The necessity and formulation of a robust (imprecise) Bayes Factor

Patrick Schwaferts
Ludwig-Maximilians-Universität München

1. August 2018

Introduction

Introduction

Reproducibility crisis in psychological research

Introduction

Reproducibility crisis in psychological research Rise of popularity of Bayesian Statistics: promoted as being the solution

Introduction

Reproducibility crisis in psychological research Rise of popularity of Bayesian Statistics: promoted as being the solution Bayes Factor for comparing two hypotheses ("Bayesian t-Test")

What is the Bayes Factor?

What is the Bayes Factor?

Informal:
A generalization of the Likelihood Ratio to include prior information.

From Likelihood Ratio to Bayes Factor I

From Likelihood Ratio to Bayes Factor I

Situation:

Two independent groups with observations x_{i} and y_{j} and model

$$
\begin{aligned}
& X_{i} \sim N\left(\mu, \sigma^{2}\right), \quad i=1, \ldots, n \\
& Y_{j} \sim N\left(\mu+\alpha, \sigma^{2}\right), \quad j=1, \ldots, m
\end{aligned}
$$

with parameters $\mu, \sigma^{2}, \delta=\alpha / \sigma$.

From Likelihood Ratio to Bayes Factor I

Situation:

Two independent groups with observations x_{i} and y_{j} and model

$$
\begin{aligned}
& X_{i} \sim N\left(\mu, \sigma^{2}\right), \quad i=1, \ldots, n \\
& Y_{j} \sim N\left(\mu+\alpha, \sigma^{2}\right), \quad j=1, \ldots, m
\end{aligned}
$$

with parameters $\mu, \sigma^{2}, \delta=\alpha / \sigma$.
Research Question:
Is there a difference between both groups?

From Likelihood Ratio to Bayes Factor I

Situation:

Two independent groups with observations x_{i} and y_{j} and model

$$
\begin{aligned}
& X_{i} \sim N\left(\mu, \sigma^{2}\right), \quad i=1, \ldots, n \\
& Y_{j} \sim N\left(\mu+\alpha, \sigma^{2}\right), \quad j=1, \ldots, m
\end{aligned}
$$

with parameters $\mu, \sigma^{2}, \delta=\alpha / \sigma$.
Research Question:
Is there a difference between both groups?
Hypotheses:

$$
H_{0}: \delta=0 \quad \text { vs. } \quad H_{1}: \delta \neq 0
$$

From Likelihood Ratio to Bayes Factor II

Likelihood Ratio:

$$
L R_{10}=\frac{\max _{\mu, \sigma^{2}, \delta} f\left(\text { data } \mid \mu, \sigma^{2}, \delta\right)}{\max _{\mu, \sigma^{2}} f\left(\text { data } \mid \mu, \sigma^{2}, \delta=0\right)}
$$

From Likelihood Ratio to Bayes Factor II

Likelihood Ratio:

$$
L R_{10}=\frac{\max _{\mu, \sigma^{2}, \delta} f\left(\text { data } \mid \mu, \sigma^{2}, \delta\right)}{\max _{\mu, \sigma^{2}} f\left(\text { data } \mid \mu, \sigma^{2}, \delta=0\right)}
$$

Law of Likelihood:

The extent to which the data support one model over another (:= evidence) is equal to the ratio of their likelihoods.

From Likelihood Ratio to Bayes Factor II

Likelihood Ratio:

$$
L R_{10}=\frac{\max _{\mu, \sigma^{2}, \delta} f\left(\text { data } \mid \mu, \sigma^{2}, \delta\right)}{\max _{\mu, \sigma^{2}} f\left(\text { data } \mid \mu, \sigma^{2}, \delta=0\right)}
$$

Law of Likelihood:

The extent to which the data support one model over another (:= evidence) is equal to the ratio of their likelihoods.

Interpretation of LR:

The data is $L R_{10}$ times as much evidence for the model chosen ${ }^{(*)}$ under H_{1} than for the model chosen ${ }^{(*)}$ under H_{0}.
${ }^{(*)}$: chosen refers to the max-operation
$\Rightarrow L R_{10}$ quantifies the maximum evidence for H_{1} (in a comparison with H_{0})

From Likelihood Ratio to Bayes Factor III

Introducing Prior Probabilities:

$$
P\left(H_{1}\right) \text { and } P\left(H_{0}\right)
$$

From Likelihood Ratio to Bayes Factor III

Introducing Prior Probabilities:

$$
P\left(H_{1}\right) \text { and } P\left(H_{0}\right)
$$

Bayes Rule:

$$
\underbrace{\frac{P\left(H_{1} \mid \text { data }\right)}{P\left(H_{0} \mid \text { data }\right)}}_{\text {PosteriorOdds }}=L R_{10} \cdot \underbrace{\frac{P\left(H_{1}\right)}{P\left(H_{0}\right)}}_{\text {PriorOdds }}
$$

The data is used to learn about $P\left(H_{1}\right)$ and $P\left(H_{0}\right)$.

From Likelihood Ratio to Bayes Factor III

Introducing Prior Probabilities:

$$
P\left(H_{1}\right) \text { and } P\left(H_{0}\right)
$$

Bayes Rule:

$$
\underbrace{\frac{P\left(H_{1} \mid \text { data }\right)}{P\left(H_{0} \mid \text { data }\right)}}_{\text {PosteriorOdds }}=L R_{10} \cdot \underbrace{\frac{P\left(H_{1}\right)}{P\left(H_{0}\right)}}_{\text {PriorOdds }}
$$

The data is used to learn about $P\left(H_{1}\right)$ and $P\left(H_{0}\right)$.

Interpretation of Posterior Probabilities:

After seeing the data, the maximum belief in H_{1} is $P\left(H_{1} \mid\right.$ data $)$.

From Likelihood Ratio to Bayes Factor IV

Introducing Parameter Priors:

$$
P_{\mu}, \quad P_{\sigma^{2}} \quad \text { and } \quad P_{\delta}
$$

From Likelihood Ratio to Bayes Factor IV

Introducing Parameter Priors:

$$
P_{\mu}, \quad P_{\sigma^{2}} \quad \text { and } \quad P_{\delta}
$$

Bayesian Hypotheses:

$$
\begin{array}{lllll}
& \mu \sim P_{\mu} & & & \mu \sim P_{\mu} \\
H_{0}^{B}: & \sigma^{2} \sim P_{\sigma^{2}} & \text { vs. } & H_{1}^{B}: & \sigma^{2} \sim P_{\sigma^{2}} \\
& \delta=0 & & & \delta \sim P_{\delta}
\end{array}
$$

P_{δ} is called test-relevant prior.

From Likelihood Ratio to Bayes Factor IV

Introducing Parameter Priors:

$$
P_{\mu}, \quad P_{\sigma^{2}} \quad \text { and } \quad P_{\delta}
$$

Bayesian Hypotheses:

$$
\begin{array}{lllll}
& \mu \sim P_{\mu} & & & \mu \sim P_{\mu} \\
H_{0}^{B}: & \sigma^{2} \sim P_{\sigma^{2}} & \text { vs. } & H_{1}^{B}: & \sigma^{2} \sim P_{\sigma^{2}} \\
& \delta=0 & & & \delta \sim P_{\delta}
\end{array}
$$

P_{δ} is called test-relevant prior.
Marginalized Likelihoods:

$$
\begin{aligned}
m\left(\text { data } \mid H_{1}^{B}\right) & =\iiint f\left(\text { data } \mid \mu, \sigma^{2}, \delta\right) P_{\mu}(\mu) P_{\sigma^{2}}\left(\sigma^{2}\right) P_{\delta}(\delta) d \delta d \sigma^{2} d \mu \\
m\left(\text { data } \mid H_{0}^{B}\right) & =\iint f\left(\text { data } \mid \mu, \sigma^{2}, \delta=0\right) P_{\mu}(\mu) P_{\sigma^{2}}\left(\sigma^{2}\right) d \sigma^{2} d \mu
\end{aligned}
$$

From Likelihood Ratio to Bayes Factor V

Bayes Factor:

$$
B F_{10}=\frac{m\left(\operatorname{data} \mid H_{1}^{B}\right)}{m\left(\operatorname{data} \mid H_{0}^{B}\right)}
$$

From Likelihood Ratio to Bayes Factor V

Bayes Factor:

$$
B F_{10}=\frac{m\left(\text { data } \mid H_{1}^{B}\right)}{m\left(\text { data } \mid H_{0}^{B}\right)}
$$

Bayes Rule:

$$
\frac{P\left(H_{1}^{B} \mid \text { data }\right)}{P\left(H_{0}^{B} \mid \text { data }\right)}=B F_{10} \cdot \frac{P\left(H_{1}^{B}\right)}{P\left(H_{0}^{B}\right)}
$$

The data is used to learn about $P\left(H_{1}^{B}\right)$ and $P\left(H_{0}^{B}\right)$. Nothing can be learned about the parameter priors. $\Rightarrow P_{\delta}$ is part of the H_{1}^{B}-model.

From Likelihood Ratio to Bayes Factor V

Bayes Factor:

$$
B F_{10}=\frac{m\left(\text { data } \mid H_{1}^{B}\right)}{m\left(\text { data } \mid H_{0}^{B}\right)}
$$

Bayes Rule:

$$
\frac{P\left(H_{1}^{B} \mid \text { data }\right)}{P\left(H_{0}^{B} \mid \text { data }\right)}=B F_{10} \cdot \frac{P\left(H_{1}^{B}\right)}{P\left(H_{0}^{B}\right)}
$$

The data is used to learn about $P\left(H_{1}^{B}\right)$ and $P\left(H_{0}^{B}\right)$. Nothing can be learned about the parameter priors. $\quad \Rightarrow P_{\delta}$ is part of the H_{1}^{B}-model.

Interpretation of BF:

The data is $B F_{10}$ times as much evidence for the model behind $m\left(\right.$ data $\left.\mid H_{1}^{B}\right)$ than for the model behind $m\left(\right.$ data $\left.\mid H_{0}^{B}\right)$.

What is the model behind $m\left(\operatorname{data} \mid H_{1}^{\beta}\right)$?

What is the model behind $m\left(\operatorname{data} \mid H_{1}^{\beta}\right)$?

Again Bayes Rule:

$$
P\left(H_{1}^{B} \mid \text { data }\right)=\frac{m\left(\text { data } \mid H_{1}^{B}\right) \cdot P\left(H_{1}\right)}{P(\text { data })}
$$

What is the model behind $m\left(\operatorname{data} \mid H_{1}^{B}\right)$?

Again Bayes Rule:

$$
P\left(H_{1}^{B} \mid \text { data }\right)=\frac{m\left(\text { data } \mid H_{1}^{B}\right) \cdot P\left(H_{1}\right)}{P(\text { data })}
$$

In order to apply Bayes Rule, $m\left(\right.$ data $\left.\mid H_{1}^{B}\right)$ needs to be a likelihood, which describes the data-generating process.

What is the model behind $m\left(\operatorname{data} \mid H_{1}^{B}\right)$?

Again Bayes Rule:

$$
P\left(H_{1}^{B} \mid \text { data }\right)=\frac{m\left(\text { data } \mid H_{1}^{B}\right) \cdot P\left(H_{1}\right)}{P(\text { data })}
$$

In order to apply Bayes Rule, $m\left(\right.$ data $\left.\mid H_{1}^{B}\right)$ needs to be a likelihood, which describes the data-generating process.
So the model behind $m\left(\right.$ data $\left.\mid H_{1}^{B}\right)$ models a data-generating process with likelihood

$$
m\left(\text { data } \mid H_{1}^{B}\right)=\iiint f\left(\text { data } \mid \mu, \sigma^{2}, \delta\right) P_{\mu}(\mu) P_{\sigma^{2}}\left(\sigma^{2}\right) P_{\delta}(\delta) d \delta d \sigma^{2} d \mu
$$

What is the model behind $m\left(\operatorname{data} \mid H_{1}^{B}\right)$?

Again Bayes Rule:

$$
P\left(H_{1}^{B} \mid \text { data }\right)=\frac{m\left(\text { data } \mid H_{1}^{B}\right) \cdot P\left(H_{1}\right)}{P(\text { data })}
$$

In order to apply Bayes Rule, $m\left(\right.$ data $\left.\mid H_{1}^{B}\right)$ needs to be a likelihood, which describes the data-generating process.
So the model behind $m\left(\right.$ data $\left.\mid H_{1}^{B}\right)$ models a data-generating process with likelihood

$$
m\left(\text { data } \mid H_{1}^{B}\right)=\iiint f\left(\text { data } \mid \mu, \sigma^{2}, \delta\right) P_{\mu}(\mu) P_{\sigma^{2}}\left(\sigma^{2}\right) P_{\delta}(\delta) d \delta d \sigma^{2} d \mu
$$

\Rightarrow A model with subjective components!

What is the model behind $m\left(\operatorname{data} \mid H_{1}^{B}\right)$?

Again Bayes Rule:

$$
P\left(H_{1}^{B} \mid \text { data }\right)=\frac{m\left(\text { data } \mid H_{1}^{B}\right) \cdot P\left(H_{1}\right)}{P(\text { data })}
$$

In order to apply Bayes Rule, $m\left(\right.$ data $\left.\mid H_{1}^{B}\right)$ needs to be a likelihood, which describes the data-generating process.
So the model behind $m\left(\right.$ data $\left.\mid H_{1}^{B}\right)$ models a data-generating process with likelihood

$$
m\left(d a t a \mid H_{1}^{B}\right)=\iiint f\left(\text { data } \mid \mu, \sigma^{2}, \delta\right) P_{\mu}(\mu) P_{\sigma^{2}}\left(\sigma^{2}\right) P_{\delta}(\delta) d \delta d \sigma^{2} d \mu
$$

\Rightarrow A model with subjective components!
[The Bayes Factor does not directly answer: Is there an effect?]

Necessity of properly specifying P_{δ}

Necessity of properly specifying P_{δ}

The test-relevant prior P_{δ} is part of the H_{1}^{B}-model.

Necessity of properly specifying P_{δ}

The test-relevant prior P_{δ} is part of the H_{1}^{B}-model.
P_{δ} need to be specified properly.

Necessity of properly specifying P_{δ}

The test-relevant prior P_{δ} is part of the H_{1}^{B}-model.
P_{δ} need to be specified properly.
If not: H_{1}^{B}-model misspecifies the experimental situation. BF results would be worthless.

How to properly specify P_{δ} ? I

How to properly specify P_{δ} ? I

What is P_{δ} ?

P_{δ} is a probability distribution, which specifies the available knowledge and beliefs about δ prior to data collection. It should reflect the expectations about δ under $H_{1}^{B}(?)$.

How to properly specify P_{δ} ? I

What is P_{δ} ?

P_{δ} is a probability distribution, which specifies the available knowledge and beliefs about δ prior to data collection. It should reflect the expectations about δ under $H_{1}^{B}(?)$.

What is state of the art?
Predominantly $P_{\delta} \sim \operatorname{Cauchy}(0, \sqrt{2} / 2)$.
Sometimes $P_{\delta} \sim N(0,1)$ or $P_{\delta} \sim N\left(\mu_{\delta}, \sigma_{\delta}^{2}\right)$.

The Cauchy distribution

The Cauchy distribution

Cauchy(0,0.707)

Effect sizes:

$\delta=0.2$: small; $\delta=0.5$: medium; $\delta=0.8$: large
$\delta=1.8$: association gender - body height

How to properly specify P_{δ} ? II

How to properly specify P_{δ} ? II

About the absurdity of the Cauchy effect size prior:
Before seeing the data, the researcher is about 23.8% confident that $|\delta|$ is larger than one of the largest effect sizes in psychology.

How to properly specify P_{δ} ? II

About the absurdity of the Cauchy effect size prior:
Before seeing the data, the researcher is about 23.8% confident that $|\delta|$ is larger than one of the largest effect sizes in psychology.

I would offer bets :-)

How to properly specify P_{δ} ? II

About the absurdity of the Cauchy effect size prior:
Before seeing the data, the researcher is about 23.8% confident that $|\delta|$ is larger than one of the largest effect sizes in psychology.

I would offer bets :-)
Necessity of an imprecise effect size prior:
By default, precise information about δ is lacking. Else, no scientific investigation would be needed.
\Rightarrow A proper specification of P_{δ} should be imprecise.

A first imprecise Bayes Factor

A first imprecise Bayes Factor

Test-relevant prior:

$$
\delta \sim N\left(\mu_{\delta}, \sigma_{\delta}^{2}\right) \quad \text { with } \quad \mu_{\delta} \in\left[\underline{\mu}_{\delta} ; \bar{\mu}_{\delta}\right], \quad \sigma_{\delta}^{2} \in\left[\underline{\sigma}_{\delta}^{2} ; \bar{\sigma}_{\delta}^{2}\right]
$$

A first imprecise Bayes Factor

Test-relevant prior:

$$
\begin{array}{ll}
\delta \sim N\left(\mu_{\delta}, \sigma_{\delta}^{2}\right) \quad \text { with } \quad \mu_{\delta} \in\left[\underline{\mu}_{\delta} ; \bar{\mu}_{\delta}\right], \quad \sigma_{\delta}^{2} \in\left[\underline{\sigma}_{\delta}^{2} ; \bar{\sigma}_{\delta}^{2}\right] \\
\mathcal{M}:=\left\{P_{\delta}=N\left(\mu_{\delta}, \sigma_{\delta}^{2}\right) \mid \mu_{\delta} \in\left[\underline{\mu}_{\delta} ; \bar{\mu}_{\delta}\right],\right. & \left.\sigma_{\delta}^{2} \in\left[\underline{\sigma}_{\delta}^{2} ; \bar{\sigma}_{\delta}^{2}\right]\right\}
\end{array}
$$

A first imprecise Bayes Factor

Test-relevant prior:

$$
\begin{array}{ll}
\delta \sim N\left(\mu_{\delta}, \sigma_{\delta}^{2}\right) \quad \text { with } \quad \mu_{\delta} \in\left[\underline{\mu}_{\delta} ; \bar{\mu}_{\delta}\right], \quad \sigma_{\delta}^{2} \in\left[\underline{\sigma}_{\delta}^{2} ; \bar{\sigma}_{\delta}^{2}\right] \\
\mathcal{M}:=\left\{P_{\delta}=N\left(\mu_{\delta}, \sigma_{\delta}^{2}\right) \mid \mu_{\delta} \in\left[\underline{\mu}_{\delta} ; \bar{\mu}_{\delta}\right],\right. & \left.\sigma_{\delta}^{2} \in\left[\underline{\sigma}_{\delta}^{2} ; \bar{\sigma}_{\delta}^{2}\right]\right\}
\end{array}
$$

Bayesian Hypotheses:

$$
\begin{array}{lllll}
& \mu \sim P_{\mu} & & \mu \sim P_{\mu} \\
H_{0}^{B}: & \sigma^{2} \sim P_{\sigma^{2}} \quad \text { vs. } \quad H_{1}^{B}: & \sigma^{2} \sim P_{\sigma^{2}} \\
& \delta=0 & & \delta \sim \mathcal{M}
\end{array}
$$

A first imprecise Bayes Factor

Test-relevant prior:

$$
\begin{array}{ll}
\delta \sim N\left(\mu_{\delta}, \sigma_{\delta}^{2}\right) \quad \text { with } \quad \mu_{\delta} \in\left[\underline{\mu}_{\delta} ; \bar{\mu}_{\delta}\right], \quad \sigma_{\delta}^{2} \in\left[\underline{\sigma}_{\delta}^{2} ; \bar{\sigma}_{\delta}^{2}\right] \\
\mathcal{M}:=\left\{P_{\delta}=N\left(\mu_{\delta}, \sigma_{\delta}^{2}\right) \mid \mu_{\delta} \in\left[\underline{\mu}_{\delta} ; \bar{\mu}_{\delta}\right],\right. & \left.\sigma_{\delta}^{2} \in\left[\underline{\sigma}_{\delta}^{2} ; \bar{\sigma}_{\delta}^{2}\right]\right\}
\end{array}
$$

Bayesian Hypotheses:

$$
\begin{array}{lllll}
& \mu \sim P_{\mu} & & \mu \sim P_{\mu} \\
H_{0}^{B}: & \sigma^{2} \sim P_{\sigma^{2}} & \text { vs. } \quad H_{1}^{B}: \quad \sigma^{2} \sim P_{\sigma^{2}} \\
& \delta=0 & & \delta \sim \mathcal{M}
\end{array}
$$

Imprecise Bayes Factor:

$$
I B F_{10}=\left[\min _{P_{\delta} \in \mathcal{M}} B F_{10} ; \max _{P_{\delta} \in \mathcal{M}} B F_{10}\right]
$$

Example I

Example I

$$
\delta \sim N\left(\mu_{\delta}, \sigma_{\delta}^{2}\right) \quad \text { with } \quad \mu_{\delta} \in[0 ; 0.5], \quad \sigma_{\delta}^{2} \in[0.5 ; 3]
$$

Example II

Example II

$$
I B F_{10}=[1.84 ; 5.99]
$$

Example II

$$
I B F_{10}=[1.84 ; 5.99]
$$

Interpretation:

The data is between 1.84 and 5.99 times as much evidence for H_{1}^{B} than for H_{0}^{B},
i.e. for an effect with an effect size in accordance with the available knowledge about it than for no effect.
(ignoring P_{μ} and $P_{\sigma^{2}}$)

What is next?

What is next?

This was only a credal set of normal effect size distributions.

What is next?

This was only a credal set of normal effect size distributions. \Rightarrow p-boxes as effect size priors.

Thank you for your Attention!

Thank you for your Attention!

