Efficient algorithms for finding maximal gambles

Nawapon Nakharutai

Durham University

August 2018

Joint work with Matthias C. M. Troffaes and Camila C. S. Caiado

Outline

オロト オポト オヨト オヨト ヨー シック

Gambles and decisions

- $\bullet~{\rm A}$ set of possible acts D
- $\bullet\,$ A set of possible outcomes Ω
- A gamble $f\coloneqq U(d,\omega)$
- $\bullet~{\rm A}$ set of gambles ${\cal K}$
- An optimal set $opt(\mathcal{K})$

Maximality

Definition 1 (Natural extension [1])

For any set $\mathcal{K} \subseteq \mathcal{L}(\Omega)$ and $f \in \mathcal{L}(\Omega)$, we define:

$$\underline{E}(f) := \sup\left\{\alpha \in \mathbb{R} \colon f - \alpha \ge \sum_{i=1}^{n} \lambda_i g_i, n \in \mathbb{N}, g_i \in \mathcal{K}, \lambda_i \ge 0\right\}.$$
(1)

Definition 2 (Maximality [1])

Let $>_{\underline{E}}$ be the partial order given by: for any two gamble f and g, $f >_{\underline{E}} g$ whenever

$$\underline{E}(f-g) > 0. \tag{2}$$

イロト イポト イヨト イヨト

Let $opt_{>}$ be the choice function corresponds to this partial order, called *maximality*, and defined by

$$\operatorname{opt}(\mathcal{K}) \coloneqq \{ f \in \mathcal{K} \colon (\forall g \in \mathcal{K}) (g \not\geq_{\underline{E}} f) \}.$$
(3)

オロト オポト オヨト オヨト ヨー シック

Algorithms for finding maximal gambles

From the definition of maximality, we can write a pariwise comparison algorithm for finding maximal gambles as follows:

- $opt(\mathcal{K}) = Filter(f : f \in \mathcal{K}, isopt(f, \mathcal{K}) = True)$
- where $\operatorname{isopt}(f, \mathcal{K}) = \operatorname{all}(\overline{E}(f-g) \ge 0, \text{ for } g \in \mathcal{K}).$

Algorithms for finding maximal gambles

There are many efficient algorithm for finding maximal gambles, e.g. Algorithm 16.4 in [1]:

Require: set of gambles \mathcal{K} **Ensure:** a set of maximal gambles $opt(\mathcal{K})$ 1: $\mathcal{R} \leftarrow \mathcal{K}$ {remaining gambles} 2: $opt(\mathcal{K}) \leftarrow \emptyset$ {maximal gambles} 3: while $\mathcal{R} \neq \emptyset$ do 4: $f \leftarrow \text{next element from } \mathcal{R}$ 5: $\mathcal{R} \leftarrow \mathcal{R} \setminus \{f\}$ if $\exists q \in \operatorname{opt}(\mathcal{K}) \colon E(q-f) > 0$ then 6: 7: f is dominated by $q \in \operatorname{opt}(\mathcal{K})$ 8: else if $\exists q \in \mathcal{R} \colon E(q-f) > 0$ then 9: f is dominated by $q \in \mathcal{R}$ 10:end if 11: 12:end if 13: end while 14: return $opt(\mathcal{K})$

Linear programming problems

We can calculate $\underline{E}(f)$ through the following linear program:

(D) max
$$\alpha$$

s.t. $\forall \omega \in \Omega$: $\sum_{i=1}^{n} g_i(\omega)\lambda_i + \alpha \leq f(\omega)$
 $\forall i: \lambda_i \geq 0$ (α free).
 $\underline{E}(f)$ is equal to the optimal value of (D).
Stop if it's positive (+)
(D) objective value
Figure: Early stopping
(P) min $\sum_{\omega \in \Omega} f(\omega)p(\omega)$
s.t. $\forall g_i \in \mathcal{K}: \sum_{\omega \in \Omega} g_i(\omega)p(\omega) \geq 0$
 $\sum_{\omega \in \Omega} p(\omega) = 1$
 $\forall \omega: p(\omega) \geq 0.$
(P) objective value
(P) objective value
(P) objective value
(P) objective value

Solving linear programming problems

- We solve linear programs by the primal-dual interior point method.
- Initial interior feasible points:
 - for (D), we can immediately state interior feasible point.
 - for (P), once we find an interior feasible point of (P), then we can use this point for different objective function, i.e. different $\underline{E}(f)$ with respect to \mathcal{K} .

Numerical error

Normally, the primal-dual stops when the duality gap is less than a tolerant. Suppose that the method terminates and

- (D)-value is still negative and (P)-value is still positive, but
- the optimal value is very closed to zero.

What should we conclude in this case?

Points for discussion

- An algorithm for generating a set of gambles \mathcal{K} for benchmarking
- \bullet Order gambles in ${\cal K}$ before put them in the algorithm.
- Impact of early stopping and initial feasible interior points.
- Numerical error, e.g., the optimal value is closed to zero.
- Linear programming that consider all gambles at once [2, 3].

References

Thomas Augustin, Frank P. A. Coolen, Gert De Cooman, and Matthias C. M. Troffaes, editors. <i>Introduction to Imprecise Probabilities.</i> Wiley Series in Probability and Statistics. Wiley, 2014.
T. Augustin C. Jansen, G. Schollmeyer. Concepts for decision making under severe uncertainty with partial ordinal and partial cardinal preferences.
In I. Couso S. Destercke A. Antonucci, G. Corani, editor, <i>Proceedings of the Tenth International Symposium on Imprecise Probability Theories and Applications</i> , pages 181–192, 2017.
T. Augustin C. Jansen, G. Schollmeyer.

Concepts for decision making under severe uncertainty with partial ordinal and partial cardinal preferences.

International Journal of Approximate Reasoning, 98:112–131, 2018.