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Comparison of random variables

◮ In some many real situations, we have to take decisions.
◮ Mathematically, the problem is to compare between

random variables.
◮ The most usual methods are:

◮ Stochastic Dominance
◮ To choose the random variable whose mean is greater.

◮ A new way to compare random variables: statistical
preference.
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Probabilistic relation

Let A be a set of alternatives. A probabilistic relation is a
map

Q : A × A → [0, 1]

such that

Q(a, b) + Q(b, a) = 1 ∀(a, b) ∈ A2.
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Probabilistic relation [ De Schuymer et al. (2003)]

Let A be a set of random variables defined on the same
probabilistic space. The following probabilistic relation can
be defined:

Q : A × A → [0, 1]

such that

Q(X,Y ) = P (X > Y ) +
1

2
P (X = Y ).
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Statistical preference [ De Schuymer et al. (2003)]

Let X and Y be two random variables defined on the same
probability space. It is said that:

◮ X is statistically preferred to Y if Q(X,Y ) ≥ 1
2 . We

denote it by X ≥SP Y .
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Statistical preference [ De Schuymer et al. (2003)]

Let X and Y be two random variables defined on the same
probability space. It is said that:

◮ X is statistically preferred to Y if Q(X,Y ) ≥ 1
2 . We

denote it by X ≥SP Y .
◮ X and Y are statistically indifferent if Q(X,Y ) = 1

2 .
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Statistical preference [ De Schuymer et al. (2003)]

Let X and Y be two random variables defined on the same
probability space. It is said that:

◮ X is statistically preferred to Y if Q(X,Y ) ≥ 1
2 . We

denote it by X ≥SP Y .
◮ X and Y are statistically indifferent if Q(X,Y ) = 1

2 .
◮ X is statistically preferred strongly over Y if

Q(X,Y ) > 1
2 .
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Interpretation of statistical preference
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Characterizations of statistical preference

Theorem
Let X and Y be two independent random variables, and let
X ′ be identically distributed as X and independent of X and
Y . Then, X ≥SP Y if and only if

E(FY (X)) − E(FX (X)) ≥ 1

2

(

P (X = Y ) − P (X = X ′)
)

.

Theorem
Let X and Y be two continuous and independent random
variables. Then it holds that

X ≥SP Y ⇔ Me(X − Y ) ≥ 0.
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Example

DICE A

1

3 4 15 16

17

DICE B

2

10 11 12 13

14

Consider this game: the dice whose number is greater wins.
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Example

DICE A

1

3 4 15 16

17

DICE B

2

10 11 12 13

14

Consider this game: the dice whose number is greater wins.

Which one we should choose?
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Example

DICE A

1

3 4 15 16

17

DICE B

2

10 11 12 13

14

◮ E(A) < E(B).
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Example

DICE A

1

3 4 15 16
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DICE B

2

10 11 12 13

14

◮ E(A) < E(B).
◮ Q(A,B) > 1

2 .
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Example

DICE A

1

3 4 15 16

17

DICE B

2

10 11 12 13

14

◮ E(A) < E(B).
◮ Q(A,B) > 1

2 .

It seems to be more coherent to choose the dice A.
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First degree stochastic dominance

Let X and Y be two random variables, X stochastically
dominates Y by first degree if

FX(t) ≤ FY (t) for every t.

It is denoted by X ≥FSD Y .
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Second degree stochastic dominance
Let X and Y be two random variables, X stochastically
dominates Y by second degree if

∫ t

−∞

FX(x)dx ≤
∫ t

−∞

FY(y)dy for every t.

It is denoted by X ≥SSD Y .
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Statistical preference Vs stochastic dominance

Statistical preference has the following advantages over
stochastic dominance:

◮ It takes into account the relationship between the
random variables.
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Statistical preference Vs stochastic dominance

Statistical preference has the following advantages over
stochastic dominance:

◮ It takes into account the relationship between the
random variables.

◮ It always gives us a solution.
◮ It gives us a degree of preference of one of the

variables over the other.
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Non independent random variables

It is known that for every pair of random variables X and Y

there exists a copula C such that

FX,Y (x, y) = C(FX(x), FY (y)),

where a copula is an application

C : [0, 1]2 → [0, 1] such that

◮ C(x, 0) = C(0, x) = 0 and C(x, 1) = C(1, x) = x for
every x ∈ [0, 1].

◮ C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1), for every
x1, x2, y1, y2 ∈ [0, 1].
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Non independent random variables

It is known that for every pair of random variables X and Y

there exists a copula C such that

FX,Y (x, y) = C(FX(x), FY (y)),

where a copula is an application

C : [0, 1]2 → [0, 1] such that

◮ C(x, 0) = C(0, x) = 0 and C(x, 1) = C(1, x) = x for
every x ∈ [0, 1].

◮ C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1), for every
x1, x2, y1, y2 ∈ [0, 1].

max{ x+y-1,0 }≤ C(x, y) ≤ min{x, y} ∀(x, y) ∈ [0, 1]2.
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Non independent random variables

A particular type of copulas are the archimedean copulas.
For them there exists a function ϕ : [0, 1] → [0, 1] such that
ϕ(1) = 0, ϕ′(x) < 0 and ϕ(x)

′′

> 0, and then:

C(x, y) = ϕ[−1] (ϕ(x) + ϕ(y)) .
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Non independent random variables

A particular type of copulas are the archimedean copulas.
For them there exists a function ϕ : [0, 1] → [0, 1] such that
ϕ(1) = 0, ϕ′(x) < 0 and ϕ(x)

′′

> 0, and then:

C(x, y) = ϕ[−1] (ϕ(x) + ϕ(y)) .

Example: C(x, y) = x · y is an archimedean copula:

ϕ(x) = − log x
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Statistical preference Vs stochastic dominance

SP SSD

FSD

This figure holds in the following situations:
◮ If X and Y are independent.
◮ If X and Y are continuous and they are coupled by an

archimedean copula.
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Normal distributions

◮ Normal distribution is one of the most important
distributions in statistics.

◮ It appears in some usual real experiments.
◮ What is the behavior of statistical preference for normal

distribution?
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Unidimensional normal distribution

Theorem (De Schuymer et al. (2005))
Let X and Y two random variables with normal distributions,
X ≡ N (µ1, σ1) and Y ≡ N (µ2, σ2). Then

◮ Q(X,Y ) = Φ

(

µ1−µ2√
σ2

1
+σ2

2

)

, where Φ is the cumulative

distribution function of a standard normal distribution.
◮ X ≥SP Y ⇔ µ1 ≥ µ2.
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Bidimensional normal distribution

Theorem
Let

(

X1

X2

)

be a bidimensional random vector with normal

distribution:
(

X1

X2

)

≡ N
((

µ1

µ2

)

,

(

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

))

.

Then:

◮ Q(X1,X2) = Φ

(

µ1−µ2√
σ2

1
+σ2

2
−2ρσ1σ2

)

.

◮ X1 ≥SP X2 ⇔ µ1 ≥ µ2.
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Bidimensional normal distribution

(

X1

X2

)

≡ N
((

0,25
0

)

,

(

1 ρ

ρ 1

))
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An statistical test

Let X and Y be two independent random variables.

X → x1, . . . , xn

Y → y1, . . . , ym
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An statistical test

Let X and Y be two independent random variables.

X → x1, . . . , xn

Y → y1, . . . , ym

X
d
= Y ??
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An statistical test

If X
d
= Y , then Q(X,Y ) = 1

2 . In particular, it should happen
that Q(−→x ,−→y ) ≈ 1

2 .

We can define a critical region:
{

(−→x ,−→y ) | 1

2
≤ c1 ≤ Q(−→x ,−→y ) or Q(−→x ,−→y ) ≥ c2 ≥ 1

2

}
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An statistical test

If X
d
= Y , then Q(X,Y ) = 1

2 . In particular, it should happen
that Q(−→x ,−→y ) ≈ 1

2 .

We can define a critical region:
{

(−→x ,−→y ) | 1

2
≤ c1 ≤ Q(−→x ,−→y ) or Q(−→x ,−→y ) ≥ c2 ≥ 1

2

}

0,5 c1c20 1

What is the distribution of Q??
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Imprecise data

◮ In some situations, there can be some loss of
information.

◮ For example, it is possible that the distributions of the
random variables are not well defined.

◮ How can we compare two random variables in that
situation?
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Imprecise probabilities

We hope to...
◮ Translate the concept of statistical preference to an

imprecision context.
◮ Consider models like Choquet capacities, belief

functions,...
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Remarks

Our developments in the concept of statistical preference
have been made in collaboration with D.Martinetti and
supervised by professors S.Díaz and S.Montes.

http://eio.epv.uniovi.es/diedra/index.htm
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