Continuity of the Shafer-Vovk-Ville Operator

T'Joens Natan de Cooman Gert De Bock Jasper

Monday 30 july 2018

Framework

Infinite sequences of uncertain states $X_1, X_2, ..., X_n, ...$ where X_k at time $k \in \mathbb{N}$ takes values in some finite set \mathscr{X} , called the *state space*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Framework

Infinite sequences of uncertain states $X_1, X_2, ..., X_n, ...$ where X_k at time $k \in \mathbb{N}$ takes values in some finite set \mathscr{X} , called the *state space*.

E.g. Unfair coin tossing process

Framework

Infinite sequences of uncertain states $X_1, X_2, ..., X_n, ...$ where X_k at time $k \in \mathbb{N}$ takes values in some finite set \mathscr{X} , called the *state space*.

E.g. Unfair coin tossing process

Framework

Infinite sequences of uncertain states $X_1, X_2, ..., X_n, ...$ where X_k at time $k \in \mathbb{N}$ takes values in some finite set \mathscr{X} , called the *state space*.

E.g. Unfair coin tossing process

Expressing global beliefs

Kolmogorov's measure-theoretic approach

- + Elegant mathematical results
- Assumptions (e.g. measurability of gambles)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Rather abstract, interpretation?
- Imprecise case?

Expressing global beliefs

Kolmogorov's measure-theoretic approach

- + Elegant mathematical results
- Assumptions (e.g. measurability of gambles)
- Rather abstract, interpretation?
- Imprecise case?

Shafer and Vovk's game-theoretic approach

- + Less assumptions
- + Behavioural interpretation
- + Imprecision is naturally incorporated
- Mathematical results

Terminology

A situation $x_{1:n} \coloneqq (x_1, ..., x_n) \in \mathscr{X}_{1:n} \coloneqq \mathscr{X}^n$ is a finite string of subsequent state values, e.g. the situation $x_{1:3} = (T, H, H)$.

A path ω is an infinite sequence of state values, e.g. the path 'always heads': $\omega = (H, H, H, H, \cdots)$

The set of all paths is called the sample space and is denoted by $\Omega := \mathscr{X}^{\mathbb{N}}$.

A variable f is a map on the set Ω of all paths.

Shafer and Vovk's game-theoretic approach Precise case

Forecaster

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Precise case

- Sets prizes Q(g|x_{1:k})
- Sells g^* for $Q(g^*|x_{1:k})$
- Receives $Q(g^*|x_{1:k}) g^*$

• Chooses a gamble g^* on X_{k+1}

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Buys g^* for $Q(g^*|x_{1:k})$
- Receives $g^* Q(g^*|x_{1:k})$

A martingale \mathcal{M} is a gambling strategy for Skeptic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A martingale \mathcal{M} is a gambling strategy for Skeptic.

It associates a real number $\mathscr{M}(s) \in \mathbb{R}$ with every situation $s \in \mathscr{X}^*$. The process difference $\Delta \mathscr{M}(x_{1:n}) \in \mathbb{G}(\mathscr{X})$, defined by

$$\Delta \mathscr{M}(x_{1:n})(x_{n+1}) \coloneqq \mathscr{M}(x_{1:n+1}) - \mathscr{M}(x_{1:n}) \text{ for all } x_{n+1} \in \mathscr{X},$$

has nonpositive expectation: $Q(\Delta \mathscr{M}(x_{1:n})|x_{1:n}) \leq 0$.

If local models are imprecise: $\overline{\mathbb{Q}}(\Delta \mathscr{M}(x_{1:n})|x_{1:n}) \leq 0$.

Definition

 $\overline{\mathrm{E}}_{\mathrm{V}}(f) := \inf \left\{ \mathscr{M}(\Box) \colon \mathscr{M} \in \overline{\mathbb{M}}_{\mathrm{b}} \text{ and } (\forall \omega \in \Omega) \liminf \mathscr{M}(\omega) \geq f(\omega) \right\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

 $\overline{\mathrm{E}}_{\mathrm{V}}(f) := \inf \left\{ \mathscr{M}(\Box) \colon \mathscr{M} \in \overline{\mathbb{M}}_{\mathrm{b}} \text{ and } (\forall \omega \in \Omega) \liminf \mathscr{M}(\omega) \geq f(\omega) \right\}$

'The upper expectation of a variable f is the infimum starting capital such that, by gambling in the right way, we are sure to end up with a higher capital than if we would commit to the gamble f.'

Expressing global beliefs

Kolmogorov's measure-theoretic approach

- + Elegant mathematical results
- Assumptions (e.g. measurability of gambles)
- Rather abstract, interpretation?
- Imprecise case?

Shafer and Vovk's game-theoretic approach

- + Less assumptions
- + Behavioural interpretation
- + Imprecision is naturally incorporated
- Mathematical results

Mathematical results

Example

How can we calculate $\overline{\mathrm{E}}_{\mathrm{V}}(f)$ if f is 'the time until the first time heads':

 $f(\omega) \coloneqq \inf \{k \in \mathbb{N} \colon \omega_k = H\}$ for all $\omega \in \Omega$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mathematical results

Example

How can we calculate $\overline{E}_V(f)$ if f is 'the time until the first time heads':

$$f(\omega) \coloneqq \inf \left\{ k \in \mathbb{N} \colon \omega_k = H
ight\}$$
 for all $\omega \in \Omega$?

We can only calculate variables that depend on a finite number of states (= n-measurable gambles).

In measure theory: we can use the dominated convergence of the Lebesgue integral.

Do we have something similar for \overline{E}_V ?

[Shafer G., Vovk V.: Probability and Finance. It's Only a Game!] [De Cooman G., De Bock J., Lopatatzidis S.: Imprecise stochastic processes in discrete time: global models, imprecise Markov chains, and ergodic theorems.]

 \Rightarrow The restriction of $\overline{\mathrm{E}}_{\mathrm{V}}$ to the $\mathbb{G}(\Omega)$ of all bounded real-valued variables, satisfies the *coherence axioms*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

E1.
$$\overline{\mathrm{E}}_{\mathrm{V}}(f) \leq \sup f$$
 for all $f \in \mathbb{G}(\mathscr{Y})$;

$$\mathsf{E2.} \ \overline{\mathrm{E}}_{\mathrm{V}}(f+g) \leq \overline{\mathrm{E}}_{\mathrm{V}}(f) + \overline{\mathrm{E}}_{\mathrm{V}}(g) \text{ for all } f,g \in \mathbb{G}(\mathscr{Y});$$

E3.
$$\overline{\mathrm{E}}_{\mathrm{V}}(\lambda f) = \lambda \overline{\mathrm{E}}_{\mathrm{V}}(f)$$
 for all $f \in \mathbb{G}(\mathscr{Y})$ and real $\lambda \geq 0$.

Mathematical results for \overline{E}_V

[Shafer G., Vovk V.: Probability and Finance. It's Only a Game!] [De Cooman G., De Bock J., Lopatatzidis S.: Imprecise stochastic processes in discrete time: global models, imprecise Markov chains, and ergodic theorems.]

 \Rightarrow The restriction of $\overline{\mathrm{E}}_{\mathrm{V}}$ to the $\mathbb{G}(\Omega)$ of all bounded real-valued variables, satisfies the *coherence axioms*

E1.
$$\overline{E}_{V}(f) \leq \sup f$$
 for all $f \in \mathbb{G}(\mathscr{Y})$;
E2. $\overline{E}_{V}(f+g) \leq \overline{E}_{V}(f) + \overline{E}_{V}(g)$ for all $f, g \in \mathbb{G}(\mathscr{Y})$;
E3. $\overline{E}_{V}(\lambda f) = \lambda \overline{E}_{V}(f)$ for all $f \in \mathbb{G}(\mathscr{Y})$ and real $\lambda \geq 0$.

[Walley P.: Statistical Reasoning with Imprecise Probabilities.] $\Rightarrow \overline{E}_V \text{ is continuous with respect to uniform convergence}$

$$\lim_{n \to +\infty} \sup |f - f_n| = 0 \Rightarrow \lim_{n \to +\infty} |\overline{\mathbb{E}}_{\mathcal{V}}(f) - \overline{\mathbb{E}}_{\mathcal{V}}(f_n)| = 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Is \overline{E}_V continuous with respect to pointwise convergence?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Is E_V continuous with respect to pointwise convergence? No.

Counterexample

 $\overline{\mathrm{Q}}(h|x_{1:n}) = \max h$ for all $h \in \mathbb{G}(\mathscr{X})$ and $x_{1:n} \in \mathscr{X}^*$ (Vacuous models)

$$\Rightarrow \overline{\mathrm{E}}_{\mathrm{V}}(f) = \sup f ext{ for all } f \in \overline{\mathbb{V}}$$

Consider the events

$$\begin{array}{l} \mathcal{A}_{n} \coloneqq \{\omega \in \Omega \colon \omega_{i} = H \text{ for all } 1 \leq i \leq n\} \setminus \{(\mathcal{H}, \mathcal{H}, \mathcal{H}, ...)\}.\\ \Rightarrow \lim_{n \to +\infty} \mathbb{I}_{\mathcal{A}_{n}} = 0 \Rightarrow \overline{\mathbb{E}}_{\mathrm{V}}(\lim_{n \to +\infty} \mathbb{I}_{\mathcal{A}_{n}}) = 0\\ \\ \text{However,} \qquad \overline{\mathbb{E}}_{\mathrm{V}}(\mathbb{I}_{\mathcal{A}_{n}}) = 1 \text{ for all } n \in \mathbb{N}_{0}\end{array}$$

 $\Rightarrow \lim_{n \to +\infty} \overline{\mathrm{E}}_{\mathrm{V}}(\mathbb{I}_{\mathcal{A}_n}) = 1$

Theorem (Continuity with respect to upward convergence)

Consider any non-decreasing sequence of extended real variables $\{f_n\}_{n\in\mathbb{N}_0}$ that is uniformly bounded below—i.e. there is an $M\in\mathbb{R}$ such that $f_n \geq M$ for all $n\in\mathbb{N}_0$ —and any extended real variable $f\in\overline{\mathbb{V}}$ such that $\lim_{n\to+\infty} f_n = f$ pointwise. If moreover $\overline{\mathrm{E}}_{\mathrm{V}}(f) < +\infty$, then

$$\overline{\mathrm{E}}_{\mathrm{V}}(f) = \lim_{n \to +\infty} \overline{\mathrm{E}}_{\mathrm{V}}(f_n).$$

Theorem (Continuity with respect to cuts)

Consider any extended real variable $f \in \overline{\mathbb{V}}$ and, for any $A, B \in \mathbb{R}$ such that $B \ge A$, the gamble $f_{(A,B)}$, defined by

$$f_{(A,B)}(\omega) \coloneqq \begin{cases} B \text{ if } f(\omega) > B; \\ f(\omega) \text{ if } B \ge f(\omega) \ge A; & \text{ for all } \omega \in \Omega \\ A \text{ if } f(\omega) < A, \end{cases}$$

If $\overline{\mathrm{E}}_{\mathrm{V}}(f) < +\infty$, then

$$\lim_{A\to-\infty}\lim_{B\to+\infty}\overline{\mathrm{E}}_{\mathrm{V}}(f_{(A,B)})=\overline{\mathrm{E}}_{\mathrm{V}}(f).$$

Theorem (Continuity with respect to cuts)

Consider any extended real variable $f \in \overline{\mathbb{V}}$ and, for any $A, B \in \mathbb{R}$ such that $B \ge A$, the gamble $f_{(A,B)}$, defined by

$$f_{(A,B)}(\omega) \coloneqq \begin{cases} B \text{ if } f(\omega) > B; \\ f(\omega) \text{ if } B \ge f(\omega) \ge A; \quad \text{ for all } \omega \in \Omega \\ A \text{ if } f(\omega) < A, \end{cases}$$

If $\overline{\mathrm{E}}_{\mathrm{V}}(f) < +\infty$, then

$$\lim_{A\to-\infty}\lim_{B\to+\infty}\overline{\mathrm{E}}_{\mathrm{V}}(f_{(A,B)})=\overline{\mathrm{E}}_{\mathrm{V}}(f).$$

- + allows us to limit ourselves, for the larger part, to the study of \overline{E}_V on bounded real-valued variables
- + allows for a constructive method to compute $\overline{\mathrm{E}}_{\mathrm{V}}$ for extended-real valued variables.

Issue

Condition of $\overline{\mathrm{E}}_{\mathrm{V}}(f) < +\infty \rightarrow \mathsf{Annoying!}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Issue

Condition of $\overline{\mathrm{E}}_{\mathrm{V}}(f) < +\infty \rightarrow \mathsf{Annoying!}$

Example

Suppose $\overline{\mathbb{Q}}(h|\Box) = h(H)$ and $\overline{\mathbb{Q}}(h|s) = \max h$ for all $h \in \mathbb{G}(\mathscr{X})$ and all $s \supseteq (T)$, and consider the sequence of variables

$$f_n(\omega) = egin{cases} n ext{ if } \omega \in \Gamma(T); \ 0 ext{ otherwise}. \end{cases}$$

$$\overline{\mathrm{E}}_{\mathrm{V}}(f_n) = 0 \text{ for all } n \in \mathbb{N}_0 \quad \leftrightarrow \quad \overline{\mathrm{E}}_{\mathrm{V}}(\lim_{n \to +\infty} f_n) = +\infty$$

Issue

Condition of $\overline{\mathrm{E}}_{\mathrm{V}}(f) < +\infty \rightarrow \mathsf{Annoying!}$

Example

Suppose $\overline{\mathbb{Q}}(h|\Box) = h(H)$ and $\overline{\mathbb{Q}}(h|s) = \max h$ for all $h \in \mathbb{G}(\mathscr{X})$ and all $s \supseteq (T)$, and consider the sequence of variables

$$f_n(\omega) = egin{cases} n ext{ if } \omega \in \Gamma(\mathcal{T}); \ 0 ext{ otherwise}. \end{cases}$$

$$\overline{\mathrm{E}}_{\mathrm{V}}(f_n) = 0 \text{ for all } n \in \mathbb{N}_0 \quad \leftrightarrow \quad \overline{\mathrm{E}}_{\mathrm{V}}(\lim_{n \to +\infty} f_n) = +\infty$$

Alternative: Use extended real-valued (super)martingales. → Interpretation???

Generality of $\overline{\mathrm{E}}_{\mathrm{V}}$

We know that $\overline{\mathrm{E}}_{\mathrm{V}}$ satisfies

- Local models (*n*-measurable gambles)
- Coherence on $\mathbb{G}(\Omega)$
- Continuity w.r.t. increasing sequences of variables that are uniformly bounded below and $\overline{E}_V(f) < +\infty$.

Claim: $\overline{\mathrm{E}}_{\mathrm{V}}$ on $\overline{\mathbb{V}}$ is the natural extension under these conditions!

What properties does $\overline{\mathrm{E}}_{\mathrm{V}}$ have if you use extended real-valued supermartingales?

Further questions

- 'How does \overline{E}_V relate to the measure-theoretic Lebesgue integral?' \Rightarrow Strong analogy in precise case.
- 'Is E
 _V an upper envelope of precise E
 _V 's?'
 ⇒ We suspect so for limits of n-measurable gambles.
- 'What are the continuity properties of $\overline{\mathrm{E}}_{\mathrm{V}}$ when we have convergence in probability?'

• ...

Questions?