
Imprecise copulas constructed from shock models

Damjan Škulj

University of Ljubljana

11th Workshop on Principles and Methods of Statistical Inference with
Interval Probability (WPMSIIP)

31 July 2018



Introduction

Contents

1 Introduction
Shock models
Copulas and Sklar’s theorem

2 Imprecise copulas
p-boxes
Imprecise copulas and a generalization of Sklar’s theorem

3 Shock models
Marshall copulas
Maxmin copulas

4 Imprecise Marshall and maxmin copulas
Shock models in the imprecise settings
Monotonicity of Marshall and maxmin copulas

Škulj Imprecise shock models
11th Workshop on Principles and Methods of Statistical Inference with Interval Probability (WPMSIIP) 31 July 2018 2

/ 44



Introduction

Outline

1 Copulas allow modelling dependence without the reference to marginal
distributions.

2 We study two classes of copulas arising from specific real world
models: Marshall and maxmin copulas.

3 We generalize the models to allow imprecision in the probability
distributions.

4 The resulting models lead to imprecise copulas.

Škulj Imprecise shock models
11th Workshop on Principles and Methods of Statistical Inference with Interval Probability (WPMSIIP) 31 July 2018 3

/ 44



Introduction Shock models

Contents

1 Introduction
Shock models
Copulas and Sklar’s theorem

2 Imprecise copulas
p-boxes
Imprecise copulas and a generalization of Sklar’s theorem

3 Shock models
Marshall copulas
Maxmin copulas

4 Imprecise Marshall and maxmin copulas
Shock models in the imprecise settings
Monotonicity of Marshall and maxmin copulas

Škulj Imprecise shock models
11th Workshop on Principles and Methods of Statistical Inference with Interval Probability (WPMSIIP) 31 July 2018 4

/ 44



Introduction Shock models

Example of shock model

Consider two components, say Component 1 and Component 2.
They may be affected by one of the three fatal shocks.

The first and the second shock affect one or another component only.
The third shock affects both components.

Two types of components:
Without recovery option: fails when affected by any shock.
With recovery option: fails when affected by both shocks.

Let X ,Y and Z be the times of the occurrences of the respective
shocks.
The time of failure of a component without recovery option is
U = min{X ,Z}, and the one with recovery option is V = max{Y ,Z}.
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Introduction Shock models

Dependence of lifetimes of components

Our aim is to model the dependence of the lifetimes U and V of the
components.

The times of occurrences of the shocks X ,Y ,Z are assumed to be
independent.
When both components are of the same type, the dependence can be
modelled by the use of Marshall copulas.
If the components are of different types, a new class of copulas are
used, called maxmin copulas.
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Introduction Copulas and Sklar’s theorem

Copulas

A function C : [0, 1]× [0, 1]→ [0, 1] is called a copula if it satisfies the
following conditions:
(C1) C (u, 0) = C (0, v) = 0 for every u, v ∈ [0, 1];
(C2) C (u, 1) = u and C (1, v) = v for every u, v ∈ [0, 1];
(C3) C (u2, v2)− C (u1, v2)− C (u2, v1) + C (u1, v1) > 0 for every

0 6 u1 6 u2 6 1 and 0 6 v1 6 v2 6 1.
Using copulas it is possible to model dependence between random variables
without reference to their marginal distributions.
This is possible thanks to Sklar’s theorem.
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Introduction Copulas and Sklar’s theorem

Sklar’s theorem

Let F : R× R→ [0, 1] be a bivariate distribution function with marginals
FX and FY respectively, where R = [−∞,∞].
Then there exists a copula C such that

F (x , y) = C (FX (x),FY (y)), (1)

Conversely, given any copula and a pair of distribution functions FX and
FY , (1) is a bivariate distribution function.
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Imprecise copulas p-boxes

p-boxes

In the cases where the distribution function of a random variable X is
uncertain, it is possible to represent the uncertainty via p-boxes:

A p-box is a pair of distribution functions (F ,F ), where F (x) 6 F (x)
for every x ∈ R.
To every p-box, the closed and convex set of distribution functions
M = {F : F 6 F 6 F} is assigned.
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Imprecise copulas p-boxes

Bivariate p-boxes

Given a pair of random variables (X ,Y ), their joint distribution is
described using a bivariate distribution function F : R× R→ [0, 1].
A bivariate function F : R× R→ [0, 1] is standardized if it is
componentwise increasing and satisfies

F (−∞, y) = F (x ,−∞) = 0 ∀x , y ∈ R,F (∞,∞) = 1.

A pair (F ,F ) of standardized functions such that F (x , y) 6 F (x , y) is
a bivariate p-box (Pelessoni et al. [2016], Montes et al. [2015]).
Note that F and F are not required to be bivariate distribution
functions themselves.
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Imprecise copulas p-boxes

To each bivariate p-box, the set of distribution functions
M = {F bivariate distribution function : F 6 F 6 F} is assigned.
If F (x , y) = minF∈M F (x , y) and F (x , y) = maxF∈M F (x , y) holds,
then the bivariate p-box (F ,F ) is called coherent.
Note that in the case where F and F are themselves distribution
functions, the corresponding bivariate p-box is coherent.
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Imprecise copulas Imprecise copulas and a generalization of Sklar’s theorem

Imprecise copula

A pair of functions (C ,C ), both mapping [0, 1]2 → [0, 1] is called an
imprecise copula (Montes et al. [2015]) if
(IC1) C (0, u) = C (u, 0) = 0,C (1, u) = C (u, 1) = u ∀u ∈ [0, 1];
(IC2) C (0, u) = C (u, 0) = 0,C (1, u) = C (u, 1) = u ∀u ∈ [0, 1];
(IC3) For every u1 6 u2, v1 6 v2:

C (u2, v2) + C (u1, v1)− C (u2, v1)− C (u1, v2) > 0;
C (u2, v2) + C (u1, v1)− C (u2, v1)− C (u1, v2) > 0;
C (u2, v2) + C (u1, v1)− C (u2, v1)− C (u1, v2) > 0;
C (u2, v2) + C (u1, v1)− C (u2, v1)− C (u1, v2) > 0;

Note that C and C are not necessarily copulas themselves.
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Imprecise copulas Imprecise copulas and a generalization of Sklar’s theorem

Properties of imprecise copulas

The following properties hold:
If (C ,C ) is an imprecise copula, then C 6 C .
Given a set of (precise) copulas C, the bounds:

C (u, v) = inf
C∈C

C (u, v)

C (u, v) = sup
C∈C

C (u, v)

form an imprecise copula (C ,C ).
If C 6 C and both are copulas, then (C ,C ) is an imprecise copula.
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Imprecise copulas Imprecise copulas and a generalization of Sklar’s theorem

Sklar’s theorem in the imprecise settings (Montes et al.
[2015])

Let X and Y be random variables.
Their distribution functions are only known up to p-boxes (FX ,FX )
and (FY ,FY ) respectively.
Let (C ,C ) be an imprecise copula.
Define:

F (x , y) = C (FX ,FY )

F (x , y) = C (FX ,FY )

Then (F ,F ) is a coherent p-box.

Unlike the precise case, not every coherent p-box can be represented in this
way by the means of its marginals.
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Shock models

Shock model

Let X ,Y and Z be independent random variables.
FX ,FY ,FZ are their distribution functions.
We consider the interdependence of the following pairs of random
variables:

U = max{X ,Z} and V = max{Y ,Z} (Marshall [1996])
U = min{X ,Z} and V = min{Y ,Z} (Marshall [1996])
U = max{X ,Z} and W = min{Y ,Z} (Omladič and Ružić [2016])

The first two models behave similarly, while the third one is substantially
different.

All of them can be related to modelling lifetimes of certain components
that may be affected by fatal shocks.
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Shock models Marshall copulas

Marshall copulas

A Marshall copula is a function [0, 1]2 → [0, 1] defined with

C (u, v) = Cφ,ψ(u, v) = uv min

{
φ(u)

u
,
ψ(v)

v

}
,

where
(P1) φ(0) = φ(0) = 0, ψ(1) = ψ(1) = 1;
(P2) φ and ψ are two increasing functions [0, 1]→ [0, 1];

(P3) φ∗(u) = φ(u)
u and ψ∗(v) = ψ(v)

v are decreasing functions.
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Shock models Marshall copulas

Modelling shocks with Marshall copulas

Given independent X ,Y ,Z and U = max{X ,Z},V = max{Y ,Z},
the distribution functions for U and V are respectively

F = FXFZ and G = FY FZ .

Their joint distribution is then

HU,V (x , y) = Cφ,ψ(F (x),G (y)),

where φ and ψ are such that they satisfy φ(F ) = FX and ψ(G ) = FY .
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Shock models Maxmin copulas

Maxmin copulas

A maximin copula is a map C ∗ : [0, 1]2 → [0, 1] defined with

C ∗(u, v) = C ∗φ,χ(u, v) = uv +min{u(1− v), (φ(u)− u)(v − χ(v))}.

where φ and χ satisfy
(F1) φ(0) = χ(0) = 0, χ(1) = χ(1) = 1;
(F2) φ and χ are non-decreasing;

(F3) φ∗(u) = φ(u)
u and χ∗(v) =

1−χ(v)
v−χ(v) are non-increasing.
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Shock models Maxmin copulas

Modelling shocks with maxmin copulas

Let X ,Y and Z be independent
with respective distribution functions FX ,FY and FZ .
Take U = max{X ,Z} and W = min{Y ,Z}.
Let F ,K and H respectively be the distribution functions of U,W and
the joint distribution of (U,W ).
Then:

F (x) = FX (x)FZ (x)

K (y) = FY (y) + FZ (y)− FY (y)FZ (y)

H(x , y) = C ∗φ,χ(F (x),G (y)),

where FX = φ(F ) and FY = χ(G ).
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Imprecise Marshall and maxmin copulas Shock models in the imprecise settings

Shock models in the imprecise settings

Consider random variables X ,Y and Z .
Distribution functions of X and Y are only known up to p-boxes
(FX ,FX ) and (FY ,FY ).
The distribution function FZ of Z is given precisely.
Let U = max{X ,Z},V = max{Y ,Z},W = min{Y ,Z}.
Copulas modelling joint distributions of (U,V ) and (U,W ) are of
interest.
It is natural to consider imprecise copulas for the imprecise case.
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Imprecise Marshall and maxmin copulas Shock models in the imprecise settings

Marginal p-boxes

Let (F ,F ), (G ,G ), (K ,K ) denote the marginal p-boxes for U,V and W
respectively. Then:

F (x) = FXFZ F (x) = FXFZ

G (x) = FY FZ G (x) = FY FZ

K (x) = FY + FZ − FY FZ K (x) = FY + FZ − FY FZ
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Imprecise Marshall and maxmin copulas Monotonicity of Marshall and maxmin copulas

Monotonicity of Marshall and maxmin copulas

Let (FX ,FY ,FZ ) and (F ′X ,F
′
Y ,FZ ) be two triples of distribution functions.

They give rise to a pair of Marshall and maxmin copulas respectively

Cφ,ψ, C ∗φ,χ

Cφ′,ψ′ , C ∗φ′,χ′ ,

We now analyse how the order: FX 6 F ′X and FY 6 F ′Y translates to the
order on the corresponding φ, ψ and χ.
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Imprecise Marshall and maxmin copulas Monotonicity of Marshall and maxmin copulas

Explicit derivation

The functions φ and ψ have identical properties, where

φ(F ) = FX

is the required relation.
The above requirement only defines φ on imF :

φ(u) = FX (F
−1(u)) =

u

FZ (F−1(u))
,

where F−1 denotes the quasi inverse of F :

F−1(u) = inf{x ∈ R : F (x) > u}.

The explicit derivation for the second parameter function ψ in a Marshall
copula is the same.
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Imprecise Marshall and maxmin copulas Monotonicity of Marshall and maxmin copulas

Explicit expression for χ

The second parameter function χ in a maxmin copula is defined by
requiring

χ(K ) = FY ,

which is a unique requirement on imK , where it translates to

χ(v) = FY (K
−1(v)) =

v − FZ (K
−1(v))

1− FZ (K−1(v))

Škulj Imprecise shock models
11th Workshop on Principles and Methods of Statistical Inference with Interval Probability (WPMSIIP) 31 July 2018 34

/ 44



Imprecise Marshall and maxmin copulas Monotonicity of Marshall and maxmin copulas

Extension to [0, 1]

There are several possible extensions to [0, 1].
One of them uses linear interpolation:

φ(u) =


0, if u = 0,
FX (F

−1(u)), if u ∈ imF\{0, 1},
1, if u = 1,
φ(u)−φ(u−)

u−u (u − u) + φ(u−), if u 6∈ imF ∪ {0, 1},

where f (x−) denotes the left limit and u = F (F−1(u)), u = F (F−1(u−).

Similarly we can extend χ.
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Imprecise Marshall and maxmin copulas Monotonicity of Marshall and maxmin copulas

The fact that F 6 F ′ implies F−1 > F ′−1 implies that

φ(u) =
u

FZ (F−1(u))
6

u

FZ (F ′−1(u))
= φ′(u)

for every u ∈ imF ∩ imF ′; and similarly

χ(v) =
1− v FZ (K

−1(v))

1− FZ (K−1(v))
6

1− v FZ (K
′−1(v))

1− FZ (K ′−1(v))
= χ′(v)

Unfortunately, these relations are not transferred to every extension to
[0, 1].

In particular, they do not hold for the extensions with the linear
interpolation.
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Imprecise Marshall and maxmin copulas Monotonicity of Marshall and maxmin copulas

Constructing extensions satisfying the required order

The following proposition holds:

Proposition

Let FX 6 F ′X and FZ be given distribution functions, and

φ(u) =
u

FZ (F−1(u))
, φ′(u) =

u

FZ (F ′−1(u))

on the corresponding images of F = FXFZ and F ′ = F ′XFZ .
Then if imF ⊆ imF ′ or imF ⊇ imF ′, extensions φ̂ 6 φ̂′ of φ and φ′ to the
whole interval [0, 1] exist.
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Imprecise Marshall and maxmin copulas Monotonicity of Marshall and maxmin copulas

Moreover, we prove that for every pair F 6 F ′ of distribution functions, a
function F̃ exists, so that F 6 F̃ 6 F ′ and imF ∪ imF ′ ⊆ imF̃ .
The desired theorem now easily follows:

Theorem
Let FX 6 F ′Y and FZ be given distribution functions, and the corresponding

φ(u) =
u

FZ (F−1(u))
, φ′(u) =

u

FZ (F ′−1(u))

on the corresponding images of F and F ′. Then there exist extensions φ̂
and φ̂′ of φ and φ′ respectively to the whole interval [0, 1] such that φ̂ 6 φ̂′.

Something similar can be said for the functions φ and χ.
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Imprecise Marshall and maxmin copulas Monotonicity of Marshall and maxmin copulas

Monotonicity of Marshall and maxmin copulas

Theorem
Let

(FX ,FY ,FZ ), (F ′X ,F
′
Y ,FZ )

be two triples of distribution functions, such that

FX 6 F ′X FY 6 F ′Y .

Then there exist pairs of functions

φ 6 φ′ ψ 6 ψ′ χ 6 χ′

so that
Cφ,ψ and Cφ′,ψ′ model the dependence between U and V

and
C∗φ,χ and C∗φ′,χ′ models the dependence between U and W .

assuming the distribution functions FX ,FY and F ′X ,F
′
Y respectively.
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Imprecise Marshall and maxmin copulas Monotonicity of Marshall and maxmin copulas

Imprecise Marshall and maxmin copulas

The above proposition justifies consideration of the following sets of
copulas:

C = {Cφ,ψ : φ 6 φ 6 φ, ψ 6 ψ 6 ψ}
C∗ = {C ∗φ,χ : φ 6 φ 6 φ, χ 6 χ 6 χ}

We will call the above sets of copulas imprecise Marshall copula and
imprecise maxmin copula respectively.
The following inequalities hold:

Cφ,ψ 6 Cφ,ψ 6 Cφ,ψ ∀Cφ,ψ ∈ C
C ∗φ,χ 6 C ∗φ,χ 6 C ∗

φ,χ
∀C ∗φ,χ ∈ C∗
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Imprecise Marshall and maxmin copulas Monotonicity of Marshall and maxmin copulas

Joint distributions

Joint distributions between U,V and between U,W are given via the
bivariate p-boxes with the following bounds:

H(x , y) = Cφ,ψ(F ,G )

H(x , y) = Cφ,ψ(F ,G )

for the pair (U,V ), and

H∗(x , y) = C ∗φ,χ(F ,K )

H
∗
(x , y) = C ∗

φ,ψ
(F ,K )

for the pair (U,W ).
Notice that the imprecise copula (C ∗,C

∗
) = (C ∗φ,χ,C

∗
φ,χ

) would result in

too conservative bounds.
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Imprecise Marshall and maxmin copulas Monotonicity of Marshall and maxmin copulas

Further work

Allow the common shocks to have imprecise distributions.
Analyse and interpret the difference between bounds generated by the
imprecise copulas and the ’true’ bounds for the bivariate distributions.
Analyse the effects of different independence assumptions.
Analyse the dependence properties if the times of shock occurrences
are dependent.

Škulj Imprecise shock models
11th Workshop on Principles and Methods of Statistical Inference with Interval Probability (WPMSIIP) 31 July 2018 42

/ 44



Imprecise Marshall and maxmin copulas Monotonicity of Marshall and maxmin copulas

References I

Thomas Augustin, Frank PA Coolen, Gert de Cooman, and Matthias CM
Troffaes. Introduction to imprecise probabilities. John Wiley & Sons,
2014.

Albert W. Marshall. Copulas, marginals, and joint distributions. Lecture
Notes-Monograph Series, 28:213–222, 1996. ISSN 07492170. URL
http://www.jstor.org/stable/4355894.

Ignacio Montes, Enrique Miranda, Renato Pelessoni, and Paolo Vicig.
Sklar’s theorem in an imprecise setting. Fuzzy Sets and Systems, 278:48
– 66, 2015. ISSN 0165-0114. doi:
https://doi.org/10.1016/j.fss.2014.10.007. URL http://www.
sciencedirect.com/science/article/pii/S0165011414004539.
Special Issue on uncertainty and imprecision modelling in decision
making (EUROFUSE 2013).

Škulj Imprecise shock models
11th Workshop on Principles and Methods of Statistical Inference with Interval Probability (WPMSIIP) 31 July 2018 43

/ 44

http://www.jstor.org/stable/4355894
http://www.sciencedirect.com/science/article/pii/S0165011414004539
http://www.sciencedirect.com/science/article/pii/S0165011414004539


Imprecise Marshall and maxmin copulas Monotonicity of Marshall and maxmin copulas

References II

Matjaž Omladič and Nina Ružić. Shock models with recovery option via
the maxmin copulas. Fuzzy Sets and Systems, 284:113 – 128, 2016.
ISSN 0165-0114. doi: https://doi.org/10.1016/j.fss.2014.11.006. URL
http://www.sciencedirect.com/science/article/pii/
S0165011414004965. Theme: Uncertainty and Copulas.

Renato Pelessoni, Paolo Vicig, Ignacio Montes, and Enrique Miranda.
Bivariate p-boxes. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 24(02):229–263, 2016. doi:
10.1142/S0218488516500124. URL http://www.worldscientific.
com/doi/abs/10.1142/S0218488516500124.

Škulj Imprecise shock models
11th Workshop on Principles and Methods of Statistical Inference with Interval Probability (WPMSIIP) 31 July 2018 44

/ 44

http://www.sciencedirect.com/science/article/pii/S0165011414004965
http://www.sciencedirect.com/science/article/pii/S0165011414004965
http://www.worldscientific.com/doi/abs/10.1142/S0218488516500124
http://www.worldscientific.com/doi/abs/10.1142/S0218488516500124

	Introduction
	Shock models
	Copulas and Sklar's theorem

	Imprecise copulas
	p-boxes
	Imprecise copulas and a generalization of Sklar's theorem

	Shock models
	Marshall copulas
	Maxmin copulas

	Imprecise Marshall and maxmin copulas
	Shock models in the imprecise settings
	Monotonicity of Marshall and maxmin copulas


