Approximations of coherent lower probabilities by 2-monotone (or completely monotone) capacities

I. Montes
Joint work with: E. Miranda, P. Vicig

University of Oviedo, Spain University of Trieste, Italy

WPMSIIP 2018

Models

Why (not) coherent lower probabilities?

- \underline{P} is coherent $\Longleftrightarrow \underline{P}=\min \mathcal{M}(\underline{P})$.
- In addition to this sensitivity analysis interpretation, coherence also has a behavioural interpretation.
- However, the structure of $\mathcal{M}(\underline{P})$ may be complex. x
- The extension of \underline{P} to gambles is not unique. X

Why (not) 2-monotonicity?

If \underline{P} is 2 -monotone:

- It has a unique extension to gambles (by means of the Choquet integral).
- There is a simple procedure for computing the number of extreme points of $\mathcal{M}(\underline{P})$.
- Most particular cases in the literature are 2-monotone anyway.
- But the behavioural interpretation of 2-monotonicity is not too clear. X

Why (not) Completely monotonicity?

If \underline{P} is completely monotone:

- Same advantages than 2-monotone ones.
- Interpretation in terms of the Möbius inverse.
- Necessity measureas and p-boxes are particular cases.
- Belief functions are the key notion of Evidence Theory.
- Sometimes too restrictive. x

Formulation of the problem

We look for a 2-monotone lower probability \underline{Q} such that:
(a) Q does not include additional information: $Q \leq \underline{P}$. It is called an outer approximation.
(b) \underline{Q} is as close as possible. \underline{Q} is undominated if there is no other 2-monotone \underline{Q}^{\prime} such that $\underline{Q} \lesseqgtr \underline{Q}^{\prime} \leq \underline{P}$.

Approximation of coherent lower probabilities by 2-monotone measures. A. Bronevich, T. Augustin, ISIPTA 2009.

Formulation of the problem

We look for a 2－monotone lower probability \underline{Q} such that：
（a）\underline{Q} does not include additional information：$\underline{Q} \leq \underline{P}$ ．It is called an outer approximation．
（b）\underline{Q} is as close as possible．\underline{Q} is undominated if there is no other 2－monotone \underline{Q}^{\prime} such that $\underline{Q} \leq \underline{Q}^{\prime} \leq \underline{P}$ ．

Approximation of coherent lower probabilities by 2－monotone mea－ sures．A．Bronevich，T．Augustin，ISIPTA 2009.

We consider the distance proposed by Baroni and Vicig：

$$
d(\underline{P}, \underline{Q})=\sum_{E \subseteq \mathcal{X}}(\underline{P}(E)-\underline{Q}(E)) .
$$

\square An uncertainty interchange format with imprecise probabilities．P． Baroni，P．Vicig，IJAR 2015.

Overview

2-monotone outer approximations

2-monotone

 OACompletely monotone OA

Completely monotone outer approximations
Other approximations
Quadratic programming approach
Total variation distance
The Weber set
Iterative (minimal) rescaling method
Particular cases
Probability intervals
Pari-Mutuel model
Linear vacuous mixtures
P-boxes
Possibility measures
OA of coherent lower previsions
Inner approximations
Conclusions and Open Problems

OA via linear programming

We look for a 2-monotone lower probability $\underline{Q}, m_{\underline{Q}}$, such that $\underline{Q} \leq \underline{P}$.

$$
\begin{equation*}
\min \sum_{E \subseteq \mathcal{X}}\left(\underline{P}(E)-\sum_{B \subseteq E} m_{\underline{Q}}(B)\right) \tag{LP-2monot}
\end{equation*}
$$

subject to:

$$
\begin{aligned}
& \sum_{B \subseteq \mathcal{X}} m_{\underline{Q}}(B)=1, \quad m_{\underline{Q}}(\emptyset)=\emptyset \\
& \sum_{\left\{x_{i}, x_{j}\right\} \subseteq A \subseteq E} m_{\underline{Q}}(A) \geq 0, \quad \forall E \subseteq \mathcal{X}, \forall x_{i}, x_{j} \in E, x_{i} \neq x_{j}
\end{aligned}
$$

(LP-2monot.2)

$$
\begin{align*}
& m_{\underline{Q}}\left(\left\{x_{i}\right\}\right) \geq 0, \quad \forall x_{i} \in \mathcal{X} \tag{LP-2monot.3}\\
& \sum_{B \subseteq E} m_{\underline{Q}}(B) \leq \underline{P}(E) \quad \forall E \subseteq \mathcal{X}
\end{align*}
$$

(LP-2monot.4)

B
Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. A. Chateauneuf, J. Jaffray, MSS 1989.

OA via linear programming

- Any optimal solution is an undominated OA in \mathcal{C}_{2}.

OA via linear programming

- The feasible region of (LP-2monot) is non-empty: it includes the vacuous lower probability $(m(\mathcal{X})=1)$.
- The optimization problem (LP-2monot) has a (possibly infinitely) solution(s).
- Any optimal solution is an undominated OA in \mathcal{C}_{2}.
- However, there may be no solution attaining the value $\underline{P}(A)$ for a given A.
- If for a fixed A we add the restriction

$$
\sum_{B \subseteq A} m_{\underline{Q}}(B)=\underline{P}(A)
$$

(LP-2monot.5)
then any optimal solution of (LP-2monot) subject to (LP-2monot.1)-(LP-2monot.5) is an undominated OA in \mathcal{C}_{2} satisfying $\underline{Q}(A)=\underline{P}(A)$.

Further properties

- If we denote by $\left(Q_{i}\right)_{i \in I}$ the optimal solutions of (LP-2monot) subject to (LP-2monot.1)-(LP-2monot.4) or (LP-2monot.1)-(LP-2monot.5) for a fixed A, then

$$
\underline{P}(E)=\max _{i \in I} \underline{Q}_{i}(E) \quad \forall E \subseteq \mathcal{X}
$$

- If \underline{Q} is an undominated OA of \underline{P} in \mathcal{C}_{2}, then $\underline{Q}(\{x\})=$ $\underline{P}(\{x\})$ and $\bar{Q}(\{x\})=\bar{P}(\{x\})$ for every x.
- There are undominated OA in \mathcal{C}_{2} that cannot be obtained via linear programming.
- Open: is the set of undominated solutions convex?

Overview


```
Other approximations
    Quadratic programming approach
    Total variation distance
    The Weber set
    Iterative (minimal) rescaling method
    Particular cases
    Probability intervals
    Pari-Mutuel model
    Linear vacuous mixtures
    P-boxes
    Possibility measures
    OA of coherent lower previsions
Inner approximations
Conclusions and Open Problems
```


OA via linear programming

We look for a belief function Bel, with Möbius inverse m, such
 monotone OA

$$
\begin{equation*}
\min \sum_{E \subseteq \mathcal{X}}\left(\underline{P}(E)-\sum_{B \subseteq E} m(B)\right) \tag{LP-Bel}
\end{equation*}
$$

subject to:

$$
\begin{equation*}
\sum_{B \subseteq \mathcal{X}} m(B)=1, \quad m(B) \geq 0 \quad \forall B \subseteq \mathcal{X} \tag{LP-Bel.1}
\end{equation*}
$$

$$
\sum_{B \subseteq E} m(B) \leq \underline{P}(E) \quad \forall E \subseteq \mathcal{X}
$$

(LP-Bel.2)

Generation, combination and extension of random set approximations to coherent lower and upper probabilities. J.W. Hall, J. Lawry, RESS 2004.
Completely monotone outer approximations of lower probabilities on finite possibility spaces. E.Quaeghebeur, Springer 2011.

OA via linear programming

- The feasible region of (LP-Bel) is non-empty: it includes the simple support function $(m(A)=\underline{P}(A)$ and $m(\mathcal{X})=$ $1-\underline{P}(A)$).
- The optimization problem (LP-Bel) has a (possibly infinitely) solution(s).
- Any optimal solution is an undominated OA in \mathcal{C}_{∞}.

OA via linear programming

- The feasible region of (LP-Bel) is non-empty: it includes the simple support function $(m(A)=\underline{P}(A)$ and $m(\mathcal{X})=$ $1-\underline{P}(A)$).
- The optimization problem (LP-Bel) has a (possibly infinitely) solution(s).
- Any optimal solution is an undominated OA in \mathcal{C}_{∞}.
- However, there may be no solution attaining the value $\underline{P}(A)$ for a given A.
- If for a fixed A we add the restriction

$$
\begin{equation*}
\sum_{B \subseteq A} m(B)=\underline{P}(A) \tag{LP-Bel.A}
\end{equation*}
$$

then any optimal solution of (LP-Bel) subject to (LP-Bel.1)-(LP-Bel.3) is an undominated OA in \mathcal{C}_{∞} satisfying $\operatorname{Bel}(A)=$ $\underline{P}(A)$.

Further properties

－If we denote by $\left(B e l_{i}\right)_{i \in I}$ the optimal solutions of（LP－Bel） subject to（LP－Bel．1）－（LP－Bel．2）or（LP－Bel．1）－（LP－Bel．3） for a fixed A ，then

$$
\underline{P}(E)=\max _{i \in I} \operatorname{Bel}_{i}(E) \quad \forall E \subseteq \mathcal{X} .
$$

－If $B e l$ is an undominated OA of \underline{P} in \mathcal{C}_{∞} ，it may not happen that $\operatorname{Bel}(\{x\})=\underline{P}(\{x\})$ and $\operatorname{Pl}(\{x\})=\bar{P}(\{x\})$ ．
－There are undominated OA in \mathcal{C}_{∞} that cannot be obtained via linear programming．
－Open：is the set of undominated solutions convex？

Overview

2-monotone outer approximations
Completely monotone outer approximations
Other approximations
Quadratic programming approach
Total variation distance
The Weber set
Iterative (minimal) rescaling method
Particular cases
Probability intervals
Pari-Mutuel model
Linear vacuous mixtures
P-boxes
Possibility measures
OA of coherent lower previsions
Inner approximations
Conclusions and Open Froblems

Quadratic programming

Instead of the distance of Baroni and Vicig, we may consider the quadratic distance:

$$
\tilde{d}(\underline{P}, \underline{Q}):=\sum_{E \subseteq \mathcal{X}}(\underline{P}(E)-\underline{Q}(E))^{2} .
$$

- The optimization problem has a unique solution in \mathcal{C}_{2} and \mathcal{C}_{∞}, unlike the linear programming ones.
- This solution is an undominated OA in \mathcal{C}_{2} or \mathcal{C}_{∞}, and it may not be a solution of any of the linear programming problems.
- Interpretation?

Total variation distance

Given two probability measures P_{1} and P_{2}, their total variation is defined as

$$
\left\|P_{1}-P_{2}\right\|=\max _{E \subseteq \mathcal{X}}\left|P_{1}(E)-P_{2}(E)\right| .
$$

This definition can be equivalently expressed as:

$$
\left\|P_{1}-P_{2}\right\|=\frac{1}{2} \sum_{x \in \mathcal{X}}\left|P_{1}(\{x\})-P_{2}(\{x\})\right| .
$$

This can be extended to coherent lower probabilities in a number of (not necessarily equivalent) ways:

$$
\begin{aligned}
& d_{1}\left(\underline{P}_{1}, \underline{P}_{2}\right)=\max _{E \subseteq \mathcal{X}}\left|\underline{P}_{1}(E)-\underline{P}_{2}(E)\right|, \\
& d_{2}\left(\underline{P}_{1}, \underline{P}_{2}\right)=\frac{1}{2} \sum_{x \in \mathcal{X}}\left|\underline{P}_{1}(\{x\})-\underline{P}_{2}(\{x\})\right|, \\
& d_{3}\left(\underline{P}_{1}, \underline{P}_{2}\right)=\sup _{P_{1} \in \mathcal{M}\left(\underline{P}_{1}\right), P_{2} \in \mathcal{M}\left(\underline{P}_{2}\right)}\left\|P_{1}-P_{2}\right\| .
\end{aligned}
$$

OA via total variation

Thus，we may consider the optimization problem of obtaining an OA of \underline{P} in \mathcal{C}_{2} or \mathcal{C}_{∞} that minimizes one of these distances．
－None of the distances d_{1}, d_{2}, d_{3} guarantees a unique solu－ tion．
－Moreover，the solutions to the problem may not be undom－ inated！

The Weber set

For any permutation σ of $\{1, \ldots, n\}$, define P_{σ} by

$$
P_{\sigma}\left(\left\{x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right\}\right)=\underline{P}\left(\left\{x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right\}\right) \forall k .
$$

If S_{n} denotes the set of permutations of $\{1, \ldots, n\}$, then

$$
W(\underline{P})=\left\{P_{\sigma} \mid \sigma \in S_{n}\right\}
$$

is called the Weber set associated with \underline{P}.
If \underline{P} is 2-monotone, then $\operatorname{ext}(\mathcal{M}(\underline{P}))=W(\underline{P})$.
Set functions, games and capacities in decision making. M. Grabisch, Springer 2016.

OA via the Weber set

When \underline{P} is a coherent lower probability, $\mathcal{M}(\underline{P}) \subseteq \operatorname{conv}(W(\underline{P}))$, and $\mathcal{M}(\underline{P})=\operatorname{conv}(W(\underline{P})) \Longleftrightarrow \underline{P}$ 2-monotone.

Supermodularity: Applications to convex games and to the greedy algorithm for LP. T. Ichiishi, JET 1981.

Thus, we may use the lower envelope of $W(\underline{P})$ to outer approximate \underline{P} :

$$
\underline{Q}=\min \operatorname{conv}(W(\underline{P})) .
$$

- This lower envelope may not be 2-monotone for $n>4$.
- Even if it is 2-monotone, it may not be an undominated OA.

Iterative（minimal）rescaling method

－Both methods may give non undominated OA．

Generation，combination and extension of random set approxi－ mations to coherent lower and upper probabilities．J．W．Hall，J． Lawry，RESS 2004.

Completely monotone outer approximations of lower probabilities on finite possibility spaces．E．Quaeghebeur，Springer 2011.

Overview

Particular cases
Probability intervals
Pari-Mutuel model
Linear vacuous mixtures
P-boxes
Possibility measures
OA of coherent lower previsions
Inner approximations
Conclusions and Open Froblems

Particular cases

OA using probability intervals

Let \underline{P} be a coherent lower probability with conjugate upper probability \bar{P}. Define the probability interval \mathcal{I} by:

$$
\mathcal{I}=\left\{\left[l_{i}, u_{i}\right]=\left[\underline{P}\left(\left\{x_{i}\right\}\right), \bar{P}\left(\left\{x_{i}\right\}\right)\right] \mid i=1, \ldots, n\right\}
$$

and denote by l, u the lower and upper probability it induces.

- \mathcal{I} is a coherent probability interval.
- l is the unique undominated OA of \underline{P} in $\mathcal{C}_{\mathrm{PI}}$.

Pari-mutuel models

$$
\underline{P}(A)=\max \left\{0,(1+\delta) P_{0}(A)-\delta\right\} \forall A \subseteq \mathcal{X}
$$

Pari-mutuel models

The Pari Mutuel Model (PMM) is a betting scheme originated in horse racing. It is determined by a probability measure P_{0} and a distortion factor $\delta>0$.
They determine a coherent lower probability by:

$$
\underline{P}(A)=\max \left\{0,(1+\delta) P_{0}(A)-\delta\right\} \forall A \subseteq \mathcal{X}
$$

Define the constant value $\delta>0$ and the probability P_{0} by:

$$
\delta=\sum_{i=1}^{n} \bar{P}\left(\left\{x_{i}\right\}\right)-1, \quad P_{0}\left(\left\{x_{i}\right\}\right)=\frac{\bar{P}\left(\left\{x_{i}\right\}\right)}{1+\delta} \forall i
$$

Let \underline{Q}_{δ} be the lower probability associated with the $\mathrm{PMM}\left(P_{0}, \delta\right)$.

- \underline{Q}_{δ} is the unique undominated OA of \underline{P} in $\mathcal{C}_{\text {PMM }}$.

Linear－vacuous mixtures

Given a probability measure P_{0} and $\varepsilon \in(0,1)$ ，we define the ε－contamination model by

$$
\underline{P}(A)= \begin{cases}(1-\varepsilon) P_{0}(A) & \text { if } A \neq \mathcal{X} \\ 1 & \text { if } A=\mathcal{X}\end{cases}
$$

Linear－vacuous mixtures

Given a probability measure P_{0} and $\varepsilon \in(0,1)$ ，we define the ε－contamination model by

$$
\underline{P}(A)= \begin{cases}(1-\varepsilon) P_{0}(A) & \text { if } A \neq \mathcal{X} \\ 1 & \text { if } A=\mathcal{X}\end{cases}
$$

Assume \underline{P} satisfies $\sum_{j=1}^{n} \underline{P}\left(\left\{x_{j}\right\}\right)>0$ and define：

$$
\varepsilon=1-\sum_{j=1}^{n} \underline{P}\left(\left\{x_{j}\right\}\right), \quad P_{0}\left(\left\{x_{i}\right\}\right)=\frac{\underline{P}\left(\left\{x_{i}\right\}\right)}{\sum_{j=1}^{n} \underline{P}\left(\left\{x_{j}\right\}\right)} \forall i .
$$

Let $\underline{P}_{\varepsilon}$ be the ε－contamination model they determine．
－$\underline{P}_{\varepsilon}$ is the unique undominated OA of \underline{P} in $\mathcal{C}_{\varepsilon}$.
－If $\sum_{j=1}^{n} \underline{P}\left(\left\{x_{j}\right\}\right)=0$ ，then \underline{P} has no OA in \mathcal{C}_{ϵ} ．

OA using p-boxes

P-box: belief function whose focal sets are ordered intervals: Interval: If E is focal, $E=\{x \in \mathcal{X} \mid \min E \leq x \leq \max E\}$.
Ordered: If E_{1}, E_{2} are focals, either

$$
\begin{aligned}
& \min E_{1} \leq \min E_{2} \text { and } \max E_{1} \leq \max E_{1} \text { or } \\
& \min E_{2} \leq \min E_{1} \text { and } \max E_{2} \leq \max E_{1} .
\end{aligned}
$$

OA using p－boxes： \mathcal{X} ordered

Proposition

There is a unique undominated $O A$ in $\mathcal{C}_{(\underline{F}, \bar{F})}$ ，and it is given by：

$$
\underline{F}\left(x_{i}\right)=\underline{P}\left(\left\{x_{1}, \ldots, x_{i}\right\}\right), \quad \bar{F}\left(x_{i}\right)=\bar{P}\left(\left\{x_{1}, \ldots, x_{i}\right\}\right) .
$$

Then：

$$
\underline{P}_{(\underline{F}, \bar{F})}(A)=\min \left\{P(A) \mid \underline{F} \leq F_{P} \leq \bar{F}\right\} .
$$

Probability boxes on totally preordered spaces for multivariate modelling．M．Troffaes，S．Destercke，IJAR 2011.

OA using p-boxes: \mathcal{X} not ordered

ing ig Let σ be a permutation of $\{1, \ldots, n\}$ and \leq_{σ} the order given by σ :

$$
x_{\sigma(1)} \leq_{\sigma} \ldots \leq_{\sigma} x_{\sigma(n)}
$$

Proposition

1. Define the generalised p-box $\left(\underline{F}_{\sigma}, \bar{F}_{\sigma}\right)$ by:

$$
\begin{aligned}
& \underline{F}_{\sigma}\left(x_{\sigma(i)}\right)=\underline{P}\left(\left\{x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right\}\right), \\
& \bar{F}_{\sigma}\left(x_{\sigma(i)}\right)=\bar{P}\left(\left\{x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right\}\right) .
\end{aligned}
$$

Then, $\left(\underline{F}_{\sigma}, \bar{F}_{\sigma}\right)$ is a undominated $O A$ in $\mathcal{C}_{(\underline{F}, \bar{F})}$.
2. All the undominated $O A$ in $\mathcal{C}_{(\underline{F}, \bar{F})}$ are the p-boxes $\left(\underline{F}_{\sigma}, \bar{F}_{\sigma}\right)$ for any σ.

OA using possibility measures

UnE軺 We look for a possibility Π such that $\bar{P} \leq \Pi$.
Theorem
Take σ a permutation of $\{1, \ldots, n\}$. We define Π by:
$\Pi\left(\left\{x_{\sigma(1)}\right\}\right)=\bar{P}\left(\left\{x_{\sigma(1)}\right\}\right)$ and
$\Pi\left(\left\{x_{\sigma(i)}\right\}\right)=\max _{A \in \mathcal{A}_{\sigma(i)}} \bar{P}\left(A \cup\left\{x_{\sigma(i)}\right\}\right)$, where
$\mathcal{A}_{\sigma(i)}=\left\{A \subseteq\left\{x_{\sigma(1)}, \ldots, x_{\sigma(i-1)}\right\} \mid \bar{P}\left(A \cup\left\{x_{\sigma(i)}\right\}\right)>\max _{x \in A} \Pi(\{x\})\right\}$,
and let $\Pi(A)=\max _{x \in A} \Pi(\{x\})$ for any other $A \subseteq \mathcal{X}$. Then:

1. Π is a possibility measure.
2. Π is a undominated $O A$ of \bar{P}.
3. All the undominated $O A$ of \bar{P} are of the form Π_{σ}.

Dubois \& Prade approach

ingmo For any permutation σ, define:

- $E_{0}^{\sigma}=\emptyset$.
- $E_{j}^{\sigma}=\left\{x_{\sigma(1)}, \ldots, x_{\sigma(j)}\right\}$ for $j=1, \ldots, n$.
- $\pi_{\sigma}^{\mathrm{DP}}\left(x_{\sigma(j)}\right)=1-\underline{P}\left(E_{j-1}^{\sigma}\right)$ for $j=1, \ldots, n$.
- $\Pi_{\sigma}^{\mathrm{DP}}(A)=\max _{x \in A} \pi_{\sigma}^{\mathrm{DP}}(x)$.

Fuzzy sets and statistical data. D. Dubois, H. Prade, EJOR 1986.
When upper probabilities are possibility measures. D. Dubois, H. Prade, FSS 1992.

Dubois \& Prade approach

ingmo For any permutation σ, define:

- $E_{0}^{\sigma}=\emptyset$.
- $E_{j}^{\sigma}=\left\{x_{\sigma(1)}, \ldots, x_{\sigma(j)}\right\}$ for $j=1, \ldots, n$.
- $\pi_{\sigma}^{\mathrm{DP}}\left(x_{\sigma(j)}\right)=1-\underline{P}\left(E_{j-1}^{\sigma}\right)$ for $j=1, \ldots, n$.
- $\Pi_{\sigma}^{\mathrm{DP}}(A)=\max _{x \in A} \pi_{\sigma}^{\mathrm{DP}}(x)$.

However...

- $\Pi_{\sigma}^{\mathrm{DP}}$ could be dominated!
- $\Pi_{\sigma}^{\mathrm{DP}} \geq \Pi_{\bar{\sigma}}$, where $\bar{\sigma}=\left(x_{\sigma(n)}, x_{\sigma(n-1)}, \ldots, x_{\sigma(1)}\right)$.

Fuzzy sets and statistical data. D. Dubois, H. Prade, EJOR 1986.
When upper probabilities are possibility measures. D. Dubois, H. Prade, FSS 1992.

Example

EnEmo	A	$\underline{P}(A)$	$\bar{P}(A)$	Take $\sigma=(3,2,1,4)$ and $\bar{\sigma}=(4,1,2,3)$:		
	$\left\{x_{1}\right\}$	0.1	0.4			
	$\left\{x_{2}\right\}$	0	0.3			
letely	$\left\{x_{3}\right\}$	0	0.4			
tone OA	$\left\{x_{4}\right\}$	0.3	0.5			
aterap,	$\left\{x_{1}, x_{2}\right\}$	0.1	0.6			
	$\left\{x_{1}, x_{3}\right\}$	0.3	0.6			
	$\left\{x_{1}, x_{4}\right\}$	0.6	0.7		Π_{σ}	$\Pi_{\bar{\sigma}}^{\mathrm{DP}}$
cular	$\left\{x_{2}, x_{3}\right\}$	0.3	0.4	x_{3}	0.4	0.4
	$\left\{x_{2}, x_{4}\right\}$	0.4	0.7	x_{2}	0.3	0.4
	$\left\{x_{3}, x_{4}\right\}$	0.4	0.9	x_{1}	0.7	0.7
	$\left\{x_{1}, x_{2}, x_{3}\right\}$	0.5	0.7	x_{4}	1	1
OA of coherent	$\left\{x_{1}, x_{2}, x_{4}\right\}$	0.6	1	x_{4}		
lower	$\left\{x_{1}, x_{3}, x_{4}\right\}$	0.7	1			
	$\left\{x_{2}, x_{3}, x_{4}\right\}$	0.6	0.9			
Inner ap	\mathcal{X}	1	1			

Overview

```
Other ap-
proximations
OA of
coherent
lower
previsions
Inner approxi-
mations
Conclusions
and Open
Problems
```

Completely monotone OA

```
Completely monotone outer approximations
Other approximations
Quadratic programming approach
Total variation distance
The Weber set
Iterative (minimal) rescaling method
Particular cases
Probability intervals
Pari-Mutuel model
Linear vacuous mixtures
P-boxes
Possibility measures
OA of coherent lower previsions
Inner approximations
Conclusions and Open Problems
```

2-monotone outer approximations

OA of coherent lower previsions

$$
\underline{P}^{\prime}(A)=\underline{P}\left(I_{A}\right)
$$

OA of coherent lower previsions

$$
\underline{P}^{\prime}(A)=\underline{P}\left(I_{A}\right)
$$

Overview

```
imEM@ Completely monotone outer approximations
    Other approximations
    Quadratic programming approach
    Total variation distance
    The Weber set
    Iterative (minimal) rescaling method
    Particular cases
    Probability intervals
    Pari-Mutuel model
    Linear vacuous mixtures
    P-boxes
    Possibility measures
OA of coherent lower previsions
Inner approximations
Conclusions and Open Problems
```


Inner approximations

- We can repeat the same arguments to look for inner approximations.
- Using a linear programming approach, we just need to substitute (LP-2monot.4) or (LP-bel.2) by:

$$
\sum_{B \subseteq E} m_{\underline{Q}}(B) \geq \underline{P}(E) \quad \forall E \subseteq \mathcal{X}
$$

However...

- The existence of an inner approximation in $\mathcal{C}_{\varepsilon}$ and $\mathcal{C}_{\text {PMM }}$ is not guaranteed, and when it exists, it may not be unique. The existence is neither guaranteed in \mathcal{C}_{Π}.
- An inner approximation adds new information to the model!!!

Overview

2-monotone outer approximations
Completely monotone outer approximations
Other approximations
Quadratic programming approach
Total variation distance
The Weber set
Iterative (minimal) rescaling method
Particular cases
Probability intervals
Pari-Mutuel model
Linear vacuous mixtures
P-boxes
Possibility measures
OA of coherent lower previsions
Inner approximations
Conclusions and Open Problems

Summary and open problem

OA in the class \mathcal{C}	Unique optimal OA?	The optimal OAs retrieve $\underline{P} ?$	Characterization of the optimal OA?	Coincide with \underline{P}, \bar{P} on $\left\{x_{i}\right\} ?$
\mathcal{C}_{2}	NO	YES	Open problem	YES
\mathcal{C}_{∞}	NO	YES	Open problem	NO
$\mathcal{C}_{\text {PI }}$	YES	NO	YES	YES
$\mathcal{C}_{\text {PMM }}$	YES	NO	YES	Partially
$\mathcal{C}_{\varepsilon}$	YES	NO	YES	Partially
$\mathcal{C}_{(F, \bar{F})}$	YES	NO	YES	NO
$\mathcal{C}_{(F, \bar{F})}^{*}$	NO	YES	YES	NO
$\overline{\mathcal{C}}_{\Pi}$	NO	YES	YES	NO

- Elicitation of an undominated OA?
- Using divergences instead of distances?

References

 When upper probabilities are possibility measures． D．Dubois， H．Prade，FSS 1992.

An uncertainty interchange format with imprecise probabilities． P．Baroni，P．Vicig，IJAR 2005.
n－monotone exact functionals．G．de Cooman，M．Troffaes，E． Miranda，JMAA 2008.

2－monotone outer approximations of coherent lower probabilities． I．Montes，E．Miranda，P．Vicig，IJAR 2018.

國
Outer approximations of coherent lower probabilities using belief functions．I．Montes，E．Miranda，P．Vicig，SMPS－Belief Confer－ ence 2018.

Approximations of coherent lower probabilities by 2-monotone (or completely monotone) capacities

I. Montes
Joint work with: E. Miranda, P. Vicig

University of Oviedo, Spain University of Trieste, Italy

WPMSIIP 2018

