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Avoiding su

Desirability axioms

o A possibility space 2
o A gamble f: Q2 — R

Q: How should we reason with desirable gambles?

Suppose we are offered:
Outcomes James Chen None Desirability axioms [3]
f1 -5 -1 -2
£ 30 20 0

(D1) Do not accept sure loss.
(D2) Accept sure gain.

(D3)

(D4)

fo+ fa 2920 120 50 Accept combination of desirable gambles.



Avoiding sure los

Avoiding sure loss

A set of desirable gambles D is said to avoid sure loss if for all n € N,
)\17"' 7)‘71 Zoand fla"' afn €D [4]

sup (Z)‘fz >_ : (1)




Betting scheme

Betting with bookies

@ Odds: a bookmaker offers odds, say a/b, on outcomes of an event.

Friday 10th August 2018

Home Draw Away

717 4/1 19/2

The odds a/b on w can represent an upper probability mass function: p(w) = aL+b'

@ These odds are unfair.

b;
a; —+ bz
~ 1.003 > 1.

Bookies profit is Y . ;

—-1>0(2]

17 1 2
T+17 + 4+1 + 194-2
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Odds and avoiding sure loss

Odds a/b on = can be viewed as a desirable gamble to the bookmaker:

g(w)z{_a fw=ux 2)

b otherwise.

Lemma 2

Let a/b be desirable odds on w. Then, for all A\ > 0, the odds Aa/Ab on w are also desirable.

Theorem 3 ([5])
Let Q = {ws,...,wn}. Suppose a;/b; are betting odds on w;. For eachi=1,...,n, let
gi(w) be the corresponding gamble for the odds a;/b;. Then the set of desirable gambles

n b'L
D ={g1,...,9n} avoids sure loss if and only if Y., R > 1.
a; + b;




Bettin cheme

Sort By v
Each-way terms
+ Man City 47 23 <a?1’§> 8/13 813 8/13 8113 8/13 8/13 813 4/6 813 813 58 813 813 477 | 477 | 47
+ Liverpool 5 92 5 5 912 5 5 5 5 5 5 5 12 5 5 |12
+ Man Utd (2) 1 e 6 6 6 132 6 7 132 6 295 7 132 6 295 6 7 |35
+ Chelsea 12 12 9 12 " 9 12 12 0 12 11 1 12 12 12 n 18
+ Tottenham " 16 " 112 a2 12 16 11 14 e 1d o o1a 14 16 | 1e
3 Arsenal 25 25 20 2% 25 25 w o2 Fn e m as 20 28 25 28|25
+ Everton 200 200 100 200 200 200 200 200 200 391/2 250 200 250 391/2 200 b" — 1 4393
+ Wolves 100 200 200 100 250 ‘\@) 250 300 100 977/4 300 300 300 977/4 250 + bl
B Leicester 200 400 200 200 250 300 250 200 200 97774 300 300 400 9774 250
4+ West Ham 500 500 200 500 500 500 500 500 500
4 southampton 500 400 500 500 400 500 500 500 500 400 | 949
+ Crystal Palace 500 750 500 500 750 500 750 750 750 733 750 750 | 949
+ Newcastle 500 m 500 750 500 500 500 500 750 750 750 500 | 949




Betting scheme

Free coupons

o Free coupon = a free stake, but not truly free.
@ To claim a free coupon there are standard requirements:

@ It only applies to the customer’s first bet with the bookmaker.

@ The value of the coupon = the value of the bet that he placed.

@ There is a maximum value of the free coupon.

@ The free coupon can be spent only on a single outcome with the same
bookmaker.

100%

BONUS

FOR NEW
CUSTOMERS

18+
Terms & Conditions Apply  Gamble Respensibly
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Free coupons (example 1)

o Outcomes @
odds T/17 4/1 19/2

@ Tim bets £6 on the odd 4/1 on Draw, so a corresponding desirable gamble to bookies
is:
Outcomes
f1 -24 6 6
@ Tim gets a free coupon valued £6 and suppose that he bets his free coupon on |@)|.
We scale odds 19/2 — 57/6. A corresponding desirable gamble to bookies is:
Outcomes
f2
. Outcomes
o Adding them together, we have: ————— "

f




Natural extensions and Choquet integral

Avoiding sure loss with extra gambles

Definition 4 (Natural extension [1])

For any set D C £(Q2) and f € L(2), we define:

Ep(f) = inf{a eER:a—f> Z)\igi,neN,gi €D, N\ > 0}. (3)
i=1

Theorem 5

Let f € L(Q) and let D = {g1,...,9n} be a set of desirable gambles that avoids sure
loss. Then, DU {f} avoids sure loss if and only if Ep(f) > 0.

If DU{f} does not avoid sure loss, then there exists a combination of

F4 >0 Xigi for X\; > 0 such that the loss is at least |Ep(f)].
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Choquet integration

Theorem 6 (modified [3])

Let f be decomposed in terms of its level sets of §):
F=> Aila, (4)
i=0

where \g ER, A\1,..., Ay >0and Q=492 Ay,...,2 A, 20. If D is a set {g1,...,9n} of
desirable gambles for odds, then

Ep(f) =) _ MEp(4) (5)

=0

where

Ep(A) =min{) _ p(w),1}. (6)

wEA
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Choquet integration (example 2)

From odds 7/17 4/1  19/2 , we decompose a gamble in terms of its level sets
f —24 51 6

as
f=—811a,+ 2714, + 3014, (7)

and A; = {,

where Ay = {, D, |@

. (6), we have

LT
TH+17 [ 56

Substitute E(A;), i =0,1,2 into eq. (7). By theorem 6, we have

E(f) = E(=5114, + 2714, +3014,) = —51E(Ag) + 27TE(A1) + 30E(A3) ~ —26.45
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Finding a combination of bets

Q: How to find A; in eq. (3) of theorem 57
The dual of (P) is:

(P) min  «
Vwe Q:a—>" gi(w)A > flw)

subject to )
Vi=1,...,n:\; >0.

S n(w) =

Ep(f) is equal to the optimal value of (P).

Theorem 7 (new theoretical contribution)

@ State an optimal solution of (D) from the Choquet integral.

@ Exploit the optimal solution of (D) with the complementary slackness to write a
system of equalities.

@ Solve this system to find an optimal solution of (P).




A combination of bets

Finding an optimal solution of (P) and (D)

@ Order the elements wy,wo, ..., w, such that Vi < j: A(w;) € A(w;), where
Alw) = ﬂgio,weAi A;.
@ Let k be the smallest index such that Z§:1 P(w;) > 1. Define p as follows:

p(wi) ifi <k
plwi) = 1— S T plwy) ifi=k (8)
0 ifi >k,
then (p(wy), ..., p(wy,)) is an optimal solution of (D) and « is the optimal value.

@ By the complementary slackness, a system of equalities is:
0 if p(w;) >0, then a — > | gi(wj)Xi = f(w;), and
0 if p(w;) < P(w;), then X; = 0.

@ We solve these equations as a system of equalities in A1, ..., A, to obtain an optimal
solution of (P).
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A combination of bets (example 3)

From example 2, the corresponding linear programs are as follows:

max

(D1)

subject to

outcomes and apply eq. (8) to obtain an optimal
solution of (D1), which is

P(@) = 3
where the optimal value is —26.45.

(P1)

min «

a+7>\—>\D—2
a717)\+4)\D72/\
a—17)\—)\D+19)\

and /\., AD, A\ >0, « free.

Note that & = —26.45 and Ap = 0.
An optimal solution of (P1) is

A:%, Ap =0, )\A =1

So, Tim should additionally bet £% on and

subject to
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Results

To sum up, we conclude that:
o A set of desirable gambles avoids sure loss if and only if the natural extension
is non-negative.
o For this specific problem, if the set does not avoid sure loss, then a
combination of bets can be derived through the Choquet integral.
o In the actual market, we found that a set of desirable gambles derived from

those odds usually avoids sure loss.

o With a free coupon, the set of desirable gambles no longer avoids sure loss.
Consequently, there is a combination of bets for which the customer can make
a sure gain.



A combination of bets

Open questions

Bet £10 & Get
£30 in Free Bets

There is still an open question about: New customer offer.
@ Many choices of free coupons. Promo code: C30
o Extend th.IS app.roach to solve linear New online customers only, min £10V/€10
programs involving 2-monotone stake, win only, min odds 172, free bets paid as
lower probabilities. 3 X £10/€10, 30 day expiry, free bet/payment

method/playerfcountry restrictions apply.
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“If you get robbed, you still have a house.
If your house is on fire, you still have land.
If you start gambling, you are left with NOTHING.”
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