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Can we determine E∞( f )
without explicitly evaluating
lim

t→+∞
EM0

(
lim

n→+∞

(
I + t

n Q
)n f

)
?
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Continuous-time Markov chains



Basic set-up

Objective
making inferences about the state Xt of some system

Assumptions
1. state space is finite
2. time parameter is continuous
3. dynamics are non-deterministic, Markovian & homogeneous

t1

Xt1

tn

Xtn

t

Xt

t + ∆

Xt+∆

P(Xt+∆ = y | Xt1 = x1, . . . , Xtn = xn, Xt = x)

= P(Xt+∆ = y | Xt = x) [Markov property]

= P(X∆ = y | X0 = x) [homogeneity]
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Characterisation

A homogeneous CTMC is fully characterised by

1. a (finite) state space X ;
2. an initial distribution π0; [P(X0 = x) = π0(x)]

3. a transition rate matrix Q.
[nonnegative off-diagonal elements and zero row sums]
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Marginal expectations

How do we compute E( f (Xt))?

1. solve the differential equation

d
dτ

Tτ f = QTτ f with initial condition T0 f = f

[Note: Tτ f : X → R]

i.e., evaluate

Tt f = etQ f := lim
n→+∞

(
I +

t
n

Q
)n

f

2. compute
E( f (Xt)) = Eπ0(Tt f )
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Typical temporal behaviour of Tt f

t

T t
f
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Limit expectations

In many applications, one is interested in the limit expectation

E∞( f ) := lim
t→+∞

E( f (Xt)) = lim
t→+∞

Eπ0(Tt f ).

Definition (Ergodicity)
The transition rate matrix Q is ergodic if, for all f : X → R,

E∞( f ) does not depend on π0

or equivalently,

lim
t→+∞

Tt f is a constant function.
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Imprecise continuous-time Markov chains



Thomas Krak, Jasper De Bock, and Arno Siebes. “Imprecise
continuous-time Markov chains”. In: International Journal of
Approximate Reasoning 88 (2017), pp. 452–528

Jasper De Bock. “The Limit Behaviour of Imprecise
Continuous-Time Markov Chains”. In: Journal of Nonlinear
Science 27.1 (2017), pp. 159–196
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Characterisation

An imprecise CTMC is characterised by

1. a (finite) state space X ;
2. an initial distribution π0;
3. a transition rate matrix Q.

Problem
These sets do not characterise a single CTMC!

Solution
Consider the set of stochastic processes that is consistent with M0

and Q:

PHM
M0,Q the set of consistent homogeneous CTMCs,

PM
M0,Q the set of consistent CTMCs,

PM0,Q the set of consistent stochastic processes.
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Lower envelopes

Krak et al. (2017) define the coherent lower expectations

PHM
M0,Q

lower envelope−−−−−−−−→ EHM
M0,Q

PM
M0,Q

lower envelope−−−−−−−−→ EM
M0,Q

PM0,Q
lower envelope−−−−−−−−→ EM0,Q

They also define a lower envelope of Q. The lower transition rate
operator Q : L (X ) → L (X ) is defined by

[Q f ](x) := inf{[Q f ](x) : Q ∈ Q}.

[superadditive, nonneg. hom., ~ zero row sums, ~ nonneg. off-diagonal elements]
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Marginal lower expectations

Observe that
PM0,Q ⊇ PM

M0,Q ⊇ PHM
M0,Q.

This implies that

EM0,Q( f (Xt)) ≤ EM
M0,Q( f (Xt)) ≤ EHM

M0,Q( f (Xt)).

Furthermore, Krak et al. (2017) show that [under some conditions on Q]

EM0,Q( f (Xt)) = EM
M0,Q( f (Xt)) ≤ EHM

M0,Q( f (Xt)).
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Determining EM0,Q( f (Xt))

How do we compute EM0,Q( f (Xt))?

1. solve the differential equation

d
dτ

Tτ f = QTτ f with initial condition T0 f = f

[Note: Tτ f : X → R]

i.e., evaluate
Tt f = lim

n→+∞

(
I +

t
n

Q
)n

f

2. compute
E( f (Xt)) = Eπ0(Tt f )
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Typical temporal behaviour of Tt f

t

T
tf
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Limit expectations

We now turn to the limit lower expectations

E∞( f ) := lim
t→+∞

EM0
(Tt f )

= lim
t→+∞

EM0,Q( f (Xt)) = lim
t→+∞

EM
M0,Q( f (Xt))

and

EHM
∞ ( f ) := lim

t→+∞
EHM

M0,Q( f (Xt)).

Definition (De Bock, 2017)
The lower transition rate operator Q is ergodic if, for all
f : X → R,

E∞( f ) does not depend on M0

or equivalently,

lim
t→+∞

Tt f is a constant function.
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A well-known result

Theorem
If Q is an ergodic transition rate matrix, then for all δ > 0 with
δ∥Q∥ < 2, E∞ is the unique (I + δQ)-invariant expectation
operator:

E∞((I + δQ) f ) = E∞( f ) for all f ∈ L (X )

⇔ E∞(Q f ) = 0 for all f ∈ L (X ).

+ simply solve the linear system of equations π∞Q = 0
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Explicitly determining E∞

Conjecture
If Q is an ergodic lower transition rate operator, then

1. for all δ > 0 with δ∥Q∥ < 2, E∞ is the unique
(I + δQ)-invariant lower expectation operator:

E∞((I + δQ) f ) = E∞( f ) for all f ∈ L (X );

2. E∞(Q f ) = 0 for all f ∈ L (X ).

¿ some alternative general upper bound ?
¿ efficient way to solve this “set of equations” ?
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Another well-known result

Theorem
If Q is an ergodic transition rate matrix, then for all δ > 0 with
δ∥Q∥ < 2,

E∞( f ) = lim
m→+∞

min(I + δQ)m f .

+ works for any (sufficiently small) δ

+ non-decreasing in m [Emp.: convergence is faster for larger δ]

+ easy to implement
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Iteratively determining E∞( f )

Conjecture
If Q is an ergodic lower transition rate operator, then for all δ > 0
with δ∥Q∥ < 2,

E∞( f ) = lim
m→+∞

min(I + δQ)m f .

- extra limit for δ

+ min(I + δQ)m f non-decreasing in m

+ relatively easy to implement
¿ does the value of δ matter ?
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Can we determine EHM
∞ ( f )

without explicitly evaluating
lim

t→+∞
inf{EP( f (Xt)) : P ∈ PHM

M0,Q}?
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Iteratively computing a lower bound on EHM
∞ ( f )

Theorem
If Q consists of only ergodic transition rate matrices, then for all n
and δ > 0 with δ∥Q∥ < 2,

min(I + δQ)n f ≤ EHM
∞ ( f ).

+ min(I + δQ)n f converges monotonously for n → +∞

¿ behaviour in function of δ ?
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