Evaluating betting odds and free coupons using desirability

Nawapon Nakharutai

Durham University

August 2018

Joint work with Camila C. S. Caiado and Matthias C. M. Troffaes

Outline

Desirability axioms

- \bullet A possibility space Ω
- A gamble $f: \Omega \to \mathbb{R}$

Q: How should we reason with desirable gambles?

Suppose we are offered:

Outcomes	James	Chen	None
f_1	-5	-1	-2
f_2	30	20	0
f_3	-1	2	-1
f_4	-50	100	-50
$f_2 + f_4$	-20	120	-50

Desirability axioms [3]

- (D1) Do not accept sure loss.
- (D2) Accept sure gain.
- (D3) Positive scaling invariance.
- (D4) Accept combination of desirable gambles.

Avoiding sure loss

Definition 1

A set of desirable gambles \mathcal{D} is said to *avoid sure loss* if for all $n \in \mathbb{N}$, $\lambda_1, \dots, \lambda_n \geq 0$ and $f_1, \dots, f_n \in \mathcal{D}$ [4]:

$$\sup_{\omega \in \Omega} \left(\sum_{i=1}^{n} \lambda_i f_i(\omega) \right) \ge 0.$$
(1)

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Betting with bookies

• Odds: a book maker offers odds, say a/b, on outcomes of an event.

Friday 10th August 2018										
	Home	Draw	Away							
20:00 Man Utd Leicester	7/17	4/1	19/2							

- The odds a/b on ω can represent an upper probability mass function: $\overline{p}(\omega) = \frac{b}{a+b}$.
- These odds are unfair.

• Bookies profit is
$$\sum_{i=1}^{n} \frac{b_i}{a_i + b_i} - 1 > 0$$
 [2].

•
$$\frac{17}{7+17} + \frac{1}{4+1} + \frac{2}{19+2} \approx 1.003 \ge 1.$$

A combination of bets

(2)

Odds and avoiding sure loss

Odds a/b on x can be viewed as a desirable gamble to the bookmaker:

$$g(\omega) = \begin{cases} -a & \text{if } \omega = x \\ b & \text{otherwise.} \end{cases}$$

Lemma 2

Let a/b be desirable odds on ω . Then, for all $\lambda > 0$, the odds $\lambda a/\lambda b$ on ω are also desirable.

Theorem 3([5])

Let $\Omega = \{\omega_1, \ldots, \omega_n\}$. Suppose a_i/b_i are betting odds on ω_i . For each $i = 1, \ldots, n$, let $g_i(\omega)$ be the corresponding gamble for the odds a_i/b_i . Then the set of desirable gambles $\mathcal{D} = \{g_1, \ldots, g_n\}$ avoids sure loss if and only if $\sum_{i=1}^n \frac{b_i}{a_i + b_i} \ge 1$.

Betting with bookies

Sign Up Of	fers £	£20	£50	£30		£100	£30	£20	£20	£50	£30	£25	£10	£20	£30	£50	£100	£15	£75	£30	£60	£10		£20	£20							
Special Of	fers 🦪	 <!--</th--><th></th><th>194</th><th>1</th><th></th><th>500</th><th>2</th><th>0</th><th>2</th><th></th><th>~</th><th>3.4.1</th><th>0</th><th>S Sav</th><th></th><th>?</th><th></th><th>></th><th>S</th><th>?</th><th>*</th><th>8</th><th>2. 23. A</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th>		194	1		500	2	0	2		~	3.4.1	0	S Sav		?		>	S	?	*	8	2. 23. A	0							
Sort By 🗸			(page)		1		Sichel	and the second	and the			-	200		Swarth-	and the	驪		1800	8	95.14V	「「「「「」」	106.55	2000								
Each-way te	rms 2 1/3	2 1/3	2 1/3	· · · ·	2 1/3			2 1/3	יקות	1993 A.	2 1/3	2 1/3		2 1/3	2 1/3	2 1/3			2 1/3			Shir.	2 1/3	457								
🕂 Man City	4/7	2/3	8/13	\mathbf{b}	8/13			8/13		8/13	8/13	8/13		8/13	8/13	<u>4/6</u>	8/13	8/13	5/8		8/13	8/13	4/7	4/7	4/7							
+ Liverpool	5	9/2	5		5			9/2		5	5	5		5	5	5	11/2	5	5		5	<u>11/2</u>	5	5	11/2							
🕂 Man Utd	Z	Z	6		6			6		6	13/2	6		Z	13/2	6	29/5	Z	13/2		6	29/5	6	Z	33/5							
🕂 Chelsea	12	12	9		12			11		9	12	12		10	12	11	11	12	12		12	11	14	12	18	a	:=	a/	1			
+ Tottenham	16	12	11		<u>16</u>			11		11	12	12		12	<u>16</u>	11	14	14	14		14	14	14	<u>16</u>	18							
🕂 Arsenal	28	25	25		25			20		25	25	25		18	25	Bet 25	<u>28</u>	22	25		20	<u>28</u>	25	<u>28</u>	25			Ь				
+ Everton	200	<u>250</u>	200		200			100		200	200	200		200	200	200	391/2	250	200		<u>250</u>	391/2	200	200	389	$\sum_{i=1}^{1}$	3 =1		<i>i</i>	=	1.4	1393
+ Wolves	250	250	100		200			200		100	250	300)	250	<u>300</u>	100	977/4	300	<u>300</u>		<u>300</u>	977/4	250	<u>300</u>	284		-	$a_i \dashv$	- 0 _i			
+ Leicester	300	250	200		<u>400</u>			200		200	250	300		250	200	200	977/4	300	300		<u>400</u>	977/4	250	300	949							
🕂 West Ham	500	500	<u>500</u>		<u>500</u>			400		<u>500</u>	<u>500</u>	<u>500</u>		<u>500</u>	<u>500</u>	<u>500</u>	48975	<u>500</u>	<u>500</u>		<u>500</u>	48975	<u>500</u>	<u>500</u>	408							
+ Southampton	400	500	500		400			<u>500</u>		<u>500</u>	400	<u>500</u>		<u>500</u>	250	<u>500</u>	<u>500</u>	<u>500</u>	<u>500</u>		<u>500</u>	<u>500</u>	<u>500</u>	400	949							
+ Crystal Palace	750	750	500		<u>750</u>			500		500	<u>750</u>	500		<u>750</u>	<u>750</u>	500	733	<u>750</u>	<u>750</u>		<u>750</u>	733	<u>750</u>	<u>750</u>	949							
+ Newcastle	500	750	500		<u>750</u>			500		500	500	500		<u>750</u>	500	500	48975	500	<u>750</u>		<u>750</u>	48975	500	500	949		= .	. =		-	5	a re

Free coupons

- Free coupon = a free stake, but not truly free.
- To claim a free coupon there are standard requirements:
 - **1** It only applies to the customer's first bet with the bookmaker.
 - 2) The value of the coupon = the value of the bet that he placed.
 - **③** There is a maximum value of the free coupon.
 - The free coupon can be spent only on a single outcome with the same bookmaker.

Free coupons (example 1)

• Tim bets £6 on the odd 4/1 on Draw, so a corresponding desirable gamble to bookies is:

Outcomes	٢	D	
f_1	-24	6	6

• Tim gets a free coupon valued £6 and suppose that he bets his free coupon on $\textcircled{\begin{subarray}{c} \end{subarray}}$. We scale odds $19/2 \rightarrow 57/6$. A corresponding desirable gamble to bookies is:

-24

-51

6

• Adding them together, we have:

Avoiding sure loss with extra gambles

Definition 4 (Natural extension [1])

For any set $\mathcal{D} \subseteq \mathcal{L}(\Omega)$ and $f \in \mathcal{L}(\Omega)$, we define:

$$\overline{E}_{\mathcal{D}}(f) := \inf \left\{ \alpha \in \mathbb{R} \colon \alpha - f \ge \sum_{i=1}^{n} \lambda_i g_i, n \in \mathbb{N}, g_i \in \mathcal{D}, \lambda_i \ge 0 \right\}.$$
 (3)

Theorem 5

Let $f \in \mathcal{L}(\Omega)$ and let $\mathcal{D} = \{g_1, \ldots, g_n\}$ be a set of desirable gambles that avoids sure loss. Then, $\mathcal{D} \cup \{f\}$ avoids sure loss if and only if $\overline{E}_{\mathcal{D}}(f) \ge 0$. If $\mathcal{D} \cup \{f\}$ does not avoid sure loss, then there exists a combination of $f + \sum_{i=1}^n \lambda_i g_i$ for $\lambda_i \ge 0$ such that the loss is at least $|\overline{E}_{\mathcal{D}}(f)|$.

Choquet integration

Theorem 6 (modified [3])

Let f be decomposed in terms of its level sets of Ω :

$$f = \sum_{i=0}^{n} \lambda_i I_{A_i} \tag{4}$$

where $\lambda_0 \in \mathbb{R}$, $\lambda_1, \ldots, \lambda_n > 0$ and $\Omega = A_0 \supseteq A_1, \ldots, \supseteq A_n \supseteq \emptyset$. If \mathcal{D} is a set $\{g_1, \ldots, g_n\}$ of desirable gambles for odds, then

$$\overline{E}_{\mathcal{D}}(f) = \sum_{i=0}^{n} \lambda_i \overline{E}_{\mathcal{D}}(A_i)$$
(5)

where

$$\overline{E}_{\mathcal{D}}(A) = \min\{\sum_{\omega \in A} \overline{p}(\omega), 1\}.$$
(6)

Choquet integration (example 2)

Outcomes ٢ D 7/174/1 19/2, we decompose a gamble in terms of its level sets From odds -24-516 as $f = -51I_{A_0} + 27I_{A_1} + 30I_{A_0}$ (7)where $A_0 = \{ [0], D, [0] \}$ and $A_1 = \{ [0], [0] \}$. $A_2 = \{ [0] \}$. By eq. (6), we have $\overline{E}(A_2) = \min\{\overline{p}(\textcircled{\textcircled{0}}), 1\} = \min\{\frac{2}{19+2}, 1\} = \frac{2}{21}$ $\overline{E}(A_1) = \min\{\overline{p}(\textcircled{\textcircled{0}}) + \overline{p}(\textcircled{\textcircled{0}}), 1\} = \min\left\{\frac{2}{19+2} + \frac{17}{7+17}, 1\right\} = \frac{45}{56}$ $\overline{E}(A_0) = \min\{\overline{p}(\textcircled{\textcircled{0}}) + \overline{p}(D) + \overline{p}(\textcircled{\textcircled{0}}), 1\} = 1.$

Substitute $\overline{E}(A_i)$, i = 0, 1, 2 into eq. (7). By theorem 6, we have

 $\overline{E}(f) = \overline{E}(-51I_{A_0} + 27I_{A_1} + 30I_{A_2}) = -51\overline{E}(A_0) + 27\overline{E}(A_1) + 30\overline{E}(A_2) \approx -26.45$

Finding a combination of bets

Q: How to find λ_i in eq. (3) of theorem 5?

(P) min
$$\alpha$$

subject to
$$\begin{cases} \forall \omega \in \Omega \colon \alpha - \sum_{i=1}^{n} g_i(\omega) \lambda_i \ge f(\omega) \\ \forall i = 1, \dots, n \colon \lambda_i \ge 0. \end{cases}$$
 (D) max subject

 $\overline{E}_{\mathcal{D}}(f)$ is equal to the optimal value of (P).

Theorem 7 (new theoretical contribution)

- **③** State an optimal solution of (D) from the Choquet integral.
- Exploit the optimal solution of (D) with the complementary slackness to write a system of equalities.
- **③** Solve this system to find an optimal solution of (P).

The dual of (P) is:

$$\begin{array}{ll} \max & \sum_{\omega \in \Omega} f(\omega) p(\omega) \\ \text{subject to} & \begin{cases} \forall \omega \colon 0 \leq p(\omega) \leq \overline{p}(\omega) \\ \sum_{\omega \in \Omega} p(\omega) = 1. \end{cases} \end{array}$$

しゃ 本語 マネボ キャット

Finding an optimal solution of (P) and (D)

- Order the elements $\omega_1, \omega_2, \ldots, \omega_n$ such that $\forall i \leq j \colon A(\omega_i) \subseteq A(\omega_j)$, where $A(\omega) = \bigcap_{i=0, \omega \in A_i}^m A_i$.
- **2** Let k be the smallest index such that $\sum_{j=1}^{k} \overline{p}(\omega_j) \ge 1$. Define p as follows:

$$p(\omega_i) := \begin{cases} \overline{p}(\omega_i) & \text{if } i < k\\ 1 - \sum_{j=1}^{i-1} \overline{p}(\omega_j) & \text{if } i = k\\ 0 & \text{if } i > k, \end{cases}$$
(8)

then $(p(\omega_1), \ldots, p(\omega_n))$ is an optimal solution of (D) and α is the optimal value.

③ By the complementary slackness, a system of equalities is:

• if
$$p(\omega_j) > 0$$
, then $\alpha - \sum_{i=1}^n g_i(\omega_j)\lambda_i = f(\omega_j)$, and
• if $p(\omega_j) < \overline{p}(\omega_j)$, then $\lambda_j = 0$.

• We solve these equations as a system of equalities in $\lambda_1, \ldots, \lambda_n$ to obtain an optimal solution of (P).

A combination of bets (example 3)

From example 2, the corresponding linear programs are as follows:

(D1) max
$$-24p(\textcircled{\textcircled{0}}) - 51p(D) + 6p(\textcircled{\textcircled{0}})$$

subject to
$$\begin{cases} 0 \le p(\textcircled{\textcircled{0}}) \le \frac{17}{24} \\ 0 \le p(D) \le \frac{2}{7} \\ 0 \le p(\textcircled{\textcircled{0}}) \le \frac{2}{21} \\ p(\textcircled{\textcircled{0}}) + p(D) + p(\textcircled{\textcircled{0}}) = 1. \end{cases}$$

As $A(\textcircled{(0)}) \subseteq A(\textcircled{(0)}) \subseteq A(D)$, we order these outcomes and apply eq. (8) to obtain an optimal solution of (D1), which is

$$p(\textcircled{\textcircled{o}}) = \frac{2}{21}$$

$$p(\textcircled{\textcircled{o}}) = \frac{17}{24}$$

$$p(D) = 1 - \frac{45}{56} = \frac{11}{56},$$
where the optimal value is -26.45.

(P1) min
$$\alpha$$

subject to
$$\begin{cases}
\alpha + 7\lambda_{\bigcirc} - \lambda_D - 2\lambda_{\bigcirc} \ge -24 \\
\alpha - 17\lambda_{\bigcirc} + 4\lambda_D - 2\lambda_{\bigcirc} \ge -51 \\
\alpha - 17\lambda_{\bigcirc} - \lambda_D + 19\lambda_{\bigcirc} \ge 6
\end{cases}$$
and
$$\lambda_{\bigcirc}, \lambda_D, \lambda_{\bigcirc} \ge 0, \alpha \text{ free.}$$
Note that $\alpha = -26.45$ and $\lambda_D = 0$.
An optimal solution of (P1) is
$$\lambda_{\bigcirc} = \frac{27}{10}, \quad \lambda_D = 0, \quad \lambda_{\bigcirc} = \frac{19}{7}.$$
So Time chereford a dditionally bet 0.27 and α

So, Tim should additionally bet $\pounds \frac{27}{10}$ on 0 and $\pounds \frac{19}{7}$ on 0 in order to gain $\pounds 26.45$ from the bookies.

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

Results

To sum up, we conclude that:

- A set of desirable gambles avoids sure loss if and only if the natural extension is non-negative.
- For this specific problem, if the set does not avoid sure loss, then a combination of bets can be derived through the Choquet integral.
- In the actual market, we found that a set of desirable gambles derived from those odds usually avoids sure loss.
- With a free coupon, the set of desirable gambles no longer avoids sure loss. Consequently, there is a combination of bets for which the customer can make a sure gain.

Open questions

There is still an open question about:

- Many choices of free coupons.
- Extend this approach to solve linear programs involving 2-monotone lower probabilities.

Bet £10 & Get £30 in Free Bets

New customer offer. Promo code: C30

New online customers only, min £10/ €10 stake, win only, min odds 1/2, free bets paid as 3 X £10/€10, 30 day expiry, free bet/payment method/player/country restrictions apply.

Join now

Warning!

"If you get robbed, you still have a house. If your house is on fire, you still have land. If you start gambling, you are left with NOTHING."

References

Thomas Augustin, Frank P. A. Coolen, Gert De Cooman, and Matthias C. M. Troffaes, editors. *Introduction to Imprecise Probabilities.* Wiley Series in Probability and Statistics. Wiley, 2014.

Joseph Buchdahl.

Fixed Odds Sports Betting: Statistical Forecasting and Risk Management. Oldcastle Books, 2003.

Enrique Miranda and Gert de Cooman. Introduction to Imprecise Probabilities, chapter Lower prevision, pages 28–55. Wiley, 2014.

Matthias C. M. Troffaes and Gert de Cooman. *Lower Previsions.* Wiley Series in Probability and Statistics. Wiley, 2014.

Peter Walley.

Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991.