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Origins of uncertainty	


•  The variability of observed natural phenomena : 

randomness.	


–  Coins, dice…: what about the outcome of the next 

throw? 	


•  The lack of information: incompleteness	



–  because of information is often lacking, knowledge 
about issues of interest is generally not perfect.	



•  Conflicting testimonies or reports: inconsistency	


–  The more sources, the more likely the inconsistency	





Example	


•  Frequentist: daily quantity of rain in Toulouse	



–  Represents variability: it may change every day	


–  It is objective: can be estimated through statistical data	



•  Incomplete information : Birth date of Brazilian  
President	


–  It is not a variable: it is a constant!	


–  Information is incomplete	


–  It is subjective: Most may have a rough idea (an interval), a few 

know precisely, some have no idea.	


–  Statistics on birth dates of other presidents do not help much.	





Knowledge vs. evidence	


•  There are two kinds of information that help us make 

decisions in the course of actions: 	


–  Generic knowledge:	



•   pertains to a population of observables (e.g. statistical 
knowledge)	



•  Describes a general trend (often) based on objective data	


•  Tainted with exceptions	


•  Deals with observed frequencies or ideas of typicality	



–  Singular evidence: 	


•  Consists of direct information about the current world.	


•  pertains to a single situation	


•  Can be unreliable, uncertain (e.g. unreliable testimony)	





The roles of probability	



Probability theory is generally used for 
representing two types of phenomena:	



1.  Randomness: capturing variability 
through repeated observations.	



2.  Belief: describes a person’s opinion on the 
occurrence of a singular event. 	



As opposed to frequentist probability, subjective probability 
that models unreliable evidence is not necessarily 
related to statistics.	





Remarks on using a single probability 
distribution	



•  Computationally simple : P(A) = ∑s ∈ A p(s)	


•  Conventions: P(A) = 0 iff A impossible; 	


	

P(A) = 1 iff A is  certain;	


	

 Usually P(A) = 1/2 for ignorance 	



•   Meaning : 	


– Frequentist probability is generic knowledge 

(statistics from a population)	


– Subjective probability pertains to singular 

events (degrees of belief)	





Constructing beliefs	



•  Belief in the occurrence of a particular event may derive 
from its statistical probability: the Hacking principle:	


–  Generic knowledge = probability distribution P	


–  beliefNOW(A) = FreqPOPULATION(A): equating belief and frequency	



•  Beliefs can be directly elicited as subjective probabilities 
of singular events with no frequentist flavor 	


–  frequencies may not be available nor known	


–  non repeatable events. 	



•  But a single subjective probability distribution cannot 
distinguish between uncertainty due to variability and 
uncertainty due to lack of knowledge	





SUBJECTIVE PROBABILITIES  ���
(Bruno de Finetti, 1935)	



•  pi = belief degree of an agent on the (next) occurrence of si	


•  measured as the price of a lottery ticket with reward 1 €  if 

state  is  si in a betting game	


•  Rules of the game: 	



–  gambler proposes a price  pi	


–  banker and gambler exchange roles if banker finds price 

pi is too low	


•  Why a belief state is a single distribution (∑j pj= 1):	



–  Assume player buys all lottery tickets i = 1, m.	


–  If state sj is  observed, the gambler gain is 1  – ∑j pj	


–   and  ∑j pj– 1 for the banker	


–  if ∑pj > 1 gambler always loses money ; 	


–  if  ∑pj < 1 banker exchanges roles with gambler	





Bayesian probability	



•  Bayesian postulate : any state of 
knowledge can be represented by a single 
probability distribution: 	


– Either via an exchangeable betting procedure	


– Or by comparison with an urn of a given 

composition	


•  Not to do it is considered to be irrational 

(sure money loss, Dutch book argument)	





Why the unique distribution assumption? 	


•  Laplace principle of insufficient reason : What is 

EQUIPOSSIBLE must be  EQUIPROBABLE	


–  It enforces the identity between IGNORANCE and 

RANDOMNESS due to a symmetry assumption	


–  Also justified by the principle of maximal entropy 	



•  The exchangeable betting framework enforces unique 
elementary probability assessments that sum to 1. 	


–  It enforces uniform probability when there is no reason to believe 

one outcome is more likely than another 	


–  ignorance and knowledge of randomness justify uniform betting 

rates.	


•  BASIC REMARK: Betting rates are induced by belief 

states, but are not in one-to-one correspondence with 
them.	





Single distributions do not distinguish 
between incompleteness and variability	



•  VARIABILITY: Precisely observed random 
observations	



•  INCOMPLETENESS:  Missing information	


•  Example: probability of facets of a die	



–  A fair die tested many times: Values are known to be 
equiprobable	



–  A new die never tested: No argument in favour of one 
hypothesis nor its contrary, but frequencies are 
unknown.	



•  BOTH  CASES  LEAD  TO  TOTAL  INDETERMINACY 
ABOUT THE NEXT THROW BUT THEY DIFFER AS 
TO THE QUANTITY OF INFORMATION	





THE PARADOX OF IGNORANCE 	


•  Case 1:               life outside earth/ no life 	

	



–  ignorant's response	

 	

1/2 	

       1/2	



•  Case 2:        Animal life / vegetal only/  no life	


–  ignorant's  response    	

1/3 	

1/3      1/3	



•  They are inconsistent answers: 	


–  case 1 from case 2 :  P(life) = 2/3 > P(no life)	


–  case 2 from case 1: P(Animal life) = 1/4 < P(no life)	



•  ignorance produces information !!!!! 	

	


•  Uniform probabilities on distinct representations of the 

state space are inconsistent. 	


•  Conclusion : a probability distribution cannot model 

incompleteness	





Language sensitiveness of prior 
probabilities	



In the case of a real-valued quantity x:	


• A uniform prior on [a, b] expressing ignorance 

about x induces a non-uniform prior for f(x) on 
[f(a), f(b)] if f is monotonic non-affine 	



Probabilistic representation of  ignorance  is not 
scale-independent.	



•  The paradox does not apply to frequentist 
distributions	





LIMITATIONS OF BAYESIAN PROBABILITY 
FOR THE REPRESENTATION OF 

IGNORANCE	


•  Ignorance: identical belief in any event different from the 

sure or the impossible ones 	



•  A single probability cannot represent ignorance: except on 
a 2-element set, the function g(A) = 1/2 ∀A ≠ S, Ø, is 
NOT a probability measure.	



•  In the life on other planets example: 6 possible contingent 
events that cannot have the same probability.	



•  Function g is monotonic under inclusion : a capacity. 	





Ellsberg Paradox	


•  Savage claims that rational decision-makers choose acts 

according to expected utility EU(a) with respect to a 
subjective probability : a better than b iff EU(a) > EU(b)	



•  An Urn containing 	


–  1/3 red balls 	

(pR = 1/3)	


–  2/3 black or white balls 	

(pW + pB = 2/3)	



•  For the ignorant subjectivist: pR = pW = pB = 1/3.	


•  Expected utility : EU(a) = ua(R)pR +ua(W)pW + ua(B)pB 	


•  But this is contrary to overwhelming empirical evidence 

about how people make decisions	





Ellsberg Paradox	


1.  Choose between two bets	



B1: Win 1$ if red (1/3) and 0$ otherwise (2/3)	


B2: Win 1$ if white (≤ 2/3) and 0$ otherwise 	



	

Most people prefer B1 to B2	



2.   Choose between two other bets (just add 1$ on Black)	


B3: Win 1$ if red or black (≥ 1/3)  and 0$ if white	


B4: Win 1 $ if black or white (2/3) and 0$ if red (1/3) 	



	

Most people prefer B4 to B3	


	





Ellsberg Paradox	


•  Let 0 < u(0) < u(1) be the utilities of gain.	


•  If decision is made according to a subjective probability 

assessment for red black and white: (1/3, pB, pW):	


–  B1 > B2: 	


       EU(B1) = u(1)/3 + 2u(0)/3 > EU(B2) = u(0)/3 +u(1)pw+u(0)pB	


–  B4 > B3:	


       EU(B4) = u(0)/3 + 2u(1)/3 > EU(G) = u(1) (1/3 + pN) +u(0)pW 	


⇒ (summing, as pB+pN= 2/3) 2(u(0) + u(1))/3 > 2(u(0) + u(1))/3: 

CONTRADICTION!	


•  Such  an  agent  cannot  reason  with  a  unique  probability 

distribution: Violation of the sure thing principle.	





When information is missing, decision-makers do not 
always choose according to a single subjective probability	


•  Plausible Explanation of Ellsberg paradox: In the face of 

ignorance, the decision maker is pessimistic. 	



•  In the first choice, agent supposes pw = 0: no white ball	


EU(B1) = u(1)/3 + 2u(0)/3 > EU(B2) = u(0)	



•  In the second choice, agent supposes pB = 0: no black ball	


EU(B4) = u(0)/3 + 2u(1)/3 > EU(B3) = 2u(0)/3 + u(1)/3 	


	



•  The agent does not use the same  probability in both 
cases (because of pessimism): the subjective probability 
depends on the proposed game. 	





Summary on expressiveness limitations of 
subjective probability distributions 	



•  The Bayesian dogma that any state of knowledge can be 
represented by a single probability is due to the 
exchangeable betting framework	



–  Cannot distinguish randomness from a lack of knowledge.	



•  Representations by single probability distributions are 
language- (or scale-) sensitive	



•  When information is missing, decision-makers do not 
always choose according to a single subjective 
probability. 	





Motivation for going beyond 
probability	



•  Distinguish  between uncertainty due to variability from 
uncertainty due to lack of knowledge or missing 
information. 	



•  The main tools to representing uncertainty are	


–   Probability distributions : good for expressing variability, but 

information demanding	



–  Sets: good for representing incomplete information, but often 
crude representation of uncertainty	



•  Find representations that allow for both aspects of 
uncertainty.	





Set-Valued Representations of 
Partial Knowledge	



•  An ill-known quantity x is represented as a 
disjunctive set, i.e. a subset E of mutually exclusive 
values, one of which is the real one.	



•  Pieces of information of the form x ∈ E	


–  Intervals E = [a, b]: good for representing incomplete 

numerical information	


–  Classical Logic: good for representing incomplete 

symbolic (Boolean) information	


    	

 	

E = Models of a wff φ stated as true. 	



 This kind of information is subjective (epistemic set)	





What do set-valued data mean?	



•  A set can represent	


–   the precise description of an actual object (ontic) : a 

region in an image.	


–  or incomplete information about an ill-known entity 

(epistemic) : interval containing an ill-known birth-
date. 	



•   The ill-known entity can be	


– A constant (x ∈ E) 	


–  or a random variable (P_x ∈ {P: P(E) = 1}).	





BOOLEAN POSSIBILITY THEORY	


Natural set functions under incomplete information: 	


If all we know is that x ∈ E ≠ Ø then	


-  Event A is possible if A ∩ E ≠ Ø   (logical consistency)	


	

Possibility measure 	

 	

Π(A) = 1, and 0 otherwise	



Π(A ∪ B) = max(Π(A), Π(B)); 	


	



-  Event A is sure if E ⊆ A       (logical deduction)	


	

Necessity measure 	

 	

N(A) = 1, and 0 otherwise	



N(A ∩ B) = min(N(A), N(B)).	


	



N(A) = 1 - Π(Ac) : N(A) = 1 iff Π(Ac) = 0	


N(A) ≤ Π(A)	



This is a simple modal logic (KD)	


	





Find a representation of uncertainty 
due to incompleteness	



•  More expressive than sets (pure intervals or 
classical logic), and Boolean possibility 
theory	



•  Less demanding than single probability 
distributions 	



•  Explicitly allows for missing information	


•  Allows for addressing the same problems as 

probability. 	





Blending intervals and 
probability	



•  Representations that refine Boolean possibility 
theory and account for both variability and 
incomplete knowledge must combine probability 
and sets.	


–  Sets of probabilities : imprecise probability theory	


–  Random(ised) sets : Dempster-Shafer theory	


–  Fuzzy sets: numerical possibility theory	



•  Each event has a degree of belief (certainty) and a 
degree of plausibility, instead of a single degree of 
probability	





GRADUAL REPRESENTATIONS OF 
UNCERTAINTY using capacities	



Family of propositions or events E forming a  
Boolean Algebra 	


–  S, Ø are events that are certain and ever impossible 

respectively.	


•  A confidence measure g: a function from E to 

[0,1] such that	


–  	

 g(Ø) = 0       ;        g(S) = 1	


–  monotony : if A ⊆ B (=A implies B)  then g(A) ≤ g(B) 	



•  g(A) quantifies the confidence of an agent in 
proposition A. 	



•  g is a Choquet capacity	





BASIC PROPERTIES OF CONFIDENCE 
MEASURES	



•  g(A∪B) ≥ max(g(A), g(B)); 	


•  g(A∩B) ≤ min(g(A), g(B))	


•  It includes: 	



–  probability measures:  P(A∪B) = P(A) + P(B) - P(A∩B)	


–  possibility measures 	

Π(A∪B) = max(Π(A), Π(B))	


–  necessity measures 	

N(A∩B) = min(N(A),N(B))	



•  The two latter functions do not require a 
numerical setting	





A GENERAL SETTING FOR REPRESENTING 
GRADED CERTAINTY AND PLAUSIBILITY	



•  2 conjugate set-functions Pl and Cr generalizing 
probability P, possibility Π, and necessity N.	



•  Conventions : 	


–  Pl(A) = 0  "impossible" ;  Cr(A) =  1   "certain"	


–  Pl(A) =1 ; Cr(A) = 0   "ignorance" (no information)	


–  Pl(A) - Cr(A) quantifies ignorance about A	



•  Postulates	


–  Cr and Pl are monotonic under inclusion (= capacities).	


–  Cr(A) ≤ Pl(A)  "certain implies plausible"	


–  Pl(A) = 1 - Cr(Ac) 	

duality certain/plausible	


–  If Pl = Cr then it is P.	





Possibility Theory ���
(Shackle, 1961, Zadeh, 1978)	



•  A piece of incomplete information "x ∈ E" 
admits of degrees of possibility: E ⊆ S is a 
(normalized) fuzzy set : µE : S –> [0, 1]	



•  µE(s) = Possibility(x = s) = πx(s) in [0, 1]	


•  πx(s)  is the degree of plausibility of x = s	


•  Conventions: πx(s) = 1 for some value s.	


	

πx(s) = 0 iff x = s is impossible, totally surprising	


	

πx(s) = 1 iff x = s is normal, fully plausible, unsurprising	


	

 	

 	

 	

 	

 	

(but no certainty)	





Improving expressivity of incomplete 
information representations	



•  What about the birth date of the president?	


•  partial ignorance with ordinal preferences : May have 

reasons to believe that 1933 > 1932 ≡ 1934 > 1931 ≡ 1935 
> 1930 > 1936 > 1929	



•  Linguistic information described by fuzzy sets:  “ he is 
old  ”   :  membership  µOLD is  interpreted as   a  possibility 
distribution on possible birth dates (Zadeh).	



•  Nested intervals E1, E2, …En with confidence levels N(Ei) 
= ai : π(x) = mini = 1, …n max (µEi(x), 1- ai)	





POSSIBILITY AND NECESSITY ���
OF AN EVENT	



How confident are we that x ∈ A ⊂ S ? (an event A occurs) 
given a possibility distribution on S 	



•  Π(A) = maxs∈A π(s) : 	


         to what extent A is consistent with π 	



	

 	

 	

(= some x ∈ A  is possible)	


 	

 	

The degree of possibility that x ∈ A	


•  N(A) = 1 – Π(Ac) = min s∉A 1 – π(s): 	



	

 	

to what extent no element outside A is possible   	


   = to what extent π implies A	



   	

 	

 The degree of certainty (necessity) that x ∈ A	





Basic properties (finite case)	



Π(A ∪ B) = max(Π(A), Π(B)); 	


	

 	

 	

N(A ∩ B) = min(N(A), N(B)). 	



Mind that most of the time : 	

 	

 	

         	


	

Π(A ∩ B) < min(Π(A), Π(B)); 	

 	

 	


	

 N(A ∪ B) > max(N(A), N(B) 	

 	

 	

	



Example: Total ignorance on A and B = Ac 	

	


	

 	

 	

(Π(A) = Π(Ac) = 1)	

	



Corollary N(A) > 0 ⇒ Π(A) = 1	

 	

 	

 	

	





Comparing information states	


•  π' more specific than π in the wide sense 	

 	

	

 	



	

if and only if π' ≤ π	


Any possible value according to π' is at least according to  π : 
π' is more informative  than π	


–  COMPLETE KNOWLEDGE: The most specific ones	



•  π(s0) = 1 ;           π(s) = 0 otherwise	


–  IGNORANCE: π(s) = 1, ∀ s ∈ S	



•  Principle of least commitment (minimal specificity): In a 
given information state, any value not proved impossible is 
supposed to be possible : maximise possibility degrees.	





Certainty-qualification	



•  Attaching a degree of certainty α to event A	


•  It means N(A) ≥ α ⇔ Π(Ac) =sup s ∉ Aπ(s) ≤ 1 – α	


•  The least informative π sanctioning N(A) ≥ α is :	



–  π(s) =  1 if s ∈ A  and  1 – α if s ∉ A	


•  In other words: π(s) = max(µA, 1 – α) 	



1

0
A

1 – α

πx



a1	



a2	



1	



0	



E1	



E2	



E3	



π	



POSSIBILITY  DISTRIBUTION INDUCED 	


BY EXPERT  CONFIDENCE INTERVALS	



α2	



α3	



π(x) = mini = 1, …n max (µEi(x), 1- ai)	


	





1	



0	



π	



FUZZY INTERVAL	



At the limit with an infinity of nested intervals	


	


N(Aα) ≥ 1- α, α in (0, 1]	



Aα	



α	





A pioneer of possibility theory	


•  In the 1950’s, G.L.S. Shackle called "degree of potential 

surprize" of an event its degree of impossibility = 1 - Π(Α).	



•  Potential surprize is valued on a disbelief scale, namely a 
positive interval of the form [0, y*], where y* denotes the 
absolute rejection of the event to which it is assigned, and 0 
means that nothing opposes to the occurrence of A. 	



	


•  The degree of surprize of an event is the degree of surprize of 

its least surprizing realization. 	


•  He introduces a notion of conditional possibility	





Qualitative vs. quantitative possibility theories	


•  Qualitative:	



–  comparative: A complete pre-ordering ≥π  on U 	

	

A well-
ordered partition of U: E1 > E2 > … > En	



–  absolute: πx(s) ∈ L = finite chain, complete lattice...	


•  Quantitative: πx(s) ∈ [0, 1], integers...	


One must indicate where the numbers come from.	


	


All theories agree on the fundamental maxitivity axiom    	


	

 	

 	

Π(A ∪ B) = max(Π(A), Π(B))	



Theories diverge on the conditioning operation	





Quantitative possibility theory	


•  Membership functions of fuzzy sets	



–  Natural language descriptions pertaining to numerical universes 
(fuzzy numbers)	



–  Results of fuzzy clustering 	


    Semantics: metrics, proximity to prototypes	


•  Imprecise probability	



–  Random experiments with imprecise outcomes 	


–  Special convex probability sets	



	

Semantics: frequentist,  or  subjectivist (gambles)...	





Random sets	


•   A probability distribution m on the family  

of non-empty subsets of a set S. 	


•  A positive weighting of non-empty subsets: 

mathematically, a random set : 	


            ∑    m(E) = 1 	

	


               E ∈ F	


•  m : mass function. 	


•  focal sets : E ∈F with m(E) > 0. 	





Disjunctive random sets	



•  m(E) = probability that the most precise  
description of the available  information is 
of the form "x ∈ E”	


= probability(only knowing "x ∈ E" and nothing 

else)	


–  It is the portion of probability mass hanging 

over elements of E without being allocated.	


•  DO NOT MIX UP  m(E) and P(E)	





Basic set functions from random sets	



•  degree of certainty (belief) :    	


–  Bel(A) =          ∑           m(Ei)	


	

 	

 	

Ei ⊆ A, Ei ≠ Ø	



–  total mass of information implying  the occurrence of A	


–  (probability of provability)	



•  degree of plausibility :                          	


–  Pl(A) = 	

∑         m(Ei) = 1 - Bel(Ac)  ≥ Bel(A)	


	

 	

      Ei ∩ A ≠ Ø    	



–  total mass of information consistent with  A	


–  (probability of consistency)	





Example : Bel(A) = m(E1) + m(E2)���
Pl(A) = m(E1) + m(E2) + m(E3) + m(E4)���

	

  = 1 – m(E5) = 1 – Bel(Ac)	



E2	



E3	

 E5	



E1	



E4	



A	



Ac	





PARTICULAR CASES	


•  INCOMPLETE INFORMATION: 	


                                                   m(E) = 1, m(A) = 0‚ A ≠ E	


•  TOTAL IGNORANCE : m(S) = 1:	



–   For all  A≠ S, Ø, Bel(A) = 0, Pl(A) = 1	


•  PROBABILITY:  if ∀i, Ei = singleton {si} (hence disjoint 

focal sets )	


–  Then, for all A, Bel(A) =  Pl(A) = P(A)	


–  Hence precise + scattered information  	



•  POSSIBILITY THEORY : the opposite case 	


	

E1 ⊆ E2 ⊆ E3… ⊆ En : imprecise and coherent information  	



–  iff  Pl(A ∪ B) = max(Pl(A), Pl(B)), possibility measure	


–  iff  Bel(A ∩ B) = min(Bel(A), Bel(B)), necessity measure	





From possibility to random sets	



•  Let mi = αi – αi+1       then m1 +… + mn = 1, 	


	

 	

 	

with focal sets = cuts Ai = {s, π(s) ≥ αi}	



          A basic probability assignment (SHAFER)	


•  π(s) 	

= ∑i: s∈Fi mi (one point-coverage function) = Pl({s}).	


•  Only in the consonant case can m be recalculated from π 	


•  Bel(A) = ∑Fi⊆A  mi = N(A); Pl(A) = Π(A)	



1

F

α3

possibility levels
1 > α2 > α3 >… > αn

α2
α4



What can disjunctive random sets 
model ?	



•  Dempster model : Indirect information (induced 
from a probability space). 	



•  What we know about a random variable x with 
range S, based on a sample space (Ω, A, P) and a 
multimapping  Γ from Ω to S  (Dempster):	



•  The meaning of the multimapping  Γ from Ω to S :	


–  if we observe ω in Ω then all we know is x (ω) ∈ Γ(ω)	



•  m(Γ(ω)) = P({ω}) ∀ ω in Ω  (finite case.)	





Canonical examples	



•  Objectivist : Frequentist modelling of a collection 
of incomplete observations (imprecise statistics) : 
incomplete generic information	



•  Uncertain subjective information: 	


–  Unreliable testimonies (Shafer’s book) : human-

originated singular information	


•  Unreliable sensors :  the quality/precision of the 

information depends on the ill-known sensor state. 	





Example of uncertain evidence : Unreliable 
testimony (SHAFER-SMETS VIEW)	



•  « John tells me the president is between 60 and 70 years 
old, but there is some chance (subjective probability p) he 
does not know and makes  it up».	


–  E =[60, 70];  Prob(Knowing “x∈ E =[60, 70]”) = 1 - p.	


–  With probability p, John invents the info, so we know nothing (Note 

that this is different from  a lie).	



•   We get a simple support belief function :           	


	

 	

 	

m(E) = 1 – p 	

and 	

m(S) = p	



•  Equivalent to a possibility distribution 	


–    π(s) = 1 if x ∈ E       and  	

π(s) = p otherwise.	





Unreliable testimony with lies	


•  « John tells me the president is between 60 and 70 years 

old, but 	


–  there is some chance (subjective probability p) he does not know 

and makes  it up».	


–  John may lie (probability q): E =[60, 70];  Prob(Knowing “x∈ E 

=[60, 70]”) = 1 - p.	


	



•  Modeling	


–  John is competent  and does not lie :m(E)  = (1 – p)(1 – q),	


–  John is competent and lies  m(Ec)  = (1 – p)q. 	


–  John is incompetent and is boasting : m(S) = p	





Dempster vs. Shafer-Smets	


•  A disjunctive random set can represent	



–  Uncertain singular evidence (unreliable testimonies): m(E) = 
subjective probability pertaining to the truth of testimony E. 	



•  Degrees of belief directly modelled by Bel : no appeal to an 
underlying probability. 	



(Shafer, 1976 book; Smets)	


	


–  Imprecise statistical evidence: m(E) = frequency of  imprecise 

observations of the form E and Bel(E) is a lower probability	


•  A multiple-valued mapping from a probability space to a space of 

interest representing an ill-known random variable. 	


•  Here, belief  functions are explicitly viewed as lower probabilities	



(Dempster intuition)	


•  In all cases E is a set of mutually exclusive values and does 

not represent a real set-valued entity	





Example of generic belief function: 
imprecise observations in an opinion poll	



•  Question : who is your preferred candidate 	


                   in C = {a, b, c, d, e, f} ???	



–  To a population Ω = {1, …, i, …, n} of n persons.	


–  Imprecise responses r = « x(i) ∈ Ei » are allowed	


–  No opinion (r =C) ; « left wing » r = {a, b, c} ; 	


–  « right wing » r = {d, e, f} ;	


–   a moderate candidate : r = {c, d}	



•  Definition of mass function: 	


–  m(E) = card({i, Ei = E})/n	


–  = Proportion of imprecise responses « x(i) ∈ E »	





•  The  probability  that  a  candidate  in  subset   A  ⊆  C   is 
elected is imprecise :   	



                    Bel(A) ≤ P(A) ≤ Pl(A)	


•  There is a fuzzy set F of potential winners: 	



µF(x) = ∑ x ∈ E m(E) = Pl({x}) (contour function)	


•   µF(x) is an upper bound of the probability that x is elected. 

It  gathers  responses of those who did not give up voting  
for x	



•  Bel({x}) gathers  responses of those who claim they will 
vote for x and no one else.	





Example of conjunctive random sets	


Experiment on linguistic capabilities of people :	


•  Question    to  a population  Ω  =  {1,  …,  i,  …,  n}  of  n 

persons:  which languages can you speak ?	


•  Answers  :  Subsets  in  L  =  {Basque,  Chinese,  Dutch, 

English, French,….} ?	


•  m(E) = % people who speak exactly  all  languages in E 

(and not other ones)	


•  Prob(x speaks A) =∑{m(E) : A⊆E} = Q(A) : commonality 

function in belief function theory	


•  Example: « x speaks English » means « at least English »	


•  The  belief  function  is  not  meaningful  here  while  the 

commonality makes sense, contrary to the disjunctive set 
case. 	





Imprecise probability theory	


•  A state of information is represented by a family P 

of probability distributions over a set X.	


•  For instance: incomplete knowledge of a 

frequentist probabilistic model : ∃ P ∈ P.	


•  To each event A is attached a probability interval 

[P*(A), P*(A)] such that 	


–  P*(A) = inf{P(A), P∈ P}	


–  P*(A) = sup{P(A), P∈ P} = 1 – P*(Ac) 	



•  Usually P is strictly contained in {P(A), P ≥ P*}	


•  {P(A), P ≥ P*}is convex (credal set).	





REPRESENTING INFORMATION BY 
PROBABILITY FAMILIES	



Often probabilistic information is incomplete:	


–  Expert opinion (fractiles, intervals with confidence levels)	


–  Subjective estimates of support, mode, etc. of a distribution	


–  Parametric model with incomplete information on parameters (partial 

subjective information on mean and variance)	


–  Parametric model with confidence intervals on parameters due to a small 

number of observations	



•  In the case of generic (frequentist) information using a 
family of probabilistic models, rather than selecting a 
single one, enables to account for incompleteness and 
variability.	



•  In the case of subjective belief: distinction between not 
believing a proposition (P*(A)  and P*(Ac) low) and 
believing its negation (P*(Ac) high). 	





Subjectivist view (Peter Walley)	


•  A theory that handles convex probability sets 	



–  Plow(A) is the highest acceptable price for buying a bet 
on singular event A winning 1 euro if A occurs	



–  Phigh(A) = 1 – Plow(Ac) is the least acceptable price for 
selling this bet.	



–  These prices may differ (no exchangeable bets)	


•  Rationality conditions: 	



–   No sure loss : {P ≥ Plow} not empty 	


–  Coherence: P*(A) = inf{P(A), P ≥ Plow} = Plow(A) 	



•  Convex probability sets (credal sets)  are actually 
characterized by lower expectations of real-valued 
functions (gambles), not just events. 	





Capacity-based lower 
probabilities	



•  Coherent lower probabilities are important 
examples of certainty functions. The most general 
numerical approach to uncertainty.	



•  They satisfy super-additivity: if A∩B = Ø then 	


                    Cr(A) + Cr(B) ≤ Cr(A∪B)	



•  One may require the 2-monotony property: 	


        Cr(A) + Cr(B) ≤ Cr(A∪B) + Cr(A∩B)	



–  ensures non-empty coherent credal set:	


	

 	

 	

 	

{P: P(A) ≥ Cr(A)} ≠ Ø . 	



Cr is then called a convex capacity. 	





Random disjunctive sets vs. ���
imprecise probabilities	



•  The set Pbel = {P ≥ Bel} is coherent: Bel is a 
special case of lower probability	



•  Bel is ∞-monotone (super-additive at any order)	


–  Order 3: Bel(A∪B∪C) ≥ Bel(A) + Bel (B) + Bel (C) - 

Bel(A∩B) - Bel(A∩C) - Bel(B∩C) + Bel(A∩B∩C), 
etc.	



•  For any set function, the solution m to the set of 
equations ∀ A ⊆ X g(A) =  ∑  	

m(Ei)	



	

 	

 	

 	

  Ei ⊆ A, Ei ≠ Ø	


is unique (Moebius transform) 	


–  However m is positive iff g is a belief function	





POSSIBILITY AS UPPER PROBABILITY	



•  Given a numerical possibility distribution π, define	


    P(π) = {P |  P(A) ≤ Π(A) for all A}	


	


•  Then, generally it holds that 	


           Π(A) = sup {P(A) | P ∈ P(π)}; 	


           N(A) = inf {P(A) | P ∈ P(π)}	


•  So N and P are special cases of coherent lower and upper 

probabilities	


•  So π is a very simple representation of a credal set (convex 

family of probability measures)	





LIKELIHOOD FUNCTIONS	



•  Likelihood functions λ(x) = P(A| x) behave like possibility 
distributions when there is no prior on x, and λ(x) is used as 
the likekihood of x.	



• It holds that λ(B) = P(A| B) ≤ maxx ∈ B P(A| x) 	


• If P(A| B) = λ(B) is the likelihood of “x ∈ B” then λ should 

be a capacity (monotonic with inclusion): 	


	

 	

{x} ⊆ B implies λ(x) ≤ λ(B)	



 	

 	

 	

	


   It implies λ(B) = maxx ∈ B λ(x) if no prior probability is 

available for x.	





Maximum likelihood principle is 
possibility theory	



•  The classical coin example: θ is the unknown 
probability of “heads”	



•  Within n experiments: k heads, n-k tails	


•  P(k heads, n-k tails | θ) = θk·(1- θ)n-k is 	


   the degree of possibility π(θ) that the probability of 

“head” is θ.	


 In the absence of other information the best choice 

is the one that maximizes π(θ),  θ ∈ [0, 1] 	


	

 	

 	

 	

It yields θ = k/n.	





Coherence and deductive closure	


•  Suppose the knowledge is of the form of a 

consistent set of assertions φi  of the form           
« x in Ei » i = 1, …,n. (N(Ei) = 1)	



•  The set of consequences of {φi i = 1, …,n} is 
deductively closed  (under inclusion and 
conjunction)	



•  It defines a Boolean  necessity function N 
corresponding to all assertions  « x in A »  where                             
E = ∩i = 1, …,n Ei ⊆ A           	

(iff N(A) = 1)	





Coherence and deductive closure	



•  If the knowledge is viewed as a credal set 
{P: P(Ei) = 1, i = 1, …,n} then the coherent 
lower probability induced by its natural 
extension is a Boolean necessity function N	



•  Conclusion Coherence generalizes 
deductive closure, interpreting a 
consequence as a formula with lower 
probability 1	





LANDSCAPE OF UNCERTAINTY THEORIES	


BAYESIAN/STATISTICAL PROBABILITY: the language of 
unique probability distributions (Randomized points)	


	


UPPER-LOWER PROBABILITIES : the language of disjunctive 
convex sets of probabilities, and lower expectations       	

 	



	

 	

 	

	


SHAFER-SMETS BELIEF FUNCTIONS: The language of 
Moebius masses (Random disjunctive sets) 	

                        	


	


QUANTITATIVE POSSIBILITY THEORY : The language of 
possibility distributions (Fuzzy (nested disjunctive) sets) 	

	


	


BOOLEAN POSSIBILITY THEORY (modal logic KD) : 	


The language of Disjunctive sets	





Practical representations	



•  Fuzzy intervals	


•  Probability intervals	


•  Probability boxes	


•  Generalized p-boxes	


•  Clouds	


 Some are special random sets some not.  	





From confidence sets to possibility 
distributions	



•  Let E1, E2, …En be a nested family of sets	


•  A set of confidence levels a1, a2, …an in [0, 1]	


•  Consider the set of probabilities  	

 	



	

P = {P, P(Ei) ≥ ai, for i = 1, …n}	


•  Then P is representable by means of a possibility 

measure with distribution	


	

 	

π(x) = mini = 1, …n max (µEi(x), 1- ai)	





a1	



a2	



1	



0	



E1	



E2	



E3	



π	



POSSIBILITY  DISTRIBUTION INDUCED 	


BY EXPERT  CONFIDENCE INTERVALS	



α2	



α3	



m2= α2 - α3	





1	



0	



π	



α

Αα	



FUZZY INTERVAL: N(Αα) = 1 - α	



A possibility distribution can be obtained from any 	


family of nested confidence sets : 	



P(Αα) ≥ 1 - α, α ∈ (0, 1]	



α	





Possibilistic view of probabilistic 
inequalities	



Probabilistic inequalities can be used for knowledge 
representation: 	


•  Choosing sets [xmean – kσ, xmean + kσ]	



–  Chebyshev inequality defines a possibility distribution 
that dominates any density with given mean and 
variance:  	



P(V ∈ [xmean – kσ, xmean + kσ]) ≥ 1 – 1/k2 is equivalent to 
writing 	



π(xmean – kσ) = π(xmean + kσ) = 1/k2 	


–  A triangular fuzzy number (TFN) defines a possibility 

distribution that dominates any unimodal density with 
the same mode and bounded support as the TFN.	





Chebychev	

 Camp-Meidel	





Possibilistic view of probabilistic 
inequalities 2	



Probabilistic inequalities can be used for knowledge 
representation: 	


•  Choosing mode, bounded support and sets Eα of the 

form	


     [xmode – (1-α) (xmode–x*), xmode +(1-α) (x*–xmode)]	


•  A triangular fuzzy number (TFN) defines a possibility 

distribution that dominates any unimodal density with the 
same mode and bounded support as the TFN.	



•  P(V ∈ Eα) ≥ 1 – α is equivalent to writing 	


π(xmode – (1-α) (xmode–x*))	


	

 	

 	

 	

 = π(xmode +(1-α) (x*–xmode))  = α	





•  the interval IL= [aL, aL+ L]  
of fixed length L with 
maximal probability is of 
the form  {x, p(x) ≥ β}	



•  The most narrow prediction 
interval with probability α 
is of the form {x, p(x) ≥ β}	



•  So the most natural 
possibilistic counterpart of 
p is  when 	



      π*(aL) = π*(aL+ L) = 	


      1 – P(IL= {x, p(x) ≥ β}).	



Optimal order-faithful ���
fuzzy  prediction intervals	



β



Optimal order-faithful 	


fuzzy prediction interval	





Probability boxes	


•  A set  P = {P: F* ≥ P ≥ F*} induced by two 

cumulative distribution functions is called a 
probability box (p-box), 	



•  A p-box is a special random interval (continuous belief 
function) whose upper and bounds induce the same 
ordering.	



•  A fuzzy interval induces a p-box P : density(Εα) = 1	


F*	



F*	


0	



1	


α	



Eα	





Probability boxes from possibility 
distributions	



•  Representing families of probabilities by fuzzy intervals 
is more precise than with the corresponding pairs of 
PDFs:	


–  F*(a) = ΠM( ( -∞, a])  = π(a) if a ≤ m	


	

 	

                     = 1 otherwise.	



–  F*(a) = NM( ( -∞, a] )  = 0 if a < m*	



                                           = 1 - limx ↓ aπ(x) otherwise	


•   P(π) is a proper subset of P = {P: F* ≥ P ≥ F*} 	



–  Not all P in P are such that Π ≥ P	





P-boxes vs. fuzzy intervals	



0 1 2 3 
0 

1 

0.5 
   F*     F*  π  

A  triangular fuzzy number with support [1, 3] and mode 2. 	


Let P be defined by P({1.5})=P({2.5})=0.5. 	


Then  F* < F < F P ∉ P(Π) since 	


P({1.5, 2.5}) = 1 > Π({1.5, 2.5}) = 0.5	





Generalized cumulative 
distributions	



•  A Cumulative distribution function  F:                  
F(x) =  P({X ≤ x}) of a probability function P can 
be viewed as a possibility distribution dominating 
P since the sets {X ≤ x} are nested	



•  in particular, sup{F(x), x ∈ A} ≥ P(A)	


• Choosing any order relation ≤R  	


	

FR(x) = P({X ≤R x}) also induces a possibility 
distribution dominating P	





Generalized p-boxes	


•  The notion of cumulative distribution depends on an 

ordering on the space: FR(x) = P(X ≤R x)	


•  A generalized probability box is a pair of cumulative 

functions (FR
*, FR*) associated to the same order relation. 	



        P = {P: FR
* ≥ P ≥ FR*} 	



•  Consider y  ≤R x iff |y - a| ≥ |x -a| (distance to a value)	


•  Then π(y) = FR

*(y) ≥ δ(y) = FR*(y)	


•  It comes down to considering nested confidence intervals 

E1, E2, …En each with two probability bounds αi and βi such 
that 	


 	

 	

P = {αi ≤ P(Ei) ≤ βi for i = 1, …, n}	





Generalized p-boxes	


•  It comes down to two possibility distributions 	


          π (from αi ≤ P(Ei)) and πc (from P(Ei) ≤ βi )	


•  Distributions π and πc are such that π ≥ 1 - πc = δ and 
π is comonotonic with δ (they induce the same order 
on the referential according to  ≤R).	



• P = P (π) ∩ P (πc)	


•  Theorem: a generalized p-box is a belief function 

(random set) with focal sets 	


	

 	

    {x: π(x) ≥ α} \ {x: δ(x) > α} 	





Elementary example ���
of a generalized p-box	



•  All that is known is that P(E) in [a, b] on a 
finite set S	



•  It corresponds to the belief function : 	


– m(E) = a; m(Ec) = 1- b; m(S) = b – a.	



•  The two possibility distributions : 	


– π1(s) = 1 if s in E; 1-a otherwise.	


– π2(s) = 1 if s in Ec; b otherwise.	



•  The generalized p-box (π1, 1-π2) 	





α  = FR*(a) = FR*(b)= 1 - π(a) = 1 - π(b); ���
β = FR 

*(a) = FR
*(b) = 1 - δ(a) = 1 - δ(b).	



1	



0	



π	


1 -α	

 δ	



Generalized p-box	


E	



a	

 b	



 1 - β	





From generalized p-boxes to 
clouds	





CLOUDS	



•  Neumaier (2004) proposed a generalized interval 
as a pair of distributions (π ≥ δ) on a referential 
representing the family of probabilities P = 	


{P, s. t. P({x: δ(x) > α}) ≤ α ≤ P({x: π(x) ≥ α}) ∀α >0} 	



•  Distributions π and 1- δ are possibility distributions 
such that P = P (π) ∩ P (1-δ) 	



•  It does not correspond to a belief function, not 
even a convex (2-monotone) capacity 	





SPECIAL CLOUDS	


•  Clouds are modelled by interval-valued fuzzy sets	


•  Comonotonic clouds = generalized p-boxes	


•  Fuzzy clouds: δ = 0; they are possibility distributions 	



•  Thin clouds: π = δ: 	


–  Finite case : empty	


–  Continuous case : there is an infinity of probability 

distributions in  P (π) ∩ P (1-π) for bell-shaped π	


–  Increasing π: only one probability measure p (π = 

cumulative distribution of p)	





Probability intervals	


•  Probability intervals = a finite collection L of imprecise 

assignments [li , ui] attached to elements si of a finite set S.  
•  A collection L = {[li , ui ] i = 1,… n} induces the family PL 

= {P: li ≤  P({si})  ≤ ui}. 
•  A probability interval model L is coherent in the sense of 

Walley if and only if 	


–  ∑j ≠ i lj + ui ≤ 1 and  1 ≤ ∑j ≠ i uj + li  

•  Lower/upper probabilities on events are given by 
–  P*(A) = max(Σsi∈A li ; 1 – Σsi∉A ui) ; 
–  P*(A) = min(Σsi∈A ui ; 1 – Σsi∉A li)  

•  P* is a 2-monotone Choquet capacity (De Campos and 
Moral)	





How useful are these 
representations: 	



•  P-boxes can address questions about 
threshold violations (x ≥ a ??), not  
questions of the form  a ≤ x≤ b	



•  The latter questions are better addressed by 
possibility distributions or generalized p-
boxes	





Relationships between representations	



•  Generalized p-boxes are special random sets 
that generalize BOTH p-boxes and 
possibility distributions	



•  Clouds extend GP-boxes but induce lower 
probabilities that are not even 2-monotonic.	



•  Probability intervals are not comparable to 
generalized p-boxes: they induce lower 
probabilities that are 2-monotonic	





Important pending theoretical issues	



•  Comparing representations in terms of 
informativeness.	



•  Conditioning : several definitions for several 
purposes.	



•  Independence notions: distinguish between 
epistemic and objective notions.	



•  Find a general setting for information fusion 
operations (e.g. Dempster rule of combination).	





Comparing belief functions in terms of 
informativeness	



•  Consonant case : relative specificity. 	


π' more specific (more informative) than π in 

the wide sense if and only if π' ≤ π.	


(any possible value in information state  π' is 

at least as possible in information state π) 	

	


–  Complete  knowledge:  π(s0)  =  1  and  =  0 

otherwise. 	


–  Ignorance: π(s) = 1, ∀ s ∈ S	





Comparing belief functions in terms of 
informativeness	



•  Using contour functions: 	

 	

 	


	

π(s)= Pl(s) = ∑x ∈ E m(E)	



m1 is more cf-informative that  m2 iff π1 ≤ π2	



• Using belief or plausibility functions : 	


m1 is more pl-informative that  m2 iff Pl1 ≤ Pl2	



iff Bel1 ≥ Bel2	


It corresponds to comparing credal sets P(m):	


Pl1 ≤ Pl2 if and only if P(m1) ⊆ P(m2)	





Specialisation	


•  m1 is more specialised than m2 if and only if 	



– Any focal set of m1is included in at least one 
focal set of m2	



– Any focal set of m2 contains at least one focal 
set of m1	



– There is a stochastic matrix W that shares 
masses of focal sets of m2 among focal sets of 
m1 that contain them:	



•  	

 	

 m2 (E) = ∑F⊆E w(E, F) m1(F)	





Results	



•  m1 ⊆sm2 implies m1 ⊆Plm2 implies m1 ⊆cfm2	



•  Typical information ordering for belief 
functions : m1 ⊆sm2 iff Q1 ≤ Q2	



•  m1 ⊆sm2 implies m1 ⊆Qm2 implies m1 ⊆cfm2	



•  However m1 ⊆Plm2 and m1 ⊆Qm2 are not 
comparable and can contradict each other	



•  In the consonant case : all orderings 
collapse to m1 ⊆cfm2	





Example	


•  S = {a, b, c}; m1(ab) = 0.5, m1(bc) = 0.5;	


•  m2(abc) = 0.5, m2(b) = 0.5	


•  m1 ⊆sm2 nor m2 ⊆sm1 hold	


•   m2 ⊂Plm1 : Pl1(A) = Pl2(A) 	

 	

 	

 	



	

but Pl2(ac) = 0.5 < Pl1(ac)  = 1	


•  m1 ⊂Qm2 : Q1(A) = Q2(A) 	

 	

 	

 	



	

but Q1(ac) = 0 < Q2(ac)  = 0.5	


•  And contour functions are equal : a/0.5, b/1, c/0.5	





Conditional Probability 	


•  Two concepts leading to 2 definitions: 	



1. derived  (Kolmogorov): P(A | C)   = 	


          requires P(C) ≠ 0	


2. primitive (de Finetti): P(A|C) is directly 

assigned a value and P is derived such that 	


	

P(A∩C) = P(A|C)·P(C). 	


•  Makes sense even is P(C)= 0	


	



Meaning : P(A | C) is 	

	


the probability of  A if C represents all that is 

hypothetically known on the situation	



P(A ∩ C)	


     P(C)	





THE MEANING OF CONDITIONAL 
PROBABILITY	



•  P(A|C) : probability of a conditional event « A in epistemic 
context  C   »  (when  C  is  all  that  is  known  about  the 
situation). 	



•  It is NOT the  probability of A, if C is  true.	


•  Counter-example : 	



–  Uniform Probability on {1, 2, 3, 4, 5}	


–  P(Even |{1, 2, 3}) = P(Even |{3, 4, 5}) = 1/3	


–  Under a classical logic interpretation : 	



•  From « if result ∈  {1, 2, 3} then P(Even) = 1/3 »	


•  And« if result ∈  {3, 4, 5} then P(Even) = 1/3 »	


•  Then (classical inference) : P(Even) = 1/3  unconditionally!!!!!	



–  But of course: P(Even) = 2/5.	


•  So, conditional events A|C should be studied as single entities (De 

Finetti). 	





The nature of conditional probability	


•  In the frequentist settting a conditional probability P(A|C) is a relative 

frequency.	


•  It can be used  to  represent the weight of rules of the form « generally, 

if C then A » understood as « Most C’s are A’s » with exceptions 	


  	


In logic a rule « if C then A » is represented by material implication Cc∪A 

that rules out exceptions	


	

	



•  But  the  probability  of  a  material  conditional  is  not  a  conditional 
probability! 	



•  What  is  the  entity  A|C  whose  probability  is  a  conditional 
probability??? 	



                         A conditional event!!!!	





Material implication: ���
the raven paradox	



•  Testing the rule « all ravens are black » 
viewed as ∀x, ¬Raven(x) ∨ Black(x)	



•  Confirming the rule by finding situations 
where the rule is true.	


– Seeing a black raven confirms the rule	


– Seeing a white swan also confirms the rule.	


– But only the former is an example of the rule.	





3-Valued Semantics of conditionals	


•  A rule « if C then A » shares the world into 3 parts 	



–  Examples: interpretations where A∩C is true	


–  Counterexamples: interpretations where Ac∩C is true	


–  Irrelevant cases: interpretations where C is false	



Rules « all ravens are black » and « all non-black birds are not 
ravens » have the same exceptions (white ravens), but 
different examples (black ravens and white swans resp.)	



•  Truth-table of « A|C » viewed as a connective	


–  Truth(A|C) = T if truth(A)= truth(C) = T  	


–  Truth(A|C) = F if truth(A)=T and  truth(C) = F	


–  Truth(A|C) = I if truth(C)= F	


Where I is a 3d truth value expressing « irrelevance »:	


I = T: A∪Cc ;  I = F: A∩C .	





A conditional event is ���
a pair of nested sets	



•  The solutions X of A∩C = X∩C form the set 	


	

 	

 	

 A|C = {X: A∩C⊆ X ⊆ A∪Cc}	



•  It defines the symbolic Bayes-like equation: 	


	

 	

 	

 	

A∩C = (A|C)∩C.	



•  The models of a conditional A|C can be 
represented by the pair (A∩C, A∪Cc), an interval 
in the Boolean algebra of subsets of S	



•  The set A∪Cc representing material implication 
contains the « non-exceptions » to the rule (the 
complement of A∩Cc).	





Semantics for three-valued logic of 
conditional events.	



•  Semantic entailment: A|C |= B|D iff 	


    A∩C⊆ B∩D  and Cc∪A ⊆  Dc∪B	


B|D has more examples and less counterexamples 

than A|C.	


	

 	

 	

In particular A|C |= A|B∩C is false.	



•  Quasi-conjunction (Ernest Adams): 	


A|C ∩ B|D = (Cc∪A)∩ (Dc∪B)| C∪D 	





Probability of conditionals	


P(A|C) is totally determined by	



– P(A∩C) (proportion of examples)	


–  P(Ac∩C) = 1 - P(A∪Cc) (proportion of 

counter-examples)	


	


	



•  P(A|C) is increasing with P(A∩C)  and 
decreasing with P(Ac∩C) 	



•  If A|C |= B|D then P(A|C ) ≤ P(B|D).	



        P(A∩C) 	


P(A∩C) + 1 - P(A∪Cc)	

P(A|C) =	





CONDITIONING NON-ADDITIVE 
CONFIDENCE MEASURES	



•  Definition : A conditional confidence measure 
g(A | C) is a mapping from conditional events      
A | C ∈ 2S×(2S – {∅}) to  [0, 1] such that 	


–  g(A | C) = g(A ∩ C| C) = g(Ac∪C |C) 	


–  gC(· ) = g (.| C) is a confidence measure on C ≠ ∅	



•  Two approaches:	


–   Bayes-like  g(A ∩ C) = g(A | C) ·g(C)	

       	


–  Explicit Approach g(A | C) = f(g(A ∩ C), g(A∪Cc))     

Namely : f(x, y) = x/(1+x-y)	





Using conditional probability	



•  Prediction :Querying a generic probability 
based on sure singular information: 	


– P represents generic information (statistics over 

a population), 	


– C represents singular evidence (variable 

instantiation for a case x at hand)	


– The relative frequency P(B|C) is used as the 

degree of belief that x∈C satisfies B.	





Using conditional probability	



•  Revision of a subjective probability	


– P(A) represents singular information, an 

agent’s prior  belief on what is the current state 
of the world (that a birth date x∈A…).	



– C represents  an additional sure information 
about the value of x : x∈C for sure.	



– P(A|C) represents the agent’s posterior belief 
that x∈A. 	





Conditioning a credal set	


•  Let P be a credal set representing generic information 

and C an event 	


•  The two types of tasks lead to different processing : 	



1.  Prediction : C represents available singular facts: 
compute the degree of belief in A in context  C as 	


Cr(A | C) = Inf{P(A | C), P ∈ P , P(C) > 0} (Walley).	



2.  Revision : C represents a set  of universal truths;	


	

 	

Add P(C) = 1 to the set of conditionals P. 	


Cr(A||C) =Inf{P(A) P ∈ P , P(C) = 1}	


If P(C) = 1 is incompatible with P , use maximum 

likelihood (Gilboa and Schmeidler): 	


Cr(A||C) =Inf{P(A|C) P ∈ P , P(C) maximal }	





Example :  A 	

              B               C	


• P is the set of probabilities such that	



–  	

 P(B|A) ≥ α 	

Most A are B 	

	


–  	

 P(C|B) ≥ β 	

Most B are C	


–  	

 P(A|B) ≥ γ 	

Most B are A	



•  Prediction  by  querying  on  context  A   :  Find  the  most 
narrow interval for P(C|A) (Linear programming):	



P(C|A) ≥ α ⋅ max(0, 1 - (1 - β)/γ)	


–  Note : if γ = 0 ,  P(C|A) is unknown even if α = 1.	



•  Revision: Suppose P(A) = 1, then P(C||A) ≥ α⋅β	


–    Note: β > max(0, 1 - (1 - β)/γ)	



•  Revision improves generic knowledge, Prediction does 
not. 	





CONDITIONING RANDOM SETS AS 
IMPRECISE PROBABILISTIC INFORMATION	



•  A disjunctive random set (F, m) representing background 
knowledge is  equivalent to a special set of probabilities  	



        P = {P:  ∀A, P(A) ≥ Bel(A)}.	


•  Querying this information based on evidence C comes 

down to performing a sensitivity analysis on the 
conditional probability P(·|C)	


–  BelC(A) = inf {P(A|C): P ∈ P, P(C) >0}	


–  PlC(A) = sup {P(A|C): P ∈ P, P(C) >0}	





•  Theorem : functions BelC(A) and PlC(A) are  belief and 
plausibility functions  of the form 	



	

 	

BelC(A) = Bel(C∩A)/(Bel(C∩A) + Pl(C∩Ac))	



	

 	

PlC(A) = Pl(C∩A)/(Pl(C∩A) + Bel(C∩Ac))	


	

 	

where BelC(A) = 1 - PlC(Ac)	



•  We can do it by focusing generic knowledge (the mass 
function) on the part of the population that satisfies C.	



•  Can be done by transferring portions αE of m(E) inside the 
conditioning event C: 	


–  If E ⊆ C then αE  = 1	


–  If E ⊆ Cc then αE  = 0	


–  If E∩C ≠ Ø and E∩Cc ≠ Ø, it is not clear how much 

mass must be transferred to E∩C. 	





Prediction conditioning for belief functions	



•  If the coefficients αE  are known for all focal sets, one can 
construct a conditional mass function mα(·|C) on C by 
computing	



        mα(B) = ∑{αEm(E): C∩E = B}	


and renormalizing if Plα (C) < 1	



	

mα(B|C) = mα(B)/Plα (C)	


•  Finally we compute upper and lower bounds	



–  the lower belief infα Belα (A | C) = BelC(A)	


–  the upper plausibility supα Plα (A | C) = PlC(A) .	



•  We retrieve the imprecise probability conditioning 	





Prediction conditioning does not enrich 
generic information	



If E∩C ≠ Ø and E∩Cc ≠ Ø, for all E∈ F,  then mC(C) = 1 
(the resulting mass function mC expresses total ignorance on 
C)	



–  Example: If opinion poll yields:   m({a, b}) = α, 
m({c, d}) = 1- α,  	



The proportion of voters for a candidate in C = {b, c} is 
unknown.	



–  However if we hear a and d resign (Pl({a, d} = 0) then 
m({b}) = α, m({c}) = 1- α  (revision conditioning, see 
further on)	





Ellsberg urn	



•  A bag of balls contains 1/3 red balls, the rest being 
black or white. 	



•   S = {w, b, r} and frequentist mass function : m(r) 
= 1/3, m({w,b}) = 2/3	



•  Prediction problem : guess the colour of a ball x 
picked at random in the urn, knowing x is not 
black (C = {r,w}).	





Ellsberg urn	


•  Before knowing anything about x, Bel(r) = Pl(r) = 1/3; 

Bel(w) = 0; Pl(w) = 2/3.	


•  After knowing it is not black : 	



–  BelC(r) = Bel(r)/(Bel(r) + Pl(w)) =1/3	


–  PlC(r) = Pl(r)/(P(r) + Bel(w))= 1	


–  BelC(w) = Bel(w)/(Bel(r) + Pl(w)) = 0	


–  PlC(w) = Pl(w)/(Bel(r) + Pl(w)) = 2/3	



•  So the piece of information the ball is not black does not 
alter our beliefs about x being white or not. 	



•  But the plausibility of the ball being red strongly increases. 
This is a loss of information. 	





CONDITIONING UNCERTAIN SINGULAR 
EVIDENCE	



•  A mass function m on S, represents uncertain evidence	


•  A new sure piece of evidence is viewed as a conditioning 

event C 	


1.    Mass transfer : for all E ∈ F, m(E) moves to C ∩ E ⊆ C	



–  The mass function after the  transfer is mt(B) = Σ E : C ∩ E = B m(E)	


–  But the mass transferred to the empty set may not be zero!	


–  mt(∅) =  Bel(Cc) = Σ E : C ∩ E = Ø m(E) is the degree of conflict 

with evidence C	


2.  Normalisation: mt(B) should be divided by 	



	

 	

Pl(C) = 1 - Bel(Cc) =  Σ E : C ∩ E ≠ Ø m(E)	


•  This is revision of an unreliable testimony by a sure fact	





DEMPSTER RULE OF CONDITIONING = 
PRIORITIZED MERGING	



The conditional plausibility function Pl(·|C) is  	


                          Pl(A ∩ C)	


Pl(A||C) =                         	

    ;  Bel(A||C) = 1-  Pl(Ac||C)	


                                Pl(C)	



•  C surely contains the value of the unknown quantity described by m. 
So Pl(Cc) = 0	


–  The  new  information  is  interpreted  as  asserting  the 

impossibility of Cc: Then you can change x ∈ Ε into x ∈ 
E∩ C and transfer  the mass of focal set E to E ∩ C.	



•  The  new  information  improves  the  precision  of   the 
evidence : This conditioning is Gilboa and Schmeidler 
maximum  likelihood  conditioning  different  from 
Bayesian (Walley) conditioning	





EXAMPLE OF REVISION OF EVIDENCE : 
The criminal case	



•  Evidence 1 : three suspects : Peter Paul Mary	


•  Evidence  2   :  The  killer  was  randomly  selected 

man vs.woman by coin tossing.	


–  So, S = { Peter, Paul, Mary}	



•  TBM modeling: The masses are m({Peter, Paul}) 
= 1/2 ; m({Mary}) = 1/2	


–  Bel(Paul) = Bel(Peter) = 0. Pl(Paul) = Pl(Peter) = 1/2	


–  Bel(Mary) = Pl(Mary) = 1/2	



•  Bayesian Modeling: A prior probability 	


–  P(Paul) = P(Peter) = 1/4; P(Mary) = 1/2	





•  Evidence 3 : Peter was seen elsewhere at the time of the 
killing.	



•  TBM: So Pl(Peter) = 0. 	


–  m({Peter, Paul}) = 1/2;       mt({Paul}) = 1/2 	


–  A uniform  probability on {Paul, Mary} results.	



•  Bayesian Modeling: 	


–  P(Paul | not Peter) = 1/3; P(Mary | not Peter) = 2/3.	


–  A very debatable result that depends on where the story 

starts. Starting with i males and j females:  	


•  P(Paul | Paul OR Mary) = j/(i + j); 	


•  P(Mary | Paul OR Mary) = i/(i + j)	



•  Walley conditioning: 	


–  Bel(Paul) = 0;  Pl(Paul) = 1/2	


–  Bel(Mary) = 1/2; Pl(Mary) = 1	





Ellsberg urn	



•  A bag of balls contains 1/3 red balls, the rest being 
black or white. 	



•   S = {w, b, r} and frequentist mass function : m(r) 
= 1/3, m({w,b}) = 2/3	



•  Revision problem : guess the colour of a ball x 
picked at random in the urn, hearing there is no 
black ball in the urn (C = {r,w}).	



•  Then P(r) = 1/3 and P(w) = 2/3 :more information 
is obtained.	





Decision with imprecise probability 
techniques	



•  Accept incomparability when comparing imprecise utility 
evaluations of decisions.	


–  Pareto optimality : decisions that dominate other choices for all 

probability functions	


–  E-admissibility : decisions that dominate other choices for at least 

one probability function (Walley, etc…)	


•  Select a single utility value that achieves a compromise 

between pessimistic and optimistic attitudes. 	


–  Select a single probability measure (Shapley value = pignistic 

transformation) and use expected utility (SMETS) 	


–  Compare lower expectations of decisions (Gilboa)	


–  Generalize Hurwicz criterion to focal sets with degree of optimism 

(Jaffray) 	





Information fusion	


•  Dempster rule of combination in evidence theory: 	



–  independent sources, normalised or not	


–  Does nor preserve consonance of inputs	


–  No well-accepted idempotent fusion rule. 	



•  In possibility theory : many fusion rules.	


–  The minimum rule : idempotent (= minimal 

commitment fusion rule for consonant belief functions, 
not for other ones)	



–  The product  rule : coincides with the contour function 
obtained from unnormalized  Dempster rule applied to 
consonant belief functions	





Conclusion	


•  There exists a coherent range of set-functions 

combining interval and probability for the 
representation of uncertainty .	


–  Imprecise probability is the proper theoretical umbrella	


–  The choice between set-functions depends on how 

expressive it is necessary to be in a given application. 	


–  There exists simple practical representations of 

imprecise probability 	





Language difficulties	


•  Imprecise probability, belief functions and possibility 

theory are not fully mutually consisten:	


–  How to translate conditioning and fusion rules, as well 

as independence notions from specialised setting to 
imprecise probability and back.	



–  Concepts that make sense for credal sets, may be hard 
to interpret in terms of Moebius transforms or 
possibility distributions and conversely	



–  Can simplified representation help us cut down 
computation costs	



•  How to get this general non-dogmatic approach to 
uncertainty accepted by traditional statisticians? 	





Main problems to be addressed by 
uncertainty theories	



•  Inference:  constructing imprecise probability model from data : 	


–  Scarce data: Imprecise Dirichlet model (Bernard)	


–  Statistics with imprecise (interval) data 	



•  Elicitation of upper/ lower probabilities from experts (faithful 
representation of incomplete information by generalized p-boxes)	



•  Uncertainty propagation : blending interval and Monte-Carlo 
methods.	



•  Extraction of relevant summaries of information from computation 
outputs: p-boxes, possibility distribution, indices of information…	



•  Prediction: constructing beliefs from imprecise probability models on 
the basis of additional evidence	



•  Revision of imprecise probability models	


•  Fusion of uncertain information that account for dependent sources	




