The necessity and formulation of a robust (imprecise) Bayes Factor

Patrick Schwaferts

Ludwig-Maximilians-Universität München

01. August 2018

Patrick Schwaferts (LMU)

Imprecise Bayes Factor

01. August 2018 1 / 18

Patrick Schwaferts (LMU)

- ∢ ⊒ →

2

Reproducibility crisis in psychological research

Reproducibility crisis in psychological research

Rise of popularity of Bayesian Statistics: promoted as being the solution

Reproducibility crisis in psychological research

Rise of popularity of Bayesian Statistics: promoted as being *the* solution

Bayes Factor for comparing two hypotheses ("Bayesian *t*-Test")

Patrick Schwaferts (LMU)

Informal:

A generalization of the Likelihood Ratio to include prior information.

From Likelihood Ratio to Bayes Factor I

Patrick Schwaferts (LMU)

Situation:

Two independent groups with observations x_i and y_j and model

$$egin{aligned} X_i &\sim \mathcal{N}(\mu,\sigma^2), \quad i=1,...,n, \ Y_j &\sim \mathcal{N}(\mu+lpha,\sigma^2), \quad j=1,...,m, \end{aligned}$$

with parameters $\mu \text{, }\sigma^2 \text{, }\delta = \alpha / \sigma \text{.}$

Situation:

Two independent groups with observations x_i and y_j and model

$$X_i \sim N(\mu, \sigma^2), \quad i = 1, ..., n,$$

 $Y_j \sim N(\mu + \alpha, \sigma^2), \quad j = 1, ..., m,$

with parameters μ , σ^2 , $\delta=\alpha/\sigma.$

Research Question:

Is there a difference between both groups?

Situation:

Two independent groups with observations x_i and y_j and model

$$X_i \sim N(\mu, \sigma^2), \quad i = 1, ..., n,$$

 $Y_j \sim N(\mu + \alpha, \sigma^2), \quad j = 1, ..., m,$

with parameters μ , σ^2 , $\delta=\alpha/\sigma.$

Research Question:

Is there a difference between both groups?

Hypotheses:

$$H_0: \delta = 0$$
 vs. $H_1: \delta \neq 0$

From Likelihood Ratio to Bayes Factor II

Likelihood Ratio:

$$LR_{10} = \frac{\max_{\mu,\sigma^2,\delta} f(data|\mu,\sigma^2,\delta)}{\max_{\mu,\sigma^2} f(data|\mu,\sigma^2,\delta=0)}$$

э

< □ > < 同 >

From Likelihood Ratio to Bayes Factor II

Likelihood Ratio:

$$LR_{10} = \frac{\max_{\mu,\sigma^2,\delta} f(data|\mu,\sigma^2,\delta)}{\max_{\mu,\sigma^2} f(data|\mu,\sigma^2,\delta=0)}$$

Law of Likelihood:

The extent to which the data support one model over another (:= *evidence*) is equal to the ratio of their likelihoods.

From Likelihood Ratio to Bayes Factor II

Likelihood Ratio:

$$LR_{10} = \frac{\max_{\mu,\sigma^2,\delta} f(data|\mu,\sigma^2,\delta)}{\max_{\mu,\sigma^2} f(data|\mu,\sigma^2,\delta=0)}$$

Law of Likelihood:

The extent to which the data support one model over another (:= evidence) is equal to the ratio of their likelihoods.

Interpretation of LR:

The data is IR_{10} times as much evidence for the model chosen^(*) under H_1 than for the model chosen^(*) under H_0 .

- (*): *chosen* refers to the *max*-operation
- \Rightarrow $L\!R_{10}$ quantifies the maximum evidence for H_1 (in a comparison with H_0)

From Likelihood Ratio to Bayes Factor III

Introducing Prior Probabilities:

 $P(H_1)$ and $P(H_0)$

From Likelihood Ratio to Bayes Factor III

Introducing Prior Probabilities:

 $P(H_1)$ and $P(H_0)$

Bayes Rule:

The data is used to learn about $P(H_1)$ and $P(H_0)$.

Introducing Prior Probabilities:

 $P(H_1)$ and $P(H_0)$

Bayes Rule:

The data is used to learn about $P(H_1)$ and $P(H_0)$.

Interpretation of Posterior Probabilities:

After seeing the data, the maximum belief in H_1 is $P(H_1|data)$.

From Likelihood Ratio to Bayes Factor IV

Introducing Parameter Priors:

 P_{μ} , P_{σ^2} and P_{δ}

Image: Image:

From Likelihood Ratio to Bayes Factor IV

Introducing Parameter Priors:

 P_{μ} , P_{σ^2} and P_{δ}

Bayesian Hypotheses:

$$\begin{array}{cccc} \mu \sim P_{\mu} & \mu \sim P_{\mu} \\ H_0^{\mathcal{B}} : & \sigma^2 \sim P_{\sigma^2} & \text{vs.} & H_1^{\mathcal{B}} : & \sigma^2 \sim P_{\sigma^2} \\ \delta &= 0 & \delta & \sim P_{\delta} \end{array}$$

 P_{δ} is called *test-relevant prior*.

From Likelihood Ratio to Bayes Factor IV

Introducing Parameter Priors:

 P_{μ} , P_{σ^2} and P_{δ}

Bayesian Hypotheses:

$$\begin{array}{cccc} \mu \sim P_{\mu} & \mu \sim P_{\mu} \\ H_0^{\mathcal{B}} : & \sigma^2 \sim P_{\sigma^2} & \text{vs.} & H_1^{\mathcal{B}} : & \sigma^2 \sim P_{\sigma^2} \\ \delta &= 0 & \delta & \sim P_{\delta} \end{array}$$

 P_{δ} is called *test-relevant prior*.

Marginalized Likelihoods:

$$m(data|H_1^B) = \iiint f(data|\mu, \sigma^2, \delta) P_{\mu}(\mu) P_{\sigma^2}(\sigma^2) P_{\delta}(\delta) d\delta d\sigma^2 d\mu$$
$$m(data|H_0^B) = \iint f(data|\mu, \sigma^2, \delta = 0) P_{\mu}(\mu) P_{\sigma^2}(\sigma^2) d\sigma^2 d\mu$$

From Likelihood Ratio to Bayes Factor V

Bayes Factor:

$$B\!F_{10}=rac{m(data|H_1^B)}{m(data|H_0^B)}$$

From Likelihood Ratio to Bayes Factor V

Bayes Factor:

$$B\!F_{10}=rac{m(data|H_1^B)}{m(data|H_0^B)}$$

Bayes Rule:

$$\frac{P(H_1^B|data)}{P(H_0^B|data)} = BF_{10} \cdot \frac{P(H_1^B)}{P(H_0^B)}$$

The data is used to learn about $P(H_1^B)$ and $P(H_0^B)$. Nothing can be learned about the parameter priors. $\Rightarrow P_{\delta}$ is part of the H_1^B -model.

From Likelihood Ratio to Bayes Factor V

Bayes Factor:

$$B\!F_{10}=rac{m(data|H_1^B)}{m(data|H_0^B)}$$

Bayes Rule:

$$\frac{P(H_1^B|data)}{P(H_0^B|data)} = BF_{10} \cdot \frac{P(H_1^B)}{P(H_0^B)}$$

The data is used to learn about $P(H_1^B)$ and $P(H_0^B)$. Nothing can be learned about the parameter priors. $\Rightarrow P_{\delta}$ is part of the H_1^B -model.

Interpretation of BF:

The data is BF_{10} times as much evidence for the model behind $m(data|H_1^B)$ than for the model behind $m(data|H_0^B)$.

Again Bayes Rule:

$$P(H_1^B|data) = rac{m(data|H_1^B) \cdot P(H_1)}{P(data)}$$

Again Bayes Rule:

$$P(H_1^B|data) = rac{m(data|H_1^B) \cdot P(H_1)}{P(data)}$$

In order to apply Bayes Rule, $m(data|H_1^B)$ needs to be a likelihood, which describes the data-generating process.

Again Bayes Rule:

$$P(H_1^B|data) = rac{m(data|H_1^B) \cdot P(H_1)}{P(data)}$$

In order to apply Bayes Rule, $m(data|H_1^B)$ needs to be a likelihood, which describes the data-generating process.

So the model behind $m(data|H_1^B)$ models a data-generating process with likelihood

$$m(data|H_1^B) = \iiint f(data|\mu,\sigma^2,\delta)P_\mu(\mu)P_{\sigma^2}(\sigma^2)P_\delta(\delta)d\delta d\sigma^2 d\mu$$

Again Bayes Rule:

$$P(H_1^B | \textit{data}) = rac{m(\textit{data} | H_1^B) \cdot P(H_1)}{P(\textit{data})}$$

In order to apply Bayes Rule, $m(data|H_1^B)$ needs to be a likelihood, which describes the data-generating process.

So the model behind $m(data|H_1^B)$ models a data-generating process with likelihood

$$m(data|H_1^B) = \iiint f(data|\mu,\sigma^2,\delta)P_\mu(\mu)P_{\sigma^2}(\sigma^2)P_\delta(\delta)d\delta d\sigma^2 d\mu$$

 \Rightarrow A model with subjective components!

Again Bayes Rule:

$$P(H_1^B | \textit{data}) = rac{m(\textit{data} | H_1^B) \cdot P(H_1)}{P(\textit{data})}$$

In order to apply Bayes Rule, $m(data|H_1^B)$ needs to be a likelihood, which describes the data-generating process.

So the model behind $m(data|H_1^B)$ models a data-generating process with likelihood

$$m(data|H_1^B) = \iiint f(data|\mu,\sigma^2,\delta)P_\mu(\mu)P_{\sigma^2}(\sigma^2)P_\delta(\delta)d\delta d\sigma^2 d\mu$$

 \Rightarrow A model with subjective components!

[The Bayes Factor does not directly answer: Is there an effect?]

Necessity of properly specifying P_{δ}

Image: A matched by the second sec

2

The test-relevant prior P_{δ} is part of the H_1^B -model.

The test-relevant prior P_{δ} is part of the H_1^B -model. P_{δ} need to be specified properly. The test-relevant prior P_{δ} is part of the H_1^B -model.

 P_{δ} need to be specified properly.

If not: H_1^B -model misspecifies the experimental situation. BF results would be worthless.

How to properly specify P_{δ} ? I

Patrick Schwaferts (LMU)

3

2

What is P_{δ} ?

 P_{δ} is a probability distribution, which specifies the available knowledge and beliefs about δ prior to data collection. It should reflect the expectations about δ under H_1^B (?).

What is P_{δ} ?

 P_{δ} is a probability distribution, which specifies the available knowledge and beliefs about δ prior to data collection. It should reflect the expectations about δ under H_1^B (?).

What is state of the art?

Predominantly $P_{\delta} \sim Cauchy(0, \sqrt{2}/2)$. Sometimes $P_{\delta} \sim N(0, 1)$ or $P_{\delta} \sim N(\mu_{\delta}, \sigma_{\delta}^2)$.

The Cauchy distribution

Patrick Schwaferts (LMU)

The Cauchy distribution

Effect sizes:

- $\delta=$ 0.2: small; $\delta=$ 0.5: medium; $\delta=$ 0.8: large
- $\delta=1.8:$ association gender body height

Patrick Schwaferts (LMU)

How to properly specify P_{δ} ? II

3

2

About the absurdity of the Cauchy effect size prior:

Before seeing the data, the researcher is about 23.8% confident that $|\delta|$ is larger than one of the largest effect sizes in psychology.

About the absurdity of the Cauchy effect size prior:

Before seeing the data, the researcher is about 23.8% confident that $|\delta|$ is larger than one of the largest effect sizes in psychology.

I would offer bets :-)

About the absurdity of the Cauchy effect size prior:

Before seeing the data, the researcher is about 23.8% confident that $|\delta|$ is larger than one of the largest effect sizes in psychology.

I would offer bets :-)

Necessity of an imprecise effect size prior:

By default, precise information about δ is lacking. Else, no scientific investigation would be needed.

 \Rightarrow A proper specification of P_{δ} should be imprecise.

Patrick Schwaferts (LMU)

Test-relevant prior:

$$\delta \sim \mathcal{N}(\mu_{\delta}, \sigma_{\delta}^2) \quad \text{with} \quad \mu_{\delta} \in \left[\underline{\mu}_{\delta}; \overline{\mu}_{\delta}\right], \quad \sigma_{\delta}^2 \in \left[\underline{\sigma}_{\delta}^2; \overline{\sigma}_{\delta}^2\right]$$

A first imprecise Bayes Factor

Test-relevant prior:

$$\delta \sim \mathcal{N}(\mu_{\delta}, \sigma_{\delta}^{2}) \quad \text{with} \quad \mu_{\delta} \in \left[\underline{\mu}_{\delta}; \overline{\mu}_{\delta}\right], \quad \sigma_{\delta}^{2} \in \left[\underline{\sigma}_{\delta}^{2}; \overline{\sigma}_{\delta}^{2}\right]$$
$$\mathcal{M} := \left\{ P_{\delta} = \mathcal{N}(\mu_{\delta}, \sigma_{\delta}^{2}) \mid \mu_{\delta} \in \left[\underline{\mu}_{\delta}; \overline{\mu}_{\delta}\right], \sigma_{\delta}^{2} \in \left[\underline{\sigma}_{\delta}^{2}; \overline{\sigma}_{\delta}^{2}\right] \right\}$$

A first imprecise Bayes Factor

Test-relevant prior:

$$\delta \sim \mathcal{N}(\mu_{\delta}, \sigma_{\delta}^{2}) \quad \text{with} \quad \mu_{\delta} \in \left[\underline{\mu}_{\delta}; \overline{\mu}_{\delta}\right], \quad \sigma_{\delta}^{2} \in \left[\underline{\sigma}_{\delta}^{2}; \overline{\sigma}_{\delta}^{2}\right]$$
$$\mathcal{M} := \left\{ P_{\delta} = \mathcal{N}(\mu_{\delta}, \sigma_{\delta}^{2}) \mid \mu_{\delta} \in \left[\underline{\mu}_{\delta}; \overline{\mu}_{\delta}\right], \sigma_{\delta}^{2} \in \left[\underline{\sigma}_{\delta}^{2}; \overline{\sigma}_{\delta}^{2}\right] \right\}$$

Bayesian Hypotheses:

$$\begin{array}{ll} \mu \sim P_{\mu} & \mu \sim P_{\mu} \\ H_{0}^{\mathsf{B}}: & \sigma^{2} \sim P_{\sigma^{2}} \\ \delta &= 0 \end{array} \quad \text{vs.} \quad H_{1}^{\mathsf{B}}: & \sigma^{2} \sim P_{\sigma^{2}} \\ \delta &\sim \mathcal{M} \end{array}$$

э

< □ > < 同 >

A first imprecise Bayes Factor

Test-relevant prior:

$$\delta \sim \mathcal{N}(\mu_{\delta}, \sigma_{\delta}^{2}) \quad \text{with} \quad \mu_{\delta} \in \left[\underline{\mu}_{\delta}; \overline{\mu}_{\delta}\right], \quad \sigma_{\delta}^{2} \in \left[\underline{\sigma}_{\delta}^{2}; \overline{\sigma}_{\delta}^{2}\right]$$
$$\mathcal{M} := \left\{ P_{\delta} = \mathcal{N}(\mu_{\delta}, \sigma_{\delta}^{2}) \mid \mu_{\delta} \in \left[\underline{\mu}_{\delta}; \overline{\mu}_{\delta}\right], \sigma_{\delta}^{2} \in \left[\underline{\sigma}_{\delta}^{2}; \overline{\sigma}_{\delta}^{2}\right] \right\}$$

Bayesian Hypotheses:

Imprecise Bayes Factor:

$$IBF_{10} = \left[\min_{P_{\delta} \in \mathcal{M}} BF_{10}; \max_{P_{\delta} \in \mathcal{M}} BF_{10}\right]$$

Example I

Patrick Schwaferts (LMU)

2

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Example I

 $\delta \sim N(\mu_{\delta}, \sigma_{\delta}^2)$ with $\mu_{\delta} \in [0; 0.5], \sigma_{\delta}^2 \in [0.5; 3]$

Example II

Patrick Schwaferts (LMU)

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Example II

$$IBF_{10} = [1.84; 5.99]$$

Patrick Schwaferts (LMU)

01. August 2018 16 / 18

æ

$\textit{IBF}_{10} = [1.84; 5.99]$

Interpretation:

The data is between 1.84 and 5.99 times as much evidence for H_1^B than for H_0^B , i.e. for an effect with an effect size in accordance with the available knowledge about it than for no effect.

(ignoring P_{μ} and P_{σ^2})

Patrick Schwaferts (LMU)

3

メロト メポト メヨト メヨト

This was only a credal set of normal effect size distributions.

This was only a credal set of normal effect size distributions. \Rightarrow p-boxes as effect size priors. Thank you for your Attention!