linear systems: the �rst one has n + 1 equations



and denote by A1; :::; Am the atoms generated by
these events (i.e. made up with all possible intersec-
tions E�

1
^E�

2
: : :^ E�

n, di�erent from the impossible
event ;, obtained by putting in place of each E�

i , for
i = 1; 2; : : :; n, the event Ei or its contrary Ec

i ). This
assessment is called coherent if the function P can
be extended from F to the set of atoms, in such a
way that P is a probability on the algebra generated
by them. This clearly amounts to the existence of
at least one solution of the following system, where
xr = P (Ar) ,

(1)

8>>>>><
>>>>>:

X
Ar�Ei

xr = pi ; i = 1; 2; :::; n

mX
r=1

xr = 1 ; xr � 0 ; r = 1; 2; :::;m :

We recall that a natural interpretation of pi = P (Ei)
is to regard it as the amount paid to bet on the event
Ei, with the proviso of getting back an amount 1 if
Ei is true (the bet is won) or 0 if Ei is false (the
bet is lost), so that, by paying pi, the amount got
back is just the indicator Ei (we use the same symbol
for both an event and its indicator); moreover, it is
possible (and useful) to consider, in a bet, also a \scale
factor" (stake) �i, that is to refer to a payment pi�i
to receive { when the bet is won { an amount �i (we
were previously referring to the case �i = 1).

In general, given � events E1; :::; E� and � real num-
bers y1; :::; y�, it is immediately seen that also a dis-
crete random variable

(2) Y =
�X

k=1

ykEk ;

represents the amount got back in a combination of
bets { on the � events E1; :::; E� { made by pay-
ing amounts p1y1; :::; p�y� (i.e. with stakes y1; :::; y�).
Notice that the total amount paid, i.e.

(3) IP(Y ) =
�X

k=1

pkyk

is the so-called prevision (or expectation) of Y when
the set fp1; :::; p�g is a coherent probability assess-
ment on the family E1; :::; E�. So, in the particular
case that Y is just an event E (its indicator), we have
IP(Y ) = P (E) , i.e. prevision reduces to probability.

3 Conditional Events

Notice that it is not enough directing attention just
toward an event E in order to assess \convincingly"
its probability, but it is also essential taking into ac-
count other events which may possibly contribute in

determining the \information" on E. Then the funda-
mental tool must be conditional probability, since the
true problem is not that of assessing P (E), but rather
that of assessing P (EjH), taking into account all the
relevant \information" carried by some other event
H. Dealing with conditional probability requires the
introduction of conditional events EjH, with H 6= ;
(where ; is the impossible event). An interpretation
of EjH in terms of a betting scheme (extending that
given above for unconditional events) may help in clar-
ifying its meaning.

If an amount p { which should suitably depend on
EjH { is paid to bet on EjH, we get, when H is
true, an amount 1 if also E is true (the bet is won)
and an amount 0 if E is false (the bet is lost), and
we get back the amount p if H turns out to be false
(the bet is called o�). In short, introducing the truth-
value T (EjH) of a conditional event { recall that, for
an (unconditional) event E, this is just its indicator
E = T (Ej
) { we maywrite, by elementary properties
of indicators and introducing the symbol t(EjH) in
place of p for the \third" value of T (EjH),

(4) T (EjH) = EH + t(EjH)Hc :

So a conditional event EjH (or, better, its truth{
value) can be seen as a particular case of a discrete
random variable like (2), with � = 2, E1 = EH,
E2 = Hc, and y1 = 1, y2 = t(EjH): then its previ-
sion is the \natural candidate" to be the conditional
probability of EjH.

Moreover, to simplify the notation, we adopt (as we
did in the unconditional case) the same symbol for a
conditional event and its truth{value (the latter being
the analogous of the indicator). With this proviso, eq.
(4) can be written as

(5) EjH = EH + t(EjH)Hc ;

where the function t(EjH) depends in fact on the par-
tition EH, EcH, Hc of the certain event 
.

This implies (as we proved elsewhere [9]) that, given
an arbitrary family C of conditional events, when the
(ordinary) sum and product of two random variables
representing the given conditional events is still of the
kind (5), then t(EjH) satis�es the axioms of a condi-
tional probability (according to its most general view,
that goes back to de Finetti [11], R�enyi [15], Krauss
[13], Dubins [12]).

So, in particular, if the set C = G � B of conditional
events EjH is such that G is a Boolean algebra and
B � G is closed with respect to (�nite) logical sums,
then, putting Bo = B n f;g, these axioms can be ex-
pressed as follows:

(i) t(EjH) = t
�
(E ^ H)jH

�
, for every E 2 G and

H 2 Bo ;



assessment.

Concerning \imprecise probabilities", some remarks
are now in order. In particular, we agree with de
Finetti ([10], p. 368 of the English translation), whose
answer to the question \Do imprecise probabilities ex-
ist?" is essentially (as we see it) YES and NO. To
clarify this issue, let us take some excerpts from the
quoted reference: \The question as it stands is rather
ill-de�ned, and we must �rst of all make precise what
we mean. In actual fact, there is no doubt that quan-
tities can neither be measured, nor thought of as re-
ally de�ned with the absolute precision demanded by
mathematical abstraction ... A subjective evaluation,
like that involved in expressing a probability, attracts
this criticism to an even greater degree ... It should be
su�cient to say that all probabilities, like all quanti-
ties, are in practice imprecise, and that in every prob-
lem involving probability one should provide, just as
one does for other measurements, evaluations whose
precision is adequate in relation to the importance of
the consequences that may follow ... The question
posed originally, however, really concerns a di�erent
issue, one which has been raised by several authors:
it concerns the possibility of cases in which one is not
able to speak of a single value p for a given probability,
but rather of two values, p0 and p00, which bound an
area of indeterminacy, p0 � p � p00, possessing some
essential signi�cance ... An example of this occurs
when one wishes to distinguish various hypotheses,
and attributes di�erent probabilities P (EjHi) to an
event E, depending on the various hypotheses Hi ; if
one then ignores the hypotheses, one can only con-
clude that the probability lies between the maximum
and the minimum... If we are dealing with hypotheses
Hi about which we expect soon to have some informa-
tion, it would be naive to assert that P (E) will take on
a value lying somewhere between the P (EjHi)'s, since
there is an in�nite number of partitions into hypothe-
ses, and the information which comes along might be
anything at all ... The idea of translating the impre-
cision into bounds, p0 � p � p00, even in the weaker
sense proposed by Good (who regards p0 and p00 not
as absurd, rigid bounds, capable of making the impre-
cision precise, but merely as indications of maxima),
is inadequate if one wishes to give an idea of the im-
precision with which every quantity is known or can
be considered. One should think of the imprecision in
the choice of the function P ... for individual events
... not as isolated features, but with the connections
deriving from logical or probabilistic relations".

Similar remarks concerning the function P are shared
- through some subtle considerations concerning inde-
terminacy - by Williams (see [16], p.231), who claims
also, at the beginning of the quoted paper: \It has

been objected against the subjective interpretation of
probability that it assumes that a subject's degree of
belief P (E) in any event or proposition E is an ex-
act numerical magnitude which might be evaluated
to any desired number of decimal places ... The same
argument, however, would appear to show that no
empirical magnitude can satisfy laws expressed in the
classical logico-mathematical framework, so long as it
is granted that indeterminacy, to a greater or lesser
extent, is present in all empirical concepts".

Nevertheless it could be interesting to study coherence
of a probability assessment possibly involving both
\precise" and \imprecise" evaluations: the most gen-
uine situation in an updating process is that in which
we get { as (coherent) extension of an initial coherent
assessment { an upper and a lower conditional prob-
ability; now, if we want to go on in the updating by
taking into account new \information" (for example,
some further conditional probability values), we need
checking the \global" coherence { as lower and up-
per probability { of the new values and the previous
upper and lower probability. The relevant theory is
dealt with in [8] and an actual case is discussed at the
end of Sect.6.

In Sections 2{5 we recall the main points of our ap-
proach: for a more detailed exposition, see [6], [9].

2 Coherent Probability

An event can be singled-out by a (nonambiguous)
proposition E, that is a statement that can be either
true or false (corresponding to the two \values" 1 or
0). Since in general it is not known whether E is
true or not, we are uncertain on E. In our frame-
work, probability is looked upon as an \ersatz" for
the lack of information on the actual \value" of the
event E, and it is interpreted as a measure of the de-
gree of belief in E held by the subject that is making
the assessment. So a careful distinction between the
meaning of probability and all its possible methods of
evaluation is essential.

The role of coherence is in fact that of ruling proba-
bility evaluations concerning \many" events, indepen-
dently of any logical structure of the given family of
events. Even if its intuitive semantic interpretation
can be expressed in terms of a betting scheme, never-
theless this circumstance must not hide the fact that
its role is essentially syntactic.

To illustrate the concept of coherence in the simpler
case of unconditional events, consider an assessment
pi = P (Ei), i = 1; 2; :::; n, on an arbitrary �nite family

F = fE1; :::; Eng ;
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Abstract

The main concern of this paper is to show by means of
suitable examples that a \naif" use of Bayesian updat-
ing can lead to wrong conclusions. Given some possi-
ble diseases (that could explain an initial piece of in-
formation) and a relevant tentative probability assess-
ment, a doctor has usually at his disposal also a data
base consisting of conditional probabilities P (EjK),
where each K is a disease and each evidence E comes
from a suitable test. Once the coherence (�a la de
Finetti) of the whole assessment is checked, we want
to suitably update the prior probabilities: since we
do not assume that the diseases constitute a parti-
tion of the certain event 
, the usual Bayes theorem
cannot be applied. Then we proceed by referring to
the relevant atoms (whose coherent probability assess-
ment is, in a sense, \imprecise", since in general it
is not unique). By checking again the coherence of
the whole updated assessment, it turns out that we
get upper and lower conditional probabilities. These
steps are iterated until a degree of belief su�cient to
make a diagnosis is reached: the coherence condition
acts as a control tool on every stage.

Keywords. Coherence, Bayesian updating, upper
and lower probabilities.

1 Introduction

Even if probability theory has not played, for a num-
ber of reasons, its proper role for uncertain knowledge
representation and processing, the theoretical frame-
work proposed by de Finetti [10] seems particularly
exible: it di�ers radically from the usual one (based
on a measure-theoretic approach), which assumes that
a unique probability measure is de�ned on the set of
\elementary events", constituting the so-called sam-
ple space. De Finetti's approach allows instead to
assess your (coherent) probability for as many or as
few events as you feel able and interested, and this

has many important theoretical and applied conse-
quences; in particular, it makes simpler and more ef-
fective the \operational" aspects.

This { and, mainly, the generalization to conditional
probability { has been discussed in many papers: see,
for instance, [3], [2], [6] and, for a qualitative ap-
proach through a Bayes-like theorem, see [4]. Con-
cerning the problem of medical diagnosis, which is
the main concern of this paper (see Sects. 6 and 7),
some preliminary results dealing with the di�culties
arising when trying to get rid from the simplifying
assumption of mutually exclusive and exhaustive dis-
eases were already discussed in [5]. Conditional inde-
pendence (see, e.g., [14]) is another usual assumption
that our method aims at avoiding, when the moti-
vation is just that of getting a simpli�cation of the
relevant setting. Our approach (the general theory is
expounded in [6]) refers to learning from data as an
operational procedure based on partial probability as-
sessments and updating: the latter are not necessar-
ily unique, and the procedure is ruled by coherence
through an algorithm involving linear systems and
linear programming. The computational di�culties
can be strongly reduced by resorting to a technique
(see [7]) based on the assignment of zero probability to
some conditioning events Hi in such a way that the
corresponding direct assessments P (EijHi) are coher-
ent. What does direct assessment of a conditional
probability P (EjH) mean? Given an arbitrary fam-
ily C of conditional events, a function P (�j�), bound
to satisfy only the requirement of coherence, can be
de�ned on C: so the knowledge (or the assessment) of
the \joint" and the \marginal" probabilities P (E^H)
and P (H) { as in the \Kolmogorovian" framework {
is not required. It is well known that such a func-
tion P (�j�) satis�es on C the axioms (see Sect.3) of a
conditional probability.

The so{called \imprecise probabilities" come natu-
rally to the fore, since we are driven only by coherence
and not by the \myth of uniqueness" of a probability


