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Gambles and decisions

A set of possible acts D
A set of possible outcomes Ω

A gamble f := U(d, ω)

A set of gambles K
An optimal set opt(K)
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Maximality

Definition 1 (Natural extension [1])

For any set K ⊆ L(Ω) and f ∈ L(Ω), we define:

E(f) := sup

{
α ∈ R : f − α ≥

n∑
i=1

λigi, n ∈ N, gi ∈ K, λi ≥ 0

}
. (1)

Definition 2 (Maximality [1])

Let >E be the partial order given by: for any two gamble f and g, f >E g whenever

E(f − g) > 0. (2)

Let opt> be the choice function corresponds to this partial order, called maximality, and
defined by

opt(K) := {f ∈ K : (∀g ∈ K)(g 6>E f)}. (3)
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Algorithms for finding maximal gambles

From the definition of maximality, we can write a pariwise comparison algorithm
for finding maximal gambles as follows:

opt(K) = Filter(f : f ∈ K, isopt(f,K) = True)
where isopt(f,K) = all (E(f − g) ≥ 0, for g ∈ K).
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Algorithms for finding maximal gambles

There are many efficient algorithm for finding maximal gambles, e.g. Algorithm 16.4 in [1]:

Require: set of gambles K
Ensure: a set of maximal gambles opt(K)
1: R ← K {remaining gambles}
2: opt(K)← ∅ {maximal gambles}
3: while R 6= ∅ do
4: f ← next element from R
5: R ← R\{f}
6: if ∃g ∈ opt(K) : E(g − f) > 0 then
7: f is dominated by g ∈ opt(K)
8: else
9: if ∃g ∈ R : E(g − f) > 0 then

10: f is dominated by g ∈ R
11: end if
12: end if
13: end while
14: return opt(K)

We also want to write it as a function.
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Linear programming problems

We can calculate E(f) through the following linear program:

(D) max α

s.t. ∀ω ∈ Ω:

n∑
i=1

gi(ω)λi + α ≤ f(ω)

∀i : λi ≥ 0 (α free).

E(f) is equal to the optimal value of (D).

(P) min
∑
ω∈Ω

f(ω)p(ω)

s.t. ∀gi ∈ K :
∑
ω∈Ω

gi(ω)p(ω) ≥ 0∑
ω∈Ω

p(ω) = 1

∀ω : p(ω) ≥ 0.

Stop if it’s positive (+) Stop if it’s negative (−)

Optimal value

F
(D) objective value (P) objective value

Figure: Early stopping
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Solving linear programming problems

We solve linear programs by the primal-dual interior point method.
Initial interior feasible points:

for (D), we can immediately state interior feasible point.
for (P), once we find an interior feasible point of (P), then we can use this point
for different objective function, i.e. different E(f) with respect to K.



Introduction Results and contributions Discussion

Numerical error

Normally, the primal-dual stops when the duality gap is less than a tolerant.
Suppose that the method terminates and

(D)-value is still negative and (P)-value is still positive, but
the optimal value is very closed to zero.

What should we conclude in this case?
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Points for discussion

An algorithm for generating a set of gambles K for benchmarking
Order gambles in K before put them in the algorithm.
Impact of early stopping and initial feasible interior points.
Numerical error, e.g., the optimal value is closed to zero.
Linear programming that consider all gambles at once [2, 3].
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