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Problem Description

Remember the natural extension of a gamble g:

E(g) B min
p∈M

Ep(g) (1)

I It represents the supremum buying price α you should be willing to pay for g
I We can use this natural extension for all statistical inference and decision making.
I how to evaluate the minimum in eq. (1) provided we have an estimator for Ep(g)?
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Problem Description

statistical inference
under severe
uncertainty

lower
previsions

credal set
imprecise
estimators

simulation

importance
sampling

optimization
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Lower and Upper Estimators for the Minimum of a Function
(see [12])
I Ω = random variable, taking values in some subset of Rk

I t = parameter taking values in some set T (assume T countable)
I θ(t) = arbitrary function of t
I θ̂Ω(t) = arbitrary estimator for θ:

E(θ̂Ω(t)) = θ(t), (2)

Aim
Construct an estimator for the minimum of the function θ:

θ∗ B inf
t∈T

θ(t). (3)

Example
Say for instanceM = {pt : t ∈ T }, and let θ(t) B Ept (f).
Then θ∗ = E(f). So estimation of θ∗ = estimation of natural extension.
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Lower and Upper Estimators for the Minimum of a Function
Define the function

τΩ ∈ arg inf
t∈T

θ̂Ω(t) (4)

Theorem (Lower and Upper Estimator Theorem [12])
Assume Ω and Ω′ are i.i.d. and let

θ̂∗(Ω) B θ̂Ω(τΩ) = inf
t∈T

θ̂Ω(t) (5)

θ̂∗(Ω,Ω′) B θ̂Ω(τΩ′) (6)

Then

θ̂∗(Ω) ≤ θ̂∗(Ω,Ω′) (7)

and

E(θ̂∗(Ω)) ≤ θ∗ ≤ E(θ̂∗(Ω,Ω′)). (8)
8



Lower and Upper Estimators for the Minimum of a Function
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Lower and Upper Estimators for the Minimum of a Function
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Lower and Upper Estimators for the Minimum of a Function

t

θ

0.30

0.35

0.40

0.45

0.50

0.55

−0.5 0.0 0.5

θ*

τΩ
θ*(Ω)

τΩ'

θ*(Ω,Ω')

θ(t)
θ̂Ω(t)
θ̂Ω'(t)

13



Bias of Lower and Upper Estimators
I θ̂∗(Ω): used throughout the literature as an estimator for lower previsions

not normally noted in the literature that it is negatively biased
bias can be very large in general (even infinity)!

I θ̂∗(Ω,Ω′): introduced at last year’s WPMSIIP
still cannot yet prove much about it
it allows us to bound the bias without having to do hardcore stochastic process theory

Theorem (Unbiased Case [12])
If there is a t∗ ∈ T such that θ̂Ω(t∗) ≤ θ̂Ω(t) for all t ∈ T , then

θ̂∗(Ω) = θ̂∗(Ω,Ω′) = θ̂Ω(t∗) (9)

and consequently,

E(θ̂∗(Ω)) = θ∗ = E(θ̂∗(Ω,Ω′)). (10)

(Condition not normally satisfied, but explains why it is a sensible choice.) 14



Consistency of the Lower Estimator

Very often, an estimator may take the form of an empirical mean:

θ̂Ω,n(t) =
1
n

n∑
i=1

θ̂Vi (t) (11)

where Ω B (Vi)i∈N and Vi are i.i.d. Under mild conditions, this estimator is consistent:

lim
n→∞

P(|θ̂Ω,n(t) − θ(t)| > ε) = 0 (12)

I Under what conditions is θ̂∗n(Ω) a consistent estimator for θ∗, i.e. when do we have that

lim
n→∞

P(|θ̂∗n(Ω) − θ∗| > ε) = 0 (13)

I How large should n be?
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Consistency of the Lower Estimator

Simple case first:

Theorem (Consistency: Finite Case [12])
If T is finite, then θ̂∗n(Ω) is a consistent estimator for θ∗.

(Even though consistent, may require excessively large n to control bias!)

General case, no positive answer in general, but consistency can be linked to a well-known
condition in stochastic process theory:

Theorem (Consistency: Sufficient Condition for General Case [12])
If the set of functions {θ̂(·, t) : t ∈ T } is a Glivenko-Cantelli class, then θ̂∗n(Ω) is a consistent
estimator for θ∗.
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Discrepancy Bounds for the Lower Estimator
Notation:

Zn(t) B θ̂Ω,n(t) − θ(t) (14)

dn(s, t) B
√

E ((Zn(s) − Zn(t))2) (15)

∆n(A) B sup
s,t∈A

dn(s, t) (16)

σ2
n B inf

t∈T
Var(Zn(t)) = inf

t∈T
Var(θ̂Ω,n(t)) (17)

Definition (Talagrand Functional)
Define the Talagrand functional [10, p. 25] as:

γ2(T , dn) B inf
Ak

sup
t∈T

∞∑
k=0

2k/2∆n(Ak (t)) (18)

where the infimum is taken over all ‘admissible sequences of partitions of T ’.
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Discrepancy Bounds for Empirical Mean Lower Estimator

Theorem (Discrepancy Bounds for Empirical Mean Lower Estimator [12])
Assume θ̂∗n(Ω) B 1

n
∑n

i=1 θ̂Vi (t). There is a universal constant L > 0 such that, if θ̂Ω,n(t) is
sub-Gaussian, then

P
(
|θ̂∗n(Ω) − θ∗| > u(σ1 + γ2(T , d1))

)
≤ L exp(−nu2

2 ) (19)

and

E
(
|θ̂∗n(Ω) − θ∗|

)
≤ L

σ1 + γ2(T , d1)
√

n
. (20)

Corollary (Consistency of Empirical Mean Lower Estimator [12])
If θ̂Ω,n(t) is sub-Gaussian, then θ̂∗n(Ω) is a consistent estimator for θ∗ whenever the minimal
standard deviation σ1 and the Talagrand functional γ2(T ′, d1) are finite.

Issue: it is not easy to compute or to bound the Talagrand functional!
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Empirical Mean Lower Estimator: How To Achieve Low Bias

Inconsistency Example

I θ̂Ω,n(t) has non-zero variance across all t
I θ̂Ω,n(s) and θ̂Ω,n(t) are independent for all s , t
I T is infinite

Then the Talagrand functional γ2(T , d1) is +∞.

Important for 2-level Monte Carlo: don’t use i.i.d. samples in outer loop over t ∈ T !

Main Take-Home Message for Design of Estimators
To get a low Talagrand functional (and hence a low bias),
we want θ̂Ω,n(s) and θ̂Ω,n(t) to be as correlated as possible for all s , t .
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Confidence Interval
Theorem (Confidence Interval from Lower and Upper Estimators [12])
Let χ1, . . . , χN, χ′1, . . . , χ′N be a sequence of i.i.d. realisations of Ω. Define

Y∗ B (θ̂∗(χi))N
i=1 Y∗ B (θ̂∗(χi , χ

′
i ))N

i=1 (21)

Let Ȳ∗ and Ȳ∗ be the sample means of these sequences, and let S∗ and S∗ be their sample
standard deviations. Let tN−1 denote the usual two-sided critical value of the t-distribution with
N − 1 degrees of freedom at confidence level 1 − α. Then, provided that supx,t |θ̂(x, t)| < +∞,[

Ȳ∗ − tN−1
S∗
√

N
, Ȳ∗ + tN−1

S∗
√

N

]
(22)

is an approximate confidence interval for θ∗ with confidence level (at least) 1 − α.
Why is this rather slow?
Note: we can cheat and use θ̂∗(χ′i , χi) instead for Y∗.
This trick halves computational time (caveat: need Ȳ∗ ≤ Ȳ∗ with probability ' 1).

20



Outline
Problem Description
Imprecise Estimation

Lower and Upper Estimators for the Minimum of a Function
Bias of Lower and Upper Estimators
Consistency of the Lower Estimator
Discrepancy Bounds
Confidence Interval from Lower and Upper Estimators

Examples
Toy Problem
Two-Level Monte Carlo v1
Two-Level Monte Carlo v2
Importance Sampling

Stochastic Approximation
Kiefer-Wolfowitz
Example 1
Example 2

Open Questions 21



Example: Toy Problem

(based on [13])
I V B (U1,U2) ∼ unif([0, 1]2)

I t B (µ, σ) ∈ [−3, 3] × {1}
I xt (V) B µ + σ

√
−2 ln U1 cos(2πU2) ∼ norm(µ, σ2)

I ft (x) B 1√
2πσ2

e−
(x−µ)2

2σ

I h(x) B ID(x) where D = (−∞,−1] ∪ [1,∞)

I θ(t) B
∫

h(x)ft (x) dx

22



Example: Two-Level Monte Carlo v1

I different Vi(t) for each value t

θ̂Ω(t) B
1
n

n∑
i=1

h(xt (Vi(t)))

I simple
I inefficient
I hard to optimize
I horrible bias
I inconsistent

t=−2

u1

u2

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

x

ft(x)
xt(V)

t=0

u1

u2 ●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

● ●
●●

●

●

●

●

●● ●

●

●

●

● ● ●

●
●

●

●●

●

●

x

ft(x)
xt(V)

t=2

u1

u2

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

x

ft(x)
xt(V)

t

θ

0.2

0.4

0.6

0.8

−3 −2 −1 0 1 2 3

θ(t)
θ̂Ω(t)
θ̂Ω'(t)
θ̂Ω*

θ̂Ω*

23



Example: Two-Level Monte Carlo v2

I same Vi for each value t

θ̂Ω(t) B
1
n

n∑
i=1

h(xt (Vi))

I most efficient
I can be fairly hard optimize

might have many local minima
I minimal bias
I consistent
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Example: Importance Sampling

(see [8, 4, 14, 11, 3, 12, 13])
I same Vi for each value t
I same samples xR(Vi) for all t

θ̂Ω(t) B
1
n

n∑
i=1

ft (xR(Vi))

fR(xR(Vi))
h(xR(Vi))

I quite efficient for fast densities
I easiest to optimize
I small bias
I still consistent
I fR needs to cover all ft

variance inflation, iterative proce-
dures, . . . [13]
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Stochastic Approximation: Kiefer-Wolfowitz

Assume E(θ̂Ω(t)) = θ(t), uniformly bounded variance. Let
I an B 1/n
I cn B n−1/3

Then

tn+1(Ωn+1) = tn(Ωn) − an
θ̂Ωn+1(tn(Ωn) + cn) − θ̂Ωn+1(tn(Ωn) − cn)

2cn︸                                                 ︷︷                                                 ︸
stochastic approx of derivative dθ̂

dt

(23)

will converge with probability 1 to θ∗ = mint θ(t), provided that θ(t) is strictly convex.

unbiased and consistent estimator!
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Stochastic Approximation: Example 1 – Single Sample
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Stochastic Approximation: Example 1 – Mini-Batch MCv2
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Stochastic Approximation: Example 1 – Mini-Batch Importance
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Stochastic Approximation: Example 2 – Single Sample
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Stochastic Approximation: Example 2 – Mini-Batch MCv2
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Stochastic Approximation: Example 2 – Mini-Batch Importance
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Open Questions

I imprecise estimation
I the good: we can construct confidence intervals
I the bad: conditions for consistency hard to quantify
I the ugly: need multiple runs

I stochastic approximation
I the good: simple, no bias, consistent
I the bad: conditions too restrictive? confidence intervals?
I the ugly: no proofs yet (standard conditions not satisfied yet simulations appear to

work)
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