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Origins of uncertainty

e The variability of observed natural phenomena :
randomness.

— Coins, dice...: what about the outcome of the next
throw?

e The lack of information: incompleteness

— because of information is often lacking, knowledge
about 1ssues of interest is generally not perfect.

e Conflicting testimonies or reports: inconsistency
—  The more sources, the more likely the inconsistency



Example

* Frequentist: daily quantity of rain in Toulouse
— Represents variability: it may change every day
— It is objective: can be estimated through statistical data
e Incomplete information : Birth date of Brazilian
President
— It is not a variable: it is a constant!
— Information is incomplete

— It 1s subjective: Most may have a rough idea (an interval), a few
know precisely, some have no idea.

— Statistics on birth dates of other presidents do not help much.



Knowledge vs. evidence

e There are two kinds of information that help us make
decisions 1n the course of actions:
— Generic knowledge:

e pertains to a population of observables (e.g. statistical
knowledge)

e Describes a general trend (often) based on objective data
e Tainted with exceptions
» Deals with observed frequencies or ideas of typicality
— Singular evidence:
e Consists of direct information about the current world.
e pertains to a single situation

e Can be unreliable, uncertain (e.g. unreliable testimony)



The roles of probability

Probability theory is generally used for
representing two types of phenomena:

1. Randomness: capturing variability
through repeated observations.

2. Belief: describes a person’s opinion on the

occurrence of a singular event.

As opposed to frequentist probability, subjective probability
that models unreliable evidence is not necessarily
related to statistics.



Remarks on using a single probability
distribution
 Computationally simple : P(A) =X -, p(s)
 Conventions: P(A) =0 iff A impossible;
P(A) =1 iff A 1s certain;
Usually P(A) = 1/2 for 1ignorance
e Meaning :
— Frequentist probability 1s generic knowledge
(statistics from a population)

— Subjective probability pertains to singular
events (degrees of belief)



Constructing beliefs

e Belief in the occurrence of a particular event may derive
from 1ts statistical probability: the Hacking principle:

— Generic knowledge = probability distribution P
— beliefyow(A) = Freqpopu ation(A): €quating belief and frequency

e Beliefs can be directly elicited as subjective probabilities
of singular events with no frequentist flavor
— frequencies may not be available nor known
— non repeatable events.

e But a single subjective probability distribution cannot
distinguish between uncertainty due to variability and
uncertainty due to lack of knowledge



SUBJECTIVE PROBABILITIES
(Bruno de Finetti, 1935)

p; = belief degree of an agent on the (next) occurrence of s,

measured as the price of a lottery ticket with reward 1 € if
state 1s s; in a betting game

Rules of the game:
— gambler proposes a price p;
— banker and gambler exchange roles if banker finds price
p; 1S too low
Why a belief state is a single distribution (3. iD= 1):
— Assume player buys all lottery tickets 1 =1, m.
— It state s; 1s observed, the gambler gainis 1 — 2. p,
— and X, p;— | for the banker
— if Xp; > 1 gambler always loses money ;
— if X'p; <1 banker exchanges roles with gambler



Bayesian probability

 Bayesian postulate : any state of
knowledge can be represented by a single
probability distribution:
— Either via an exchangeable betting procedure
— Or by comparison with an urn of a given

composition

* Not to do 1t 1s considered to be irrational

(sure money loss, Dutch book argument)



Why the unique distribution assumption?

e Laplace principle of insufficient reason : What is
EQUIPOSSIBLE must be EQUIPROBABLE

— It enforces the identity between IGNORANCE and
RANDOMNESS due to a symmetry assumption

— Also justified by the principle of maximal entropy

* The exchangeable betting framework enforces unique
elementary probability assessments that sum to 1.

— It enforces uniform probability when there 1s no reason to believe
one outcome is more likely than another

— 1gnorance and knowledge of randomness justify uniform betting
rates.

e BASIC REMARK: Betting rates are induced by belief

states, but are not in one-to-one correspondence with
them.



Single distributions do not distinguish
between incompleteness and variability

VARIABILITY': Precisely observed random
observations

INCOMPLETENESS: Missing information
Example: probability of facets of a die

— A fair die tested many times: Values are known to be
equiprobable

— A new die never tested: No argument in favour of one
hypothesis nor its contrary, but frequencies are
unknown.

BOTH CASES LEAD TO TOTAL INDETERMINACY
ABOUT THE NEXT THROW BUT THEY DIFFER AS
TO THE QUANTITY OF INFORMATION



THE PARADOX OF IGNORANCE

Case 1: life outside earth/ no life
— 1gnorant's response 1/2 1/2

Case 2: Animal life / vegetal only/ no life

— 1gnorant's response 1/3 1/3 1/3

They are inconsistent answers:
— case 1 from case 2 : P(life) = 2/3 > P(no life)
— case 2 from case 1: P(Animal life) = 1/4 < P(no life)

Uniform probabilities on distinct representations of the
state space are inconsistent.

Conclusion : a probability distribution cannot model
incompleteness



Language sensitiveness of prior
probabilities

In the case of a real-valued quantity x:

* A uniform prior on [a, b] expressing 1gnorance
about x induces a non-uniform prior for f(x) on
[f(a), f(b)] if  1s monotonic non-affine

Probabilistic representation of ignorance is not
scale-independent.

* The paradox does not apply to frequentist
distributions



LIMITATIONS OF BAYESIAN PROBABILITY
FOR THE REPRESENTATION OF

IGNORANCE

e Ignorance: identical belief in any event different from the
sure or the impossible ones

e A single probability cannot represent ignorance: except on
a 2-element set, the function g(A) =12 VA #S,0, is
NOT a probability measure.

* In the life on other planets example: 6 possible contingent
events that cannot have the same probability.

e Function g is monotonic under inclusion : a capacity.



Ellsberg Paradox

Savage claims that rational decision-makers choose acts
according to expected utility EU(a) with respect to a
subjective probability : a better than b iff EU(a) > EU(b)

An Urn containing

— 1/3red balls (pg =1/3)

—  2/3 black or white balls (pw + Pg = 2/3)

For the 1gnorant subjectivist: pr = pw = pg = 1/3.
Expected utility : EU(a) = u (R)pg +u (W)py, + u,(B)pg

But this is contrary to overwhelming empirical evidence
about how people make decisions



1.

Ellsberg Paradox

Choose between two bets
B1: Win 1% if red (1/3) and 0$ otherwise (2/3)
B2: Win 1% if white (< 2/3) and 0$ otherwise
Most people prefer B1 to B2

Choose between two other bets (just add 1$ on Black)
B3: Win 1% if red or black (= 1/3) and 0% if white
B4: Win 1 $ if black or white (2/3) and 0$ if red (1/3)
Most people prefer B4 to B3



Ellsberg Paradox

Let 0 < u(0) <u(1) be the utilities of gain.

If decision 1s made according to a subjective probability
assessment for red black and white: (1/3, pg, pw):
— B1>B2:
EU(BI) =u(1)/3 + 2u(0)/3 > EU(B2) = u(0)/3 +u(1)p,,+u(0)pg
— B4 > B3:
EU(B4) = u(0)/3 + 2u(1)/3 > BU(G) = u(1) (1/3 + py) +u(0)py
= (summing, as pg+px= 2/3) 2(u(0) + u(1))/3 > 2(u(0) + u(1))/3:
CONTRADICTION!
Such an agent cannot reason with a unique probability
distribution: Violation of the sure thing principle.



When information is missing, decision-makers do not
always choose according to a single subjective probability

e Plausible Explanation of Ellsberg paradox: In the face of
ignorance, the decision maker 1s pessimistic.

* In the first choice, agent supposes p,, = 0: no white ball
EUB1) =u(1)/3 + 2u(0)/3 > EU(B2) = u(0)

* In the second choice, agent supposes pg = 0: no black ball
EU(B4) = u(0)/3 + 2u(1)/3 > EU(B3) = 2u(0)/3 + u(1)/3

e The agent does not use the same probability in both
cases (because of pessimism): the subjective probability
depends on the proposed game.



Summary on expressiveness limitations of
subjective probability distributions

The Bayesian dogma that any state of knowledge can be
represented by a single probability is due to the
exchangeable betting framework

—  Cannot distinguish randomness from a lack of knowledge.

Representations by single probability distributions are
language- (or scale-) sensitive

When information 1s missing, decision-makers do not
always choose according to a single subjective
probability.



Motivation for going beyond
probability

Distinguish between uncertainty due to variability from
uncertainty due to lack of knowledge or missing
information.

The main tools to representing uncertainty are

— Probability distributions : good for expressing variability, but
information demanding

— Sets: good for representing incomplete information, but often
crude representation of uncertainty

Find representations that allow for both aspects of
uncertainty.



Set-Valued Representations of
Partial Knowledge

* An ill-known quantity x 1s represented as a
disjunctive set, 1.e. a subset E of mutually exclusive
values, one of which 1s the real one.

* Pieces of information of the form x € E

— Intervals E = [a, b]: good for representing incomplete
numerical information

— Classical Logic: good for representing incomplete
symbolic (Boolean) information

E = Models of a wif ¢ stated as true.
This kind of information 1s subjective (epistemic set)




What do set-valued data mean?

* A set can represent

— the precise description of an actual object (ontic) : a
region in an image.
— or incomplete information about an ill-known entity

(epistemic) : interval containing an ill-known birth-
date.

* The 1ll-known entity can be
— A constant (x € E)
— or a random variable (P_x € {P: P(E) = 1}).



BOOLEAN POSSIBILITY THEORY

Natural set functions under incomplete information:
If all we know is that x EE # D then
- Event A is possible if A N E # @ (logical consistency)
Possibility measure II(A) = 1, and O otherwise
II(A U B) = max(II(A), I1(B));

- Event Aissureif EC A (logical deduction)

Necessity measure N(A) =1, and O otherwise
N(A N B) =min(N(A), N(B)).

N(A) =1 -1II(A°) : N(A) = 1 iff TI(A®) =0
N(A) <II(A)
This is a simple modal logic (KD)



Find a representation of uncertainty
due to incompleteness

 More expressive than sets (pure intervals or
classical logic), and Boolean possibility
theory

o Less demanding than single probability
distributions

o Explicitly allows for missing information

o Allows for addressing the same problems as
probability.



Blending intervals and
probability

* Representations that refine Boolean possibility
theory and account for both variability and
incomplete knowledge must combine probability
and sets.

— Sets of probabilities : imprecise probability theory
— Random(ised) sets : Dempster-Shafer theory

— Fuzzy sets: numerical possibility theory
e Each event has a degree of belief (certainty) and a

degree of plausibility, instead of a single degree of
probability



GRADUAL REPRESENTATIONS OF
UNCERTAINTY using capacities

Family of propositions or events £ forming a
Boolean Algebra

— S, @ are events that are certain and ever impossible
respectively.

* A confidence measure g: a function from T to
[0,1] such that

- g0)=0 ;  g(S)=1
— monotony : if A C B (=A implies B) then g(A) =< g(B)

* g(A) quantifies the confidence of an agent in
proposition A.

e ¢ 1s a Choquet capacity



BASIC PROPERTIES OF CONFIDENCE
MEASURES

* g(AUB) 2 max(g(A), g(B));

* g(ANB) < min(g(A), g(B))

e It includes:
— probability measures: P(AUB) = P(A) + P(B) - P(ANB)
— possibility measures  II(AUB) = max(I1(A), I1(B))
— necessity measures N(ANB) = min(N(A),N(B))

o The two latter functions do not require a
numerical setting



A GENERAL SETTING FOR REPRESENTING
GRADED CERTAINTY AND PLAUSIBILITY

e 2 conjugate set-functions Pl and Cr generalizing
probability P, possibility I1, and necessity N.

e Conventions :
— PI(A) =0 "impossible" ; Cr(A)= 1 "certain"
— PI(A) =1 ; Cr(A) =0 "ignorance" (no information)
— PI(A) - Cr(A) quantifies 1ignorance about A

* Postulates
— Cr and Pl are monotonic under inclusion (= capacities).
— Cr(A) < PI(A) "certain implies plausible”
— PI(A) =1 — Cr(A°) duality certain/plausible
— If P1 = Cr then it 1s P.



Possibility Theory

(Shackle, 1961, Zadeh, 1978)

A piece of incomplete information "x € E™"

admits of degrees of possibility: EC S is a

(normalized) fuzzy set : ug: S — [0, 1]

Ug(s) = Possibility(x = s) = m(s)in [0, 1]

7t (s) 1s the degree of plausibility of x ='s

Conventions: 7t (s) = 1 for some value s.

7t (s) = 0 1ff x = s 1s impossible, totally surprising

mt (s) = 1 iff x = s 1s normal, fully plausible, unsurprising
(but no certainty)



Improving expressivity of incomplete
information representations

What about the birth date of the president?

partial ignorance with ordinal preferences : May have
reasons to believe that 1933 > 1932 = 1934 > 1931 = 1935
> 1930 > 1936 > 1929

Linguistic information described by fuzzy sets: * he is
old ” : membership uy 1S interpreted as a possibility
distribution on possible birth dates (Zadeh).

Nested intervals E, E,, ...E_with confidence levels N(E.)
=a;: (X)) =min; _; , max (ug(X), 1- a)



POSSIBILITY AND NECESSITY
OF AN EVENT

How confident are we that x € A C S ? (an event A occurs)
given a possibility distribution on S

e JI(A) =max,, (s) :
to what extent A 1s consistent with 7
(= some x € A 1s possible)
The degree of possibility that x EA
* N(A)=1-TII(A®) =min g, 1 - a(s):
to what extent no element outside A is possible
= to what extent 5t implies A
The degree of certainty (necessity) that x € A



Basic properties (finite case)

II(A U B) = max(II(A), I1(B));
N(A N B) =min(N(A), N(B)).
Mind that most of the time :
II(A N B) < min(II(A), II(B));
N(A U B) > max(N(A), N(B)
Example: Total ignorance on A and B = A°
(II(A) =II(A%) = 1)
Corollary N(A)>0=11(A) =1



Comparing information states

e 7' more specific than 7 in the wide sense
if and only if @' <7
Any possible value according to 7t is at least according to 7t :
7' is more informative than 7t
— COMPLETE KNOWLEDGE: The most specific ones
e T(sy =1; 7t(s) = 0 otherwise
— IGNORANCE: i(s)=1,Vs€ES

* Principle of least commitment (minimal specificity): In a
given information state, any value not proved impossible 1s
supposed to be possible : maximise possibility degrees.



Certainty-qualification

A

1

1-a

0 ' ' >

Attaching a degree of certainty a to event A

It means N(A) = a < II(A®) =sup ;¢ ,m(s) = | -

The least informative 7t sanctioning N(A) = v 1s :
—m(s)= 1ifsEA and 1 -aifs&A

In other words: m(s) = max(y,, | — )



POSSIBILITY DISTRIBUTION INDUCED
BY EXPERT CONFIDENCE INTERVALS
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At the limit with an infinity of nested intervals

N(A)=1-a,ain (0, 1]

A

a

FUZZY INTERVAL



A pioneer of possibility theory

In the 1950’s, G.L.S. Shackle called "degree of potential
surprize" of an event its degree of impossibility = 1 — TI(A).

Potential surprize 1s valued on a disbelief scale, namely a
positive interval of the form [0, y*], where y* denotes the
absolute rejection of the event to which it is assigned, and O
means that nothing opposes to the occurrence of A.

The degree of surprize of an event 1s the degree of surprize of
its least surprizing realization.

He introduces a notion of conditional possibility



Qualitative vs. quantitative possibility theories

e (Qualitative:
— comparative: A complete pre-ordering =_on U A well-
ordered partition of U: E1 >E2> ... > En

— absolute:  (s) € L = finite chain, complete lattice...
e Quantitative: m (s) € [0, 1], integers...

One must indicate where the numbers come from.

All theories agree on the fundamental maxitivity axiom
II(A U B) = max(II(A), II(B))
Theories diverge on the conditioning operation



Quantitative possibility theory

e Membership functions of fuzzy sets

— Natural language descriptions pertaining to numerical universes
(fuzzy numbers)

— Results of fuzzy clustering
Semantics: metrics, proximity to prototypes
 Imprecise probability
— Random experiments with imprecise outcomes
— Special convex probability sets

Semantics: frequentist, or subjectivist (gambles)...



Random sets

e A probability distribution m on the family
of non-empty subsets of a set S.

e A positive weighting of non-empty subsets:
mathematically, a random set :

) m(E)=1
EE F
* m : mass function.
e focal sets : E €F with m(E) > 0.



Disjunctive random sets

* m(E) = probability that the most precise
description of the available information is
of the form "x € E”

= probability(only knowing "x € E" and nothing
else)

— It 1s the portion of probability mass hanging
over elements of E without being allocated.

. DO NOT MIX UP m(E) and P(E)



Basic set functions from random sets

e degree of certainty (belief) :
— Bel(A) = > m(E))
ECAE=0
— total mass of information implying the occurrence of A
— (probability of provability)
e degree of plausibility :
- Pl(A)= ) m(E,) =1 - Bel(A®) 2 Bel(A)
ENA=0
— total mass of information consistent with A

— (probability of consistency)



Example : Bel(A) = m(E1l) + m(E2)
PI(A) = m(E1) + m(E2) + m(E3) + m(E4)
=1 -m(E5) =1 - Bel(A°)

Yo (=

E4

Y




PARTICULAR CASES

INCOMPLETE INFORMATION:
mE)=1,m(A)=0, AzE
TOTAL IGNORANCE : m(S) = 1:
— Forall A#S,0, Bel(A) =0, PI(A) = 1

PROBABILITY: if Vi, E, = singleton {s.} (hence disjoint
focal sets )

— Then, for all A, Bel(A) = PI(A) =P(A)

— Hence precise + scattered information

POSSIBILITY THEORY : the opposite case

E,CE,C E;... C E, :imprecise and coherent information
— 1iff PI(A U B) = max(PI1(A), PI(B)), possibility measure
— iff Bel(A M B) = min(Bel(A), Bel(B)), necessity measure



From possibility to random sets

// \\ possibility levels
\ >0 >a3>...> 0,

e letm=o.-a,, thenm,+...+m =1,
with focal sets = cuts A, = {s, 7(s) = o.}
A basic probability assignment (SHAFER)
* 1(S) =2, «p M, (One point-coverage function) = PI({s}).
e Only in the consonant case can m be recalculated from &

* Bel(A) = Zgica m; = N(A); Pl(A) = TI(A)



What can disjunctive random sets
model ?

Dempster model : Indirect information (induced
from a probability space).

What we know about a random variable x with
range S, based on a sample space (22, A, P) and a
multimapping I’ from Q to S (Dempster):

The meaning of the multimapping I from Q21to S :

— if we observe w in € then all we know is x (w) € I'(w)

m(I'(w)) = P{w}) V w in Q (finite case.)



Canonical examples

e Objectivist : Frequentist modelling of a collection
of incomplete observations (imprecise statistics) :
incomplete generic information

e Uncertain subjective information:

— Unreliable testimonies (Shafer’s book) : human-
originated singular information

e Unreliable sensors : the quality/precision of the
information depends on the i1ll-known sensor state.



Example of uncertain evidence : Unreliable
testimony (SHAFER-SMETS VIEW)

« John tells me the president 1s between 60 and 70 years
old, but there 1s some chance (subjective probability p) he
does not know and makes 1t up».
— E =[60,70]; Prob(Knowing “x& E =[60,70]”) =1 —p.
— With probability p, John invents the info, so we know nothing (Note
that this is different from a lie).

We get a simple support belief function :
mE)=1-p and m(S)=p
Equivalent to a possibility distribution
- ms)=11fx€EE and 7(s) = p otherwise.




Unreliable testimony with lies

 « John tells me the president 1s between 60 and 70 years
old, but

— there i1s some chance (subjective probability p) he does not know
and makes it up».

— John may lie (probability q): E =[60, 70]; Prob(Knowing “x& E
=[60,70]") =1 —p.

* Modeling
— John is competent and does not lie :m(E) = (1 —p)(1 —q),
— John is competent and lies m(E€) = (1 —p)q.
— John 1s incompetent and 1s boasting : m(S) =p



Dempster vs. Shater-Smets

e A disjunctive random set can represent
— Uncertain singular evidence (unreliable testimonies): m(E) =
subjective probability pertaining to the truth of testimony E.

* Degrees of belief directly modelled by Bel : no appeal to an
underlying probability.

(Shafer, 1976 book; Smets)

— Imprecise statistical evidence: m(E) = frequency of imprecise
observations of the form E and Bel(E) is a lower probability

* A multiple-valued mapping from a probability space to a space of
interest representing an ill-known random variable.

* Here, belief functions are explicitly viewed as lower probabilities
(Dempster intuition)

e Inall cases E is a set of mutually exclusive values and does
not represent a real set-valued entity



Example of generic belief function:
imprecise observations in an opinion poll

e Question : who is your preferred candidate
in C={a,b,c,d,e, f} ?77?
— To a population Q= {1, ...,1,...,n} of n persons.
— Imprecise responses r = « x(i) € E. » are allowed
— No opinion (r =C) ; « left wing » r = {a, b, ¢} ;
— «right wing » r={d, e, f} ;
— amoderate candidate : r = {c, d}
e Definition of mass function:
— m(E) =card({1,E,=E})n
— = Proportion of imprecise responses « x(1) € E »



The probability that a candidate in subset A C C s
elected is imprecise :

Bel(A) = P(A) < PI(A)
There is a fuzzy set F of potential winners:
Ue(x) =X , c g m(E) = PI({x}) (contour function)

Ug(X) 1s an upper bound of the probability that x 1s elected.
It gathers responses of those who did not give up voting
for x

Bel({x}) gathers responses of those who claim they will
vote for x and no one else.



Example of conjunctive random sets

Experiment on linguistic capabilities of people :
e Question to a population Q = {1, ..., 1, ..., n} of n
persons: which languages can you speak ?

e Answers : Subsets in £ = {Basque, Chinese, Dutch,
English, French,....} ?

* m(E) = % people who speak exactly all languages in E
(and not other ones)

e Prob(x speaks A) =Y {m(E) : ACE} = Q(A) : commonality
function in belief function theory
 Example: « x speaks English » means « at least English »

e The belief function is not meaningful here while the
commonality makes sense, contrary to the disjunctive set
case.



Imprecise probability theory

e A state of information is represented by a family P
of probability distributions over a set X.

e For instance: incomplete knowledge of a
frequentist probabilistic model : AP &€ P.

 To each event A 1s attached a probability interval
[P.(A), P*(A)] such that
_ P.(A) = inf{P(A), PE P}
~ P*(A) = sup{P(A), PE P} = 1 — P,(A9)
e Usually P is strictly contained in {P(A), P > P.}
e {P(A), P =P.}is convex (credal set).



REPRESENTING INFORMATION BY
PROBABILITY FAMILIES

Often probabilistic information is incomplete:
— Expert opinion (fractiles, intervals with confidence levels)
— Subjective estimates of support, mode, etc. of a distribution

— Parametric model with incomplete information on parameters (partial
subjective information on mean and variance)

— Parametric model with confidence intervals on parameters due to a small
number of observations

e In the case of generic (frequentist) information using a
family of probabilistic models, rather than selecting a
single one, enables to account for incompleteness and
variability.

* In the case of subjective belief: distinction between not
believing a proposition (P.(A) and P.(A) low) and
believing its negation (P.(A°) high).



Subjectivist view (Peter Walley)

e A theory that handles convex probability sets

— P,,w(A) 1s the highest acceptable price for buying a bet
on singular event A winning 1 euro if A occurs

— Phigh(A) = 1 — P, (A°) is the least acceptable price for
selling this bet.

— These prices may differ (no exchangeable bets)

e Rationality conditions:
— No sure loss : {P = P, } not empty
— Coherence: P.(A) = inf{P(A),P=P, .} =P

o Convex probability sets (credal sets) are actually
characterized by lower expectations of real-valued

functions (gambles), not just events.

(A)

low low



Capacity-based lower
probabilities

Coherent lower probabilities are important

examples of certainty functions. The most general
numerical approach to uncertainty.

They satisty super-additivity: if ANB =@ then
Cr(A) + Cr(B) =< Cr(AUB)
One may require the 2-monotony property:
Cr(A) + Cr(B) < Cr(AUB) + Cr(ANB)
— ensures non-empty coherent credal set:
{P: P(A)=Cr(A)} 20
Cr 1s then called a convex capacity.




Random disjunctive sets vs.
imprecise probabilities

The set P, = {P = Bel} is coherent: Bel is a
special case of lower probability

Bel 1s co-monotone (super-additive at any order)

— Order 3: Bel(AUBUC) = Bel(A) + Bel (B) + Bel (C) -
Bel(AMB) - Bel(ANC) - Bel(BNC) + Bel(ANBMNC),
etc.

For any set function, the solution m to the set of
equations V A C X g(A) = Z m(E))
ECAE=0
1s unique (Moebius transform)

— However m is positive iff g is a belief function



POSSIBILITY AS UPPER PROBABILITY

Given a numerical possibility distribution s, define
P)={P| P(A) <II(A) for all A}

Then, generally it holds that

IT1(A) = sup {P(A) | P € P(r)};

N(A) =inf {P(A) | P € P(n)}
So N and P are special cases of coherent lower and upper
probabilities

So m 1s a very simple representation of a credal set (convex
family of probability measures)



LIKELTHOOD FUNCTIONS

e Likelihood functions A(x) = P(Al x) behave like possibility
distributions when there is no prior on x, and A(x) is used as
the likekihood of x.

It holds that A(B) = P(Al B) < max, 5 P(Al x)

e If P(Al B) = A(B) is the likelihood of “x & B” then A should
be a capacity (monotonic with inclusion):

{x} € B implies M(x) <= MB)

It implies A(B) = max_ - g MX) if no prior probability is
available for x.



Maximum likelihood principle is
possibility theory
* The classical coin example: 0 1s the unknown
probability of “heads”
* Within n experiments: k heads, n-k tails
e P(k heads, n-k tails | ) = 6%-(1- 0)™k is

the degree of possibility m(60) that the probability of
“head” is 0.

In the absence of other information the best choice
is the one that maximizes 7t(6), 6 € [0, 1]

It yields 6 = k/n.



Coherence and deductive closure

* Suppose the knowledge 1s of the form of a
consistent set of assertions ¢. of the form
«xmE»1=1,...n.(N(E)=1)

* The set of consequences of {¢.1=1,....n}1s
deductively closed (under inclusion and
conjunction)

e It defines a Boolean necessity function N
corresponding to all assertions « x 1n A » where

E=N,._, ,ECA Gff N(A) = 1)

ce e



Coherence and deductive closure

o If the knowledge 1s viewed as a credal set
{P: P(E)=1,1=1, ... n} then the coherent
lower probability induced by its natural
extension 1s a Boolean necessity function N

e Conclusion Coherence generalizes
deductive closure, interpreting a
consequence as a formula with lower
probability 1



LANDSCAPE OF UNCERTAINTY THEORIES

BAYESIAN/STATISTICAL PROBABILITY: the language of
unique probability distributions (Randomized points)

/'

UPPER-LOWER PROBABILITIES : the language of disjunctive
convex sets of probabilities, and lower expectations

SHAFER-SMETS BELIEF FUNCTIONS: The language of
Moebius masses (Random disjunctive sets) l

QUANTITATIVE POSSIBILITY THEORY : The language of
possibility distributions (Fuzzy (nested disjunctive) sets)

l

BOOLEAN POSSIBILITY THEORY (modal logic KD) :
The language of Disjunctive sets



Practical representations

* Fuzzy intervals

* Probability intervals
* Probability boxes

* Generalized p-boxes
e Clouds

Some are special random sets some not.



From confidence sets to possibility
distributions

LetE,, E,, ...E_ be anested family of sets
A set of confidence levels a,, a,, ...a, in [0, 1]

Consider the set of probabilities
P={P,P(E)=a,fori=1,...n}

Then 7P is representable by means of a possibility
measure with distribution

7T(X) = min, _ (... Max (Ug(x), 1-a)



POSSIBILITY DISTRIBUTION INDUCED
BY EXPERT CONFIDENCE INTERVALS

E,
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A possibility distribution can be obtained from any

family of nested confidence sets :
PA)=1-a,a€ (0, 1]

< »
<« >

FUZZY INTERVAL: N(A,) =1-«




Possibilistic view of probabilistic
inequalities

Probabilistic inequalities can be used for knowledge
representation:

e Choosing sets [x"" — kg, x™" + ko]

— Chebyshev inequality defines a possibility distribution
that dominates any density with given mean and
variance:

P(V &€ [xmean — ko, X" + ko) = 1 — 1/k? is equivalent to
WFiting

a(x"en — ko) = g(xmen + ko) = 1/k?

— A triangular fuzzy number (TFN) defines a possibility

distribution that dominates any unimodal density with
the same mode and bounded support as the TFN.
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Possibilistic view of probabilistic
inequalities 2

Probabilistic inequalities can be used for knowledge
representation:

e Choosing mode, bounded support and sets E_of the
form

[ mede . ( 1 _O{) ( xmode_x*), xmode + ( 1 _O{) ( x*_xmode)]

e A triangular fuzzy number (TFN) defines a possibility
distribution that dominates any unimodal density with the
same mode and bounded support as the TFN.

e P(VEE,_ )= 1- ais equivalent to writing
JT( xmode _ ( 1 _O{) ( xmode_x*))

= (x"% +(1-a) (X =x"%) ) = o



Optimal order-faithful
fuzzy prediction intervals

e the interval I, =[a;,a;+ L]
of fixed length L. with
maximal probability 1s of
the form {x, p(x) =}

* The most narrow prediction D
interval with probability o f3

is of the form {x, p(x) = B} | ‘
e So the most natural
possibilistic counterpart of L

pis when aL a+L
mt(a) =*(a+ L) =
I - P(I, = {x, p(x) = B}).



Optimal order-faithful
fuzzy prediction interval

Legend

Unimodal and symmetric probability distribution
Nested confidence intervals
----------- Triangular possibility distribution




Probability boxes

e Aset P={P:F =P=F.} induced by two
cumulative distribution functions is called a
probability box (p-box),

e A p-box is a special random interval (continuous belief
function) whose upper and bounds induce the same
ordering.

* A fuzzy interval induces a p-box P : density(E ) =1
1

F*
a / )
0 | |




Probability boxes from possibility
distributions

e  Representing families of probabilities by fuzzy intervals
is more precise than with the corresponding pairs of
PDFs:

— F*@)=TII,((—,a]) =m(a)ifa<m
= 1 otherwise.
— Fu{a)=Ny((-,,a]) =0ifa<m’
= 1 - lim, | ;7t(x) otherwise
e  P(m)is aproper subset of P={P: F" =P>F.}
— Not all P in 2 are such that IT > P



P-boxes vs. fuzzy intervals

A triangular fuzzy number with support [1, 3] and mode 2.
Let P be defined by P({1.5})=P({2.5})=0.5.

Then F. <F <F P& P(I) since
P({1.5,25})=1>1I1({1.5,2.5})=0.5

| -

0.5 -




Generalized cumulative
distributions

e A Cumulative distribution function F:
F(x) = P({X = x}) of a probability function P can
be viewed as a possibility distribution dominating
P since the sets {X < x} are nested

e 1n particular, sup{F(x),x € A} = P(A)
* Choosing any order relation <r

Fr(x) = P({X =<Rr x}) also Induces a possibility
distribution dominating P



Generalized p-boxes

The notion of cumulative distribution depends on an

ordering on the space: Fy(X) = P(X < x)

A generalized probability box 1s a pair of cumulative

functions (Fg", F.) associated to the same order relation.
P={P:Fy" =P =F;.}

Consider y <; x iff ly - al = Ix -al (distance to a value)

Then 71(y) = Fz'(y) = 0(y) = Fra(y)

It comes down to considering nested confidence intervals
E,,E,, ...E_ each with two probability bounds . and 3; such
that

P={a.<PE)=<p fori=1,...,n}



Generalized p-boxes

e It comes down to two possibility distributions
®t (from o. < P(E.)) and &, (from P(E,) < f3.)
e Distributions it and s, are such that =1 - x_ = 0 and

n is comonotonic with 0 (they induce the same order
on the referential according to <g).

- P=P @@ NP(x)

 Theorem: a generalized p-box 1s a belief function
(random set) with focal sets

{x: m(x) = o} \ {x: 8(x) > a}



Elementary example
of a generalized p-box

All that 1s known 1s that P(E) 1n [a, b] on a
finite set S

It corresponds to the belief function :
-—m(E)=a; m(E°)=1-b; m(S)=b —a.
The two possibility distributions :

- m,(s) =1 1f s in E; 1-a otherwise.

— 1t,(s) = 1 if s in E€; b otherwise.

The generalized p-box (s, 1-m,)



o = Fr«(a) = Fr(b)=1 - (a) = 1 - n(b);
B=F;"(a)=F,"(b)=1-8()=1-38(D).

Generalized p-box



From generalized p-boxes to
clouds

Fig 1.A Comonotonic cloud Fig 1.B Non-comonotonic cloud



CLOUDS

* Neumaier (2004) proposed a generalized interval
as a pair of distributions (;t = 0) on a referential
representing the family of probabilities P =

{P,s.t. P{x: 0(x) >a}) =a <P{x: m(Xx) = a}) Va >0}

e Distributions 7t and 1— 0 are possibility distributions

such that P =P () N P (1-9)

e [t does not correspond to a belief function, not
even a convex (2-monotone) capacity



SPECIAL CLOUDS

Clouds are modelled by interval-valued fuzzy sets
Comonotonic clouds = generalized p-boxes
Fuzzy clouds: 0 = 0; they are possibility distributions

Thin clouds: 7t = 0:
— Finite case : empty

— Continuous case : there 1s an infinity of probability
distributions in 2 (;t) N 2 (1-mx) for bell-shaped

— Increasing mt: only one probability measure p (it =
cumulative distribution of p)



Probability intervals

Probability intervals = a finite collection L of imprecise
assignments [/, , u;] attached to elements s; of a finite set S.

A collection L = {[[;, u; ] i=1,... n} induces the family P,
={P: ;< P({s4) <u,;}.

A probability interval model L is coherent in the sense of
Walley if and only if

— L+u=<land <)

i#i U+

Zi

Lower/upper probabilities on events are given by
— P*(A) — maX(ZsiEA li ) 1 - ZsiQEA uz‘) )
— P(A) =min(Zge, u; 5 1 - Zgiga 1)

P.1s a 2-monotone Choquet capacity (de Campos and
Moral)



How useful are these
representations:

* P-boxes can address questions about
threshold violations (x = a ??), not
questions of the form a<x<b

* The latter questions are better addressed by
possibility distributions or generalized p-
boxes



Relationships between representations

e Generalized p-boxes are special random sets
that generalize BOTH p-boxes and
possibility distributions

e Clouds extend GP-boxes but induce lower
probabilities that are not even 2-monotonic.

* Probability intervals are not comparable to
generalized p-boxes: they induce lower
probabilities that are 2-monotonic



Important pending theoretical issues

Comparing representations in terms of
informativeness.

Conditioning : several definitions for several
purposes.

Independence notions: distinguish between
epistemic and objective notions.

Find a general setting for information fusion
operations (e.g. Dempster rule of combination).



Comparing belief functions in terms of
informativeness

 Consonant case : relative specificity.

7' more specific (more informative) than 7 in
the wide sense if and only if ' < 7.

(any possible value in information state 7T 1s
at least as possible in information state t)

— Complete knowledge: m(s)) = 1 and = 0
otherwise.

— Ignorance: ni(s) =1,Vs&ES



Comparing belief functions in terms of

informativeness

e Using contour functions:
7(s)=Pl(s) = 3, < p m(E)
m, 1S more cf-informative that m, iff T, < m,

e Using belief or plausibility functions :

m, 1S more p!

iff Bel, = Bel

2

-informative that m, ift P1, < Pl,

It corresponc

s to comparing credal sets P(m):

Pl, < Pl, if and only if P(m,) € P(m,)



Specialisation

* m, 1S more specialised than m, if and only 1f

— Any focal set of m,is included in at least one
focal set of m,

— Any focal set of m, contains at least one focal
set of m,

— There 1s a stochastic matrix W that shares
masses of focal sets of m, among focal sets of
m, that contain them:

° m, (E) = X pcg W(E, F) m,(F)



Results

m,; & m, implies m; &pm, implies m; & _m,

Typical information ordering for belief
functions : m; C m, iff Q, < Q,

m; & m, implies m; Cym, implies m; & m,

—C
However m; Cpm, and m; &,m, are not

comparable and can contradict each other

In the consonant case : all orderings
collapse to m,; € _m,



Example

S ={a,b,c}; m(ab) =0.5, m,(bc) =0.5;
m,(abc) = 0.5, m,(b) =0.5
m, & .m, nor m, & m, hold
m, Cpm, : P1,(A) = PL,(A)
but Plz(ac) =0.5<Pl(ac) =1
m; Com, ¢ Q;(A) = Qy(A)
but Q,(ac) =0 < Q,(ac) =0.5
And contour functions are equal : a/0.5, b/1, c/0.5



Conditional Probability

e Two concepts leading to 2 deﬁni%%gng:c )
1. derived (Kolmogorov): P(A1C) = P(C)
requires P(C) #0
2. primitive (de Finett1): P(AIC) 1s directly
assigned a value and P 1s derived such that
P(ANC) = P(AIC)-P(C).

e Makes sense even 1s P(C)=0

Meaning : P(A | C) 1s
the probability of A if C represents all that is
hypothetically known on the situation



THE MEANING OF CONDITIONAL
PROBABILITY

P(AIC) : probability of a conditional event « A in epistemic
context C » (when C 1is all that 1s known about the
situation).

It is NOT the probability of A, if C is true.
Counter-example :
— Uniform Probability on {1, 2,3,4,5}
— P(Even I{1,2,3})=P(Even I{3,4,5})=1/3
— Under a classical logic interpretation :
e From « if result € {1, 2,3} then P(Even) =1/3 »
e And«if result & {3,4,5} then P(Even) = 1/3 »

— But of course: P(Even) = 2/5.

So, conditional events AlC should be studied as single entities (De
Finetti).



The nature of conditional probability

* In the frequentist settting a conditional probability P(AIC) is a relative
frequency.

e [tcanbe used to represent the weight of rules of the form « generally,
if C then A » understood as « Most C" s are A’ s » with exceptions

In logic a rule « if C then A » is represented by material implication C°UA
that rules out exceptions

e But the probability of a material conditional is not a conditional

probability!

e What is the entity AlC whose probability is a conditional
probability???

A conditional event!!!!



Material implication:
the raven paradox

e Testing the rule « all ravens are black »
viewed as Vx, “Raven(x) v Black(x)

e Confirming the rule by finding situations
where the rule 1s true.
— Seeing a black raven confirms the rule
— Seeing a white swan also confirms the rule.

— But only the former is an example of the rule.



3-Valued Semantics of conditionals

e A rule «1if C then A » shares the world into 3 parts
— Examples: interpretations where ANC 1s true
— Counterexamples: interpretations where AMNC is true
— Irrelevant cases: interpretations where C 1s false

Rules « all ravens are black » and « all non-black birds are not
ravens » have the same exceptions (white ravens), but
different examples (black ravens and white swans resp.)

e Truth-table of « AIC » viewed as a connective
— Truth(AIC) = T if truth(A)= truth(C) =T
— Truth(AIC) = F if truth(A)=T and truth(C) =F
— Truth(AIC) =1 if truth(C)=F
Where I 1s a 3d truth value expressing « irrelevance »:
I[=T: AUC®; 1=F. ANC..




A conditional event is
a pair of nested sets

The solutions X of ANC = XNC form the set
AlIC = {X: ANCC X € AUC*}
It defines the symbolic Bayes-like equation:
ANC = (AIC)NC.

The models of a conditional AlC can be
represented by the pair (ANC, AUC®), an interval
in the Boolean algebra of subsets of S

The set AUC* representing material implication
contains the « non-exceptions » to the rule (the
complement of ANC®).



Semantics for three-valued logic of
conditional events.

e Semantic entailment: AlC |I= BID iff
ANCC BND and CCUA C DcUB

BID has more examples and less counterexamples
than AlC.

In particular AIC |= AIBNC 1s false.
e QQuasi-conjunction (Ernest Adams):
AIC N BID = (CccuA)N (D°UB)I CUD




Probability of conditionals

P(AIC) 1s totally determined by
— P(ANC) (proportion of examples)
— P(A°NC) =1 - P(AUC®) (proportion of
counter-examples)

P(ANC)
PAIC) = "pAnc) + 1 - PALCY)

 P(AIC) 1s increasing with P(ANC) and
decreasing with P(A°NC)

e If AIC |= BID then P(AIC ) < P(BID).



CONDITIONING NON-ADDITIVE
CONFIDENCE MEASURES

e Definition : A conditional confidence measure
g(A | C) 1s a mapping from conditional events
AlCE25x(2°5-{J}) to [0, 1] such that

~ g(A1C)=g(ANCIC)=g(AUCIC)
— g-() =g (I C) is a confidence measure on C # J

 Two approaches:
— Bayes-like g(ANC)=g(AIC) -g(C)

— Explicit Approach g(A | C) =1(g(A N C), g(AUC®))
Namely : (X, y) = x/(1+x-y)




Using conditional probability

e Prediction :Querying a generic probability
based on sure singular information:

— P represents generic information (statistics over
a population),

— C represents singular evidence (variable
instantiation for a case x at hand)

— The relative frequency P(BIC) 1s used as the
degree of belief that x&C satisfies B.



Using conditional probability

e Revision of a subjective probability

— P(A) represents singular information, an
agent’s prior belief on what is the current state
of the world (that a birth date xEA...).

— C represents an additional sure information
about the value of x : X&C for sure.

— P(AIC) represents the agent’s posterior belief
that xEA.



Conditioning a credal set

o Let Pbe a credal set representing generic information
and C an event

e The two types of tasks lead to different processing :

1. Prediction : C represents available singular facts:
compute the degree of belief in A in context C as

Cr(A1C)=Inf{P(AIC),P & #,P(C) >0} (Walley).
2. Revision : C represents a set of universal truths;
Add P(C) = 1 to the set of conditionals P.
Cr(AlIC) =Inf{P(A) P &€ #,P(C)=1}

If P(C) = 1 is incompatible with 7, use maximum
likelithood (Gilboa and Schmeidler):

Cr(AlIC) =Inf{P(AIC) P € #, P(C) maximal }



Example : A - - B - C

- Pis the set of probabilities such that
— P(BIA)=a  MostAareB
— P(CIB)=f  MostBare C
— P(AIB)=y  MostBare A

Prediction by querying on context A : Find the most
narrow interval for P(CIA) (Linear programming):

P(CIA) = a -max(0, 1 - (1 - B)Y)
— Note : if y=0, P(CIA) is unknown even if o = 1.
Revision: Suppose P(A) = 1, then P(ClIA) = a3
— Note: 3 >max(0, 1—-(1-B)7)
Revision improves generic knowledge, Prediction does
not.



CONDITIONING RANDOM SETS AS
IMPRECISE PROBABILISTIC INFORMATION

e A disjunctive random set (F, m) representing background

knowledge 1s equivalent to a special set of probabilities
P={P: VA,P(A) = Bel(A)}.

* Querying this information based on evidence C comes
down to performing a sensitivity analysis on the
conditional probability P(:IC)

— Bel-(A) = inf {P(AIC): P € P, P(C) >0}
— PI~(A) = sup {P(AIC): P& P, P(C) >0}



e Theorem : functions Bel-(A) and P1-(A) are belief and
plausibility functions of the form

Bel(A) = Bel(CNA)/(Bel(CNA) + PI(CNA®))

Pl.(A) = PI(CNA)/(PI(CNA) + Bel(CNA®))
where Bel-(A) =1 - P1-(A°)

e We can do it by focusing generic knowledge (the mass
function) on the part of the population that satisfies C.

e (Can be done by transferring portions oz of m(E) inside the
conditioning event C:

— IfEC Cthenog =1
— IfEC C¢thenag =0

— If ENC 2 @ and ENC* # A, it is not clear how much
mass must be transferred to ENC.



Prediction conditioning for belief functions

e [If the coefficients oy are known for all focal sets, one can
construct a conditional mass function m(-IC) on C by
computing

m,(B) =X {a;m(E): CNE =B}
and renormalizing i1f P1  (C) < 1
m,(BIC) = m(B)/Pl_ (C)
e Finally we compute upper and lower bounds
— the lower belief inf, Bel, (A | C) = Bel-(A)

— the upper plausibility sup,, P1, (A 1 C) =Pl-(A) .
 We retrieve the imprecise probability conditioning



Prediction conditioning does not enrich
generic information

If ENC # @ and ENC¢ 2 @, for all EE F, then m(C) =1
(the resulting mass function m. expresses total ignorance on

C©)
— Example: If opinion poll yields: m({a, b}) = a,

m({c,d})=1-a,
The proportion of voters for a candidate in C = {b, c} 1s
unknown.

— However if we hear a and d resign (Pl({a, d} = 0) then
m({b}) = a, m({c}) = 1— a (revision conditioning, see
further on)



Ellsberg urn

* A bag of balls contains 1/3 red balls, the rest being
black or white.

e S={w,b,r} and frequentist mass function : m(r)
= 1/3, m({w,b}) =2/3

e Prediction problem : guess the colour of a ball x
picked at random in the urn, knowing x 1s not
black (C = {r,w}).



Ellsberg urn

Before knowing anything about x, Bel(r) = Pl(r) = 1/3;
Bel(w) = 0; Pl(w) = 2/3.

After knowing it is not black :
— Bel(r) = Bel(r)/(Bel(r) + Pl(w)) =1/3
— Pl.(r) = PI(r)/(P(r) + Bel(w))=1
— Bel-(w) = Bel(w)/(Bel(r) + Pl(w)) =0
— Pl(w) = PI(w)/(Bel(r) + Pl(w)) =2/3

So the piece of information the ball is not black does not
alter our beliefs about x being white or not.

But the plausibility of the ball being red strongly increases.
This 1s a loss of information.



CONDITIONING UNCERTAIN SINGULAR
EVIDENCE

e A mass function m on S, represents uncertain evidence

* A new sure piece of evidence is viewed as a conditioning
event C

1.  Mass transfer : for all E € F, m(E) movesto CNECC

—  The mass function after the transferism(B)=2¢.-p.g M(E)
—  But the mass transferred to the empty set may not be zero!

- my(J) = Bel(C) =2 . np=g M(E) is the degree of conflict
with evidence C

2. Normalisation: m(B) should be divided by
PI(C)=1-Bel(C)= Z.cngxg M(E)
o This is revision of an unreliable testimony by a sure fact



DEMPSTER RULE OF CONDITIONING =

PRIORITIZED MERGING
The conditional plausibility function PI(:IC) 1s
PI(A N C)
P1(AIIC) = . Bel(AlIC) = 1- PI(AClIC)
P1(C)

e ( surely contains the value of the unknown quantity described by m.
So P1(C¢) =0
— The new information is interpreted as asserting the
impossibility of C¢: Then you can change x € E into x €
E C and transfer the mass of focal set E to E N C.

e The new information improves the precision of the
evidence : This conditioning is Gilboa and Schmeidler
maximum likelihood conditioning different from
Bayesian (Walley) conditioning



EXAMPLE OF REVISION OF EVIDENCE :
The criminal case

Evidence 1 : three suspects : Peter Paul Mary

Evidence 2 : The killer was randomly selected
man vs.woman by coin tossing.

— So, S = { Peter, Paul, Mary}
TBM modeling: The masses are m({Peter, Paul})
= 1/2 ; m({Mary}) = 1/2

— Bel(Paul) = Bel(Peter) = 0. Pl(Paul) = Pl(Peter) = 1/2

— Bel(Mary) = Pl(Mary) = 1/2
Bayesian Modeling: A prior probability

— P(Paul) = P(Peter) = 1/4; P(Mary) = 1/2



Evidence 3 : Peter was seen elsewhere at the time of the
killing.

TBM: So Pl(Peter) = 0.

— m({Peter, Paul}) = 1/2; m,({Paul}) = 1/2

— A uniform probability on { Paul, Mary} results.
Bayesian Modeling:

— P(Paul | not Peter) = 1/3; P(Mary | not Peter) = 2/3.

— A very debatable result that depends on where the story
starts. Starting with i males and j females:

e P(Paul | Paul OR Mary) = j/(1 +));
 P(Mary | Paul OR Mary) =1/(1 +))
Walley conditioning:
— Bel(Paul) = 0; Pl(Paul) =1/2
— Bel(Mary) = 1/2; PI(Mary) = 1



Ellsberg urn

A bag of balls contains 1/3 red balls, the rest being
black or white.

S = {w, b, r} and frequentist mass function : m(r)
= 1/3, m({w,b}) =2/3

Revision problem : guess the colour of a ball x
picked at random in the urn, hearing there 1s no

black ball in the urn (C = {r,w}).

Then P(r) = 1/3 and P(w) = 2/3 :more information
1S obtained.



Decision with imprecise probability
techniques

e Accept incomparability when comparing imprecise utility
evaluations of decisions.

— Pareto optimality : decisions that dominate other choices for all
probability functions

— E-admissibility : decisions that dominate other choices for at least
one probability function (Walley, etc...)

e Select a single utility value that achieves a compromise

between pessimistic and optimistic attitudes.

— Select a single probability measure (Shapley value = pignistic
transformation) and use expected utility (SMETS)

— Compare lower expectations of decisions (Gilboa)

— Generalize Hurwicz criterion to focal sets with degree of optimism

(Jaffray)



Information fusion

 Dempster rule of combination in evidence theory:
— 1ndependent sources, normalised or not
— Does nor preserve consonance of inputs
— No well-accepted idempotent fusion rule.

e In possibility theory : many fusion rules.

— The minimum rule : idempotent (= minimal
commitment fusion rule for consonant belief functions,
not for other ones)

— The product rule : coincides with the contour function
obtained from unnormalized Dempster rule applied to
consonant belief functions



Conclusion

o There exists a coherent range of set-functions
combining interval and probability for the
representation of uncertainty .

— Imprecise probability is the proper theoretical umbrella

— The choice between set-functions depends on how
expressive 1t 1s necessary to be in a given application.

— There exists simple practical representations of
imprecise probability



Language ditficulties

o [mprecise probability, belief functions and possibility
theory are not fully mutually consisten:

— How to translate conditioning and fusion rules, as well
as independence notions from specialised setting to
imprecise probability and back.

— Concepts that make sense for credal sets, may be hard
to interpret in terms of Moebius transforms or
possibility distributions and conversely

— Can simplified representation help us cut down
computation costs

e How to get this general non-dogmatic approach to
uncertainty accepted by traditional statisticians?



Main problems to be addressed by
uncertainty theories

Inference: constructing imprecise probability model from data :
— Scarce data: Imprecise Dirichlet model (Bernard)
— Statistics with imprecise (interval) data

Elicitation of upper/ lower probabilities from experts (faithful
representation of incomplete information by generalized p-boxes)

Uncertainty propagation : blending interval and Monte-Carlo
methods.

Extraction of relevant summaries of information from computation
outputs: p-boxes, possibility distribution, indices of information...

Prediction: constructing beliefs from imprecise probability models on
the basis of additional evidence

Revision of imprecise probability models
Fusion of uncertain information that account for dependent sources



