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Abstract

Possibility measures can be given a behavioural interpreta-
tion as systems of upper betting rates. As such, they should
arguably satisfy certain rationality requirements. Using a
version of Walley’s notion of epistemic independence suit-
able for possibility measures, we investigate what these
requirements tell us about the construction of independent
product possibility measures from given marginals.
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1 Introduction

Possibility theory, as originated by Zadeh [17], can be
described as collection of notions and techniques cen-
tered around the notion of apossibility measure. It is
mainly used for the representation and manipulation of
so-calledlinguistic uncertainty, produced by (potentially
vague) statements in natural language. It was conceived
as an alternative to probability theory, which, according to
Zadeh, does not lend itself very well to modelling linguis-
tic uncertainty. In parallel with probability theory, notions
such as possibility integrals, product possibility measures,
conditional possibility measures and possibilistic indepen-
dence have been developed [2, 6, 7]. Possibility measures
have also been studied under different names and guises,
and in other contexts, see for instance [1, 9, 10, 11, 12].

In recent years, quite some effort has been invested in the
study of possibility measures in the framework of the the-
ory of imprecise probabilities [13]. In this approach, the
possibility of some event is given the behavioural inter-
pretation of a subject’supper probability, or upper bet-
ting rate, for the event, i.e., the infimum rate at which the
subject is willing to take bets on the event. A possibility
measure then represents a collection of such upper betting
rates. Because specifying an upper betting rate amounts to
a commitment to act (bet) in certain ways, upper probabil-
ities and in particular possibility measures are subject to a

number of rationality, or consistency, requirements, called
avoiding sure lossandcoherence. It turns out thatnormal
possibility measures satisfy these requirements, and can
therefore be considered as reasonable imprecise probabil-
ity models [3, 4, 5, 14]. So can (precise) probability mea-
sures. This points to a distinct advantage of the unifying
approach using the theory of imprecise probabilities: it al-
lows the comparison of both types of measures in a single
framework, using a common language and the same (be-
havioural) interpretation. This has for instance been done
in a recent study [16], where it is argued that possibility
measures indeed seem to be better suited for modelling
linguistic uncertainty than probability measures.

This being said, it is by no means obvious that all of what
is commonly understood as ‘possibility theory’ will get
similar backing from the theory of imprecise probabili-
ties: the rationality criteria of avoiding sure loss and co-
herence can for instance be used to weed out those no-
tions and techniques which are inconsistent with the be-
havioural interpretation of possibility measures as upper
probabilities. To give an example, in contradistinction to
probability theory, a large variety of rules have been pro-
posed for conditioning a possibility measure (see for in-
stance the overviews in [2, 7, 15]). In a recent paper [15],
Walley and De Cooman have shown that most of these
rules avoid sure loss, but do not satisfy the stricter require-
ment of coherence. They have also suggested a number of
new conditioning rules that guarantee coherence.

Two variables are said to beepistemically independentto a
subject when new knowledge about the value that one vari-
able assumes, does not change his beliefs about the value
the other variable takes [13, Chapter 9]. In the present pa-
per, we study some aspects of this notion of independence
for possibility measures. More specifically, we investigate
what the rationality criteria of avoiding sure loss and co-
herence tell us about the construction of independent joint
possibility measures from given marginal ones.

We have organised the paper as follows. In Section 2,
we briefly review definitions and basic results concerning
the interpretation of possibility measures as upper betting



rates, necessary for understanding much of what follows.
In Section 3, we formulate a definition of epistemic in-
dependence inspired by Walley’s original definition [13],
and suitable in a ‘possibilistic’ context. We also derive a
necessary and sufficient condition, in terms of sets of dom-
inated probability measures, for the consistency of a joint
possibility measure with its marginals, under the epistemic
independence assumption. This condition is quite com-
plicated, but we show in Section 4 that it can be sim-
plified significantly when one of the marginal possibil-
ity measures is unimodal: we obtain a characterisation of
the coherent product possibility measures through an up-
per bound. The study for the plurimodal case seems to
be much harder, and we present a simplified sufficient,
and a different necessary, condition for coherence under
the epistemic independence assumption in Section 5. Sec-
tion 6 concludes the paper with additional discussion.

2 Preliminary notions and results

A possibility measureΠ on a finite1 setΩ is a map de-
fined on the power set℘(Ω) of Ω and taking values in
the real unit interval[0, 1], that satisfiesΠ(∅) = 0 and
that is moreovermaxitive: for all subsetsA andB of Ω,
Π(A ∪ B) = max{Π(A),Π(B)}. It is completely deter-
mined by its(possibility) distributionπ : Ω → [0, 1], de-
fined byπ(ω) = Π({ω}) for all ω ∈ Ω. Indeed, we have
Π(A) = max{π(ω) : ω ∈ A} for any non-emptyA ⊆ Ω.

Possibility measures can be incorporated into the be-
havioural theory of imprecise probabilities [13] by inter-
preting them as upper probabilities: for any eventA ⊆ Ω,
Π(A) is then a subject’s upper probability ofA, i.e., his in-
fimum acceptable rate fortakingbetson A, or one minus
his supremum acceptable rate for bettingagainstA. This
means that the subject is disposed to accept a bet whose
outcome isx − 1 if A occurs, andx if A doesn’t occur,
for all x > Π(A). It turns out [3, 4, 14] that a possibil-
ity measureΠ with this interpretation satisfies the ratio-
nality criteria of avoiding sure loss and coherence2 if and
only if it is normal, i.e., if Π(Ω) = 1. We shall therefore
only consider normal possibility measures in what follows.
Normality implies that the distributionπ has at least one
mode(or modal value)ωo, for whichπ(ωo) = 1. If there is
only one such mode, thenπ (andΠ) is calledunimodal. A
distribution with more than one mode is calledplurimodal.

Consider two variablesX andY taking values in the re-
spective finite setsX andY. We only consider the inter-
esting case that bothX andY have more than one element.
We assume that a subject has certain beliefs about which
values these variables assume, and that he models these

1We only deal with possibility measures onfinitesets in this paper.
2We assume that the reader is familiar with these basic consistency

requirements in the theory of imprecise probabilities. See [3, 4, 13, 14]
for more details.

beliefs using a possibility measureΠX,Y onX × Y , with
distributionπX,Y .3 ForC ⊆ X ×Y , ΠX,Y (C) is the sub-
ject’s upper probability for the event that(X, Y ) assumes
a value inC, and for(x, y) ∈ X × Y , πX,Y (x, y) is his
upper probability that(X,Y ) assumes the value(x, y).

The marginals ΠX and ΠY of the so-calledjoint pos-
sibility measureΠX,Y are defined as follows.ΠX is a
possibility measure onX , andΠX(A) = ΠX,Y (A × Y)
is the subject’s upper probability that the variableX as-
sumes a value inA ⊆ X (regardless of what valueY
takes); similarly,ΠY is a possibility measure onY and
ΠY (B) = ΠX,Y (X × B) is his upper probability thatY
takes a value inB ⊆ Y . We denote the possibility distri-
butions ofΠX andΠY by πX andπY respectively.

Conditional possibility measures [2, 3, 6, 7] can be given
the behavioural interpretation ofupdatedupper probabili-
ties [3, 15]. ΠX|Y (A|y) is then interpreted as a subject’s
infimum acceptable rate for taking bets on the event thatX
assumes a value inA ⊆ X , after learning only thatY takes
the valuey ∈ Y ; and similarly forΠY |X(B|x). For each
x ∈ X , ΠY |X(·|x) is assumed to be a possibility measure
on Y, with distributionπY |X(·|x); and for eachy ∈ Y ,
ΠX|Y (·|y) is assumed to be a possibility measure onX ,
with distributionπX|Y (·|y).4

Since on a behavioural interpretation, the joint and the
conditional possibility measures represent a subject’s dis-
positions to act in certain ways, they should satisfy certain
rationality requirements, not only separately (they should
all be normal!) butalso taken together. A thorough dis-
cussion of such criteria in the general context of impre-
cise probabilities was given by Walley [13]. The special
case of possibility measures was discussed by Walley and
De Cooman [15], who also investigated which of a large
number of so-called conditioning rules for possibility mea-
sures, available in the literature, satisfy these criteria. We
refer to their work for both motivation and mathematical
development. For the purposes of the present paper, it will
suffice to recall the following characterisation of the crite-
ria of avoiding sure loss and of coherence5 of the joint and
conditional possibility distributions (or equivalently, mea-
sures) in terms of sets of dominated probability measures.
It can be easily inferred from Lemma 3 and the proof of
Theorem 1 in [15]. LetMc be the set of probability mea-
sures defined on the power set ofX ×Y and satisfying the
following inequalities:

(C1) P (A) ≤ ΠX,Y (A) for all A ⊆ X × Y ; and

3A specific and interesting case where this assumption makes sense,
is discussed in [16].

4We only consider the case that the subject’s conditional upper prob-
abilities are possibility measures as well. This is perfectly compatible
with the epistemic independence assumption to be introduced and stud-
ied later.

5Walley [13, Section 7.1] speaks ofavoiding uniform sure lossand of
weak coherence; see also Technical Remark 2 in [15].



(C2) P (B × {y})/P (X × {y}) ≤ ΠX|Y (B|y) for all
B ⊆ X andy ∈ Y such thatP (X × {y}) > 0; and

(C3) P ({x} × C)/P ({x} × Y) ≤ ΠY |X(C|x) for all
C ⊆ Y andx ∈ X such thatP ({x} × Y) > 0.

Theorem 1. The joint possibility distributionπX,Y and
the conditional possibility distributions{πY |X(·|x) : x ∈
X} and{πX|Y (·|y) : y ∈ Y} avoid sure loss if and only if
Mc is non-empty. They are coherent if and only if there is
a non-empty setM of probabilities defined on the power
set ofX × Y such that:

1. ΠX,Y (A) = sup{P (A) : P ∈ M} for all A ⊆ X ×
Y.

2. ΠX|Y (B|y) ≥ sup{P (B×{y})/P (X ×{y}) : P ∈
M, P (X×{y}) > 0} for all B ⊆ X andy ∈ Y , with
equality whenβ(y) = max{πY (v) : v 6= y} < 1.

3. ΠY |X(C|x) ≥ sup{P ({x}×C)/P ({x}×Y) : P ∈
M, P ({x}×Y) > 0} for all C ⊆ Y andx ∈ X , with
equality whenη(x) = max{πX(u) : u 6= x} < 1.

If there is such a setM, thenMc is the largest such set.

A simplenecessarycondition for the coherence ofπX,Y ,
{πY |X(·|x) : x ∈ X} and{πX|Y (·|y) : y ∈ Y}was shown
in [15] to be the following:

πX,Y (x, y)

≤
πX|Y (x|y)πY |X(y|x)max{πX(x), πY (y)}

πX|Y (x|y) + πY |X(y|x)− πX|Y (x|y)πY |X(y|x)
(1)

for all x ∈ X andy ∈ Y, where0
0 is taken to be0.

3 Epistemic independence and coherence

We are now ready to address the question that will occupy
us in the rest of the paper. Assume that our subject has
beliefs (or information) about the values assumed by the
variablesX andY separately, and that he has modelled
his beliefs in the form of the marginal possibility distri-
butionsπX andπY . He also judges the variablesX and
Y to be epistemically6 independent: he judges that new
information about the value of one variable will not af-
fect his beliefs about the value the other variable assumes.
We intend to investigate what this independence assump-
tion, together with the rationality requirements of avoiding
sure loss and coherence, tells us about the joint distribution
πX,Y , which models the subject’s beliefs about the values
X andY assume jointly.

6There is more than one independence concept in possibility theory,
see for instance [2, 7]. Here, we use a version of Walley’s notion of epis-
temic independence [13], because it has the most natural interpretation
in the behavioural context of the theory of imprecise probabilities.

For probability measures (on finite spaces), the judge-
ment of epistemic independence together with coherence
leads uniquely to the product probability measure of the
marginals [13, Section 9.3.2]. We shall see that there is no
uniqueness in the case of possibility measures: for given
marginals, there is generally more than one joint possibil-
ity distribution that satisfies the independence and coher-
ence requirements. Our aim is to characterise such joint
distributions in a manner that is as simple as possible.

The first step we have to take is to apply the notion of
epistemic independence, formulated by Walley for general
imprecise models [13, Section 9] to the case that beliefs
are represented by possibility distributions.

Definition 1. We say thatY is irrelevant to X when
πX|Y (x|y) = πX(x) for all x ∈ X andy ∈ Y. We say
that X and Y are epistemically independentwhen X is
irrelevant toY andY is irrelevant toX.

Given the marginal distributionsπX andπY , the judge-
ment of epistemic independence leads at once to values
for the conditional distributions{πX|Y (·|y) : y ∈ Y} and
{πY |X(·|x) : x ∈ X}. We now only have to require that
the joint πX,Y (which has marginalsπX andπY ) should
be consistent with these conditional distributions.

Definition 2. We say that the normal joint possibility
distribution πX,Y avoids sure loss under epistemic in-
dependencewhen the joint distribution and the condi-
tional possibility distributions{πY |X(·|x) : x ∈ X} and
{πX|Y (·|y) : y ∈ Y} given by

πX|Y (x|y) = πX(x) and πY |X(y|x) = πY (y) (2)

for all x ∈ X andy ∈ Y, avoid sure loss. Similarly, we
say that the joint distributionπX,Y is coherent under epis-
temic independencewhen these possibility distributions
are coherent. In that case,πX,Y will be called aninde-
pendent joint distribution, or an independent productof
its marginalsπX andπY .

It turns out that the first consistency condition under epis-
temic independence is always satisfied. The second con-
dition is more involved, however. To see this, consider the
setMi (the counterpart of the setMc in the previous sec-
tion) of probability measures defined on the power set of
X × Y and satisfying the following inequalities:

(CI 1) P (A) ≤ ΠX,Y (A) for all A ⊆ X × Y ; and

(CI 2) P (B×{y})/P (X×{y}) ≤ ΠX(B) for all B ⊆ X
andy ∈ Y such thatP (X × {y}) > 0; and

(CI 3) P ({x}×C)/P ({x}×Y) ≤ ΠY (C) for all C ⊆ Y
andx ∈ X such thatP ({x} × Y) > 0.

Applying Theorem 1 leads to the following result, which
is the starting point for the further development.



Theorem 2. A normal joint possibility distributionπX,Y
always avoids sure loss under epistemic independence, or
in other words,Mi 6= ∅. It is coherent under epistemic in-
dependence if and only if there is a non-empty set of prob-
abilitiesM defined on the power set ofX × Y such that:

1. ΠX,Y (A) = sup{P (A) : P ∈ M} for all A ⊆ X ×
Y.

2. ΠX(B) ≥ sup{P (B × {y})/P (X × {y}) : P ∈
M, P (X × {y}) > 0} for all B ⊆ X and y ∈ Y,
with equality whenβ(y) < 1.

3. ΠY (C) ≥ sup{P ({x} × C)/P ({x} × Y) : P ∈
M, P ({x} × Y) > 0} for all C ⊆ Y and x ∈ X ,
with equality whenη(x) < 1.

If there is such a setM, thenMi is the greatest such set.

Proof. The coherence part follows immediately from The-
orem 1. The same theorem tells us thatπX,Y avoids sure
loss under epistemic independence if and only ifMi 6= ∅.
It therefore only remains to be shown thatMi 6= ∅. Con-
sider(x, y) ∈ X × Y such thatπX,Y (x, y) = 1, and con-
sequentlyπX(x) = πY (y) = 1 (there always are such
x and y, sinceπX,Y is normal). Define the (degener-
ate) probability measureP on the power set ofX × Y
by P (x, y) = 1. Then it is easy to see thatP ∈Mi.

We can also take a look at the necessary condition for co-
herence (1), mentioned in the previous section. Using the
epistemic independence relation (2), we find:

πX,Y (x, y) ≤ πX(x)πY (y)max{πX(x), πY (y)}
πX(x) + πY (y)− πX(x)πY (y)

(NC)

for all x ∈ X andy ∈ Y, where0
0 is taken to be0. This is

a very simplenecessarycondition for the coherence under
epistemic independence ofπX,Y , expressed only in terms
of the local valuesπX,Y (x, y), πX(x) andπY (y) of the
joint distribution and its marginals. We can easily deduce
from this condition certain properties that will be used re-
peatedly further on. Their proof is fairly straightforward,
and is therefore omitted.

Lemma 3. If the normal joint distributionπX,Y satisfies
the necessary condition(NC), then for all(x, y) ∈ X ×Y :

1. πX,Y (x, y) ≤ πX(x)πY (y);

2. if 0 < πX,Y (x, y) = πX(x) thenπY (y) = 1;

3. if πY is unimodal with unique modeyo, then
πX(x) = πX,Y (x, yo).

4. if 0 < πX(x) < 1 and 0 < πY (y) < 1 then
πX,Y (x, y) < πX(x)πY (y).

In the rest of this section, we investigate how the neces-
sary and sufficient condition of Theorem 2 can be simpli-
fied. Our efforts will culminate in Theorem 8, which is
the most important stepping stone for our investigation in
the following sections. First of all, in checking the coher-
ence condition, the following lemma will be very useful,
because it helps us verify whether a probability measure
belongs toMi or not. The proof is elementary, and there-
fore omitted.

Lemma 4. Let m be the number of elements inX , and
n the number of elements inY. Consider a probability
measureP defined on the power set ofX × Y.

1. Assume that themn elementsz = (x, y) ofX×Y are
labeled in such a way thatπX,Y (z1) ≤ πX,Y (z2) ≤
· · · ≤ πX,Y (zmn). ThenP satisfies condition(CI 1)
if and only if P (z1) + · · · + P (zj) ≤ πX,Y (zj) for
j = 1, . . . , nm.

2. Assume that them elements ofX are labeled in such
a way thatπX(x1) ≤ πX(x2) ≤ · · · ≤ πX(xm).
ThenP satisfies condition(CI 2) if and only if for
all y ∈ Y such thatP (X × {y}) > 0 and for j =
1, . . . ,m,

P (x1, y) + · · ·+ P (xj , y)
P (X × {y})

≤ πX(xj).

3. Assume that then elements ofY are labeled in such
a way thatπY (y1) ≤ πY (y2) ≤ · · · ≤ πY (yn). Then
P satisfies condition(CI 3) if and only if for all x ∈
X such thatP ({x} × Y) > 0 and forj = 1, . . . , n,

P (x, y1) + · · ·+ P (x, yj)
P ({x} × Y)

≤ πY (yj).

Interestingly, coherence under independence is not influ-
enced by removing from the setX elementsx such that
πX(x) = 0 and from the setY elementsy such that
πY (y) = 0.7 To see this, consider the marginal sets

X ′ = {x ∈ X : πX(x) > 0}
Y ′ = {y ∈ Y : πY (y) > 0}

and denote byΠ′X,Y the restriction ofΠX,Y to the power
set ofX ′ × Y ′. With this (normal) possibility measure,
with possibility distributionπ′X,Y , we may associate a set
M′

i of probability measures on the power set ofX ′ × Y ′
satisfying the (corresponding) properties(CI 1)–(CI 3),
which by Theorem 2 completely determines the coherence
under independence of the joint distributionπ′X,Y (or the
possibility measureΠ′X,Y ).

7For our subject, it is practically impossible that the variablesX and
Y assume such values, since he is disposed to betat all oddsagainst the
event that they do.



Proposition 5. Mi satisfies the conditions of Theorem 2
if and only if M′

i satisfies them, or in other words, the
normal joint distributionπX,Y is coherent under indepen-
dence if and only ifπ′X,Y is.

Proof. The proof is immediate if we observe that the ele-
ments ofMi and those ofM′

i are in one-to-one correspon-
dence, and thatM′

i consists of the restrictions toX ′ × Y ′
of the probabilities inMi.

This implies that our results will remain valid if, instead of
using condition (2) to define epistemic independence, we
use the alternative condition:

πX|Y (x|y) = πX(x) if πY (y) > 0

πY |X(y|x) = πY (y) if πX(x) > 0

for all (x, y) ∈ X × Y , which is sometimes found in the
literature (see for instance [8]).

Proposition 6. The set of probabilitiesMi satisfies the
first condition of Theorem 2 if and only if for all(x, y) in
X×Y there is aP inMi such thatP (x, y) = πX,Y (x, y).

Proof. We first show that the condition is sufficient. In-
deed, for anyA ⊆ X × Y , there is some(xA, yA) ∈ A
such thatΠX,Y (A) = πX,Y (xA, yA), and the condi-
tion tells us moreover that there is someP ∈ Mi such
that P (xA, yA) = πX,Y (xA, yA), whenceΠX,Y (A) ≤
P (A). Since for allQ ∈ Mi, condition (CI 1) tells
us thatQ(A) ≤ ΠX,Y (A), we infer thatΠX,Y (A) =
max{Q(A) : Q ∈ Mi}. Next, we show that the condi-
tion is necessary. Consider(x, y) ∈ X × Y . If Mi sat-
isfies the first condition of Theorem 2, thenπX,Y (x, y) =
sup{P (x, y) : P ∈Mi}. SinceMi is obviously closed in
the natural topology, this supremum is actually achieved
for someP ∈ Mi, or in other words, there is some
P ∈Mi such thatP (x, y) = πX,Y (x, y).

Proposition 7. If the normal joint distributionπX,Y satis-
fies the necessary condition(NC), then the setMi always
satisfies the second and third conditions of Theorem 2.

Proof. We show thatMi satisfies the second condition.
The proof for the third condition is completely similar (or
symmetrical). It follows from(CI 2) that we need only
prove that for allB ⊆ X :

ΠX(B)

= sup{P (B × {y})
P (X × {y})

: P ∈Mi, P (X × {y}) > 0},

whenβ(y) < 1. Let us suppose, therefore, thatβ(yo) < 1,
or in other words thatπY is unimodal with unique mode
yo. ConsiderB ⊆ X . Then there is somexB ∈ B such
thatΠX(B) = πX(xB). If ΠX(B) = 1, it follows from

Lemma 3 and the unimodality ofπY that1 = πX(xB) =
πX,Y (xB , yo). The probabilityP uniquely defined on the
power set ofX × Y by P (xB , yo) = 1 is easily shown
to belong toMi and to attain the desired equality. Let us
therefore consider the case thatΠX(B) < 1. Let x′ be
a modal point of the marginal distributionπX . Note that
x′ 6∈ B so x′ 6= xB . As πY is unimodal with unique
modeyo, we must have thatπX,Y (x′, yo) = 1. We also
infer from Lemma 3 thatπX,Y (xB , yo) = πX(xB). Con-
sider the probability measureP uniquely defined on the
power set ofX × Y by P (xB , yo) = πX,Y (xB , yo) and
P (x′, yo) = 1 − πX,Y (xB , yo). We proceed to show that
P ∈ Mi. Observe thatπX,Y (xB , yo) < πX,Y (x′, yo) =
1, so Lemma 4 tells us thatP satisfies(CI 1) if and only if
P (xB , yo) ≤ πX,Y (xB , yo), which holds by construction.
Next, observe thatπX(xB) < πX(x′) = 1. Since

P (xB , yo)
P (X × {yo})

=
πX,Y (xB , yo)

1
≤ πX(xB)

andP (X ×{y}) = 0 for everyy ∈ Y\{yo}, we may infer
from Lemma 4 thatP satisfies(CI 2). Since moreover
πY (yo) = 1 we immediately infer from Lemma 4 thatP
satisfies(CI 3) as well. We may therefore indeed conclude
thatP ∈Mi. It is now obvious that

P (B × {yo})
P (X × {yo})

=
P (xB , yo)

P (X × {yo})
=

πX(xB)
1

= ΠX(B),

so the second condition of Theorem 2 is satisfied.

We may summarise these results in the following theorem.

Theorem 8. The normal joint distributionπX,Y is coher-
ent under independence if and only if it satisfies(NC) and
if for all (x, y) in X × Y there is someP in Mi such that
P (x, y) = πX,Y (x, y).

In checking whether the conditions of this theorem are ver-
ified, the following lemma will allow us to proceed some-
what faster.

Lemma 9. Assume that the normal joint distributionπX,Y

satisfies condition(NC) and let (x, y) be an element of
X×Y such that one of the following conditions is satisfied:

1. πX,Y (x, y) = 0;

2. max{πX(x), πY (y)} = 1;

3. 0 < πX,Y (x, y) andmax{πX(x), πY (y)} < 1, and
there arex′ ∈ X andy′ ∈ Y such thatπX,Y (x′, y) =
πY (y), πX,Y (x, y′) = πX(x) andπX,Y (x′, y′) = 1.

Then there is aP in Mi such thatP (x, y) = πX,Y (x, y).

Proof. Assume that the first condition is satisfied. We
know from the first part of Theorem 2 thatMi 6= ∅. It
follows from condition(CI 1) and πX,Y (x, y) = 0 that
P (x, y) = πX,Y (x, y) = 0 for all P ∈Mi.



Next, if the second condition holds, we may assume with-
out loss of generality thatπY (y) = 1. If πX,Y (x, y) = 1,
consider the (degenerate) probability measure defined on
the power set ofX×Y byP (x, y) = 1 = πX,Y (x, y). It is
easily verified thatP ∈Mi. If πX,Y (x, y) < 1, then there
is somex′ 6= x in X such thatπX,Y (x′, y) = 1. Consider
the probability measureP uniquely defined on the power
set ofX × Y by P (x, y) = πX,Y (x, y) andP (x′, y) =
1 − πX,Y (x, y). It remains to be shown thatP ∈ Mi.
First of all, recall thatπX,Y (x, y) ≤ πX,Y (x′, y) = 1, so
to prove thatP satisfies(CI 1), Lemma 4 tells us that we
need only verify thatP (x, y) ≤ πX,Y (x, y), which holds
by construction. Next, observe thatπX(x) ≤ πX(x′) = 1
and thatP (X × {v}) > 0 only if v = y, so in order to
verify that P satisfies(CI 2), Lemma 4 tells us that we
need only verify thatP (x, y)/P (X × {y}) ≤ πX(x), or
equivalently,πX,Y (x, y)/1 ≤ πX(x), which holds triv-
ially. Finally, sinceP (u, v) > 0 only if v = y, and since
πY (y) = 1, we infer from Lemma 4 thatP also satis-
fies(CI 3), so indeedP ∈Mi.

To conclude the proof, let us assume that the third con-
dition holds. Lemma 3 then tells us thatπX,Y (x, y) <
πX(x)πY (y). Consequently, there is someα ∈ (0, 1)
such thatπX,Y (x, y) = απX(x)πY (y). The same lemma
also allows us to deduce thatπX(x′) = πY (y′) = 1 and
thereforex′ 6= x andy′ 6= y. We now define the finitely
additive set functionP on the power set ofX × Y by:

P (x, y) = πX,Y (x, y)

P (x, y′) = απX(x)− πX,Y (x, y)

P (x′, y) = απY (y)− πX,Y (x, y)

P (x′, y′) = 1− α[πX(x) + πY (y)] + πX,Y (x, y)

andP (u, v) = 0 for all other(u, v) ∈ X × Y . We show
thatP is a probability. It is clear thatP (x, y)+P (x, y′)+
P (x′, y) + P (x′, y′) = 1, so it remains to be shown that
all these terms are non-negative. First of all, it is obvious
thatP (x, y) = πX,Y (x, y) ≥ 0. Moreover

P (x′, y) = πX,Y (x, y)(
1

πX(x)
− 1) ≥ 0

and from the symmetry, we infer that alsoP (x, y′) ≥ 0.
Finally, since

α[πX(x) + πY (y)]− πX,Y (x, y)

= πX,Y (x, y)(
1

πX(x)
+

1
πY (y)

− 1)

= πX,Y (x, y)
πX(x) + πY (y)− πX(x)πY (y)

πX(x)πY (y)
≤ 1,

where the last inequality follows from (NC), we see that
P (x′, y′) = 1 − α[πX(x) + πY (y)] + πX,Y (x, y) ≥ 0.
The proof is complete if we can show thatP ∈ Mi.

We use Lemma 4. We may assume without loss of
generality thatπX(x) ≤ πY (y), whenceπX,Y (x, y) <
πX,Y (x, y′) ≤ πX,Y (x′, y) < πX,Y (x′, y′) = 1.
Clearly,P (x, y) = πX,Y (x, y) andP (x, y) + P (x, y′) =
απX(x) ≤ πX(x) = πX,Y (x, y′). Moreover,

P (x, y) + P (x, y′) + P (x′, y)

= α[πX(x) + πY (y)]− πX,Y (x, y)

= πX,Y (x, y)
πX(x) + πY (y)− πX(x)πY (y)

πX(x)πY (y)
≤ πY (y) = πX,Y (x′, y),

where the last inequality follows from (NC). We may
therefore conclude from Lemma 4 thatP satisfies(CI 1).
Next, observe thatπX(x) < πX(x′) = 1,

P (x, y)
P (X × {y})

=
πX,Y (x, y)
απY (y)

= πX(x)

and

P (x, y′)
P (X × {y′})

=
απX(x)− πX,Y (x, y)

1− απY (y)

= πX(x)
απX(x)− πX,Y (x, y)

πX(x)− απX(x)πY (y)

= πX(x)
απX(x)− πX,Y (x, y)
πX(x)− πX,Y (x, y)

≤ πX(x).

For everyv ∈ Y different from y and y′, we have that
P (X × {v}) = 0, so we may conclude from Lemma 4
thatP satisfies(CI 2). The proof thatP satisfies(CI 3) is
completely symmetrical.

4 The unimodal case

It turns out that when at least one of the marginal distri-
butionsπX andπY is unimodal, the conditions for coher-
ence under epistemic independence, stated in Theorem 8,
simplify significantly: in this case, the necessary condi-
tion (NC) is also sufficient.

Theorem 10. If the marginal distributionsπX and πY

are not both plurimodal, then the normal joint distribu-
tion πX,Y is coherent under epistemic independence if and
only if for all (x, y) ∈ X × Y :

πX,Y (x, y) ≤ πX(x)πY (y)max{πX(x), πY (y)}
πX(x) + πY (y)− πX(x)πY (y)

.

Proof. It is enough to check that the condition is sufficient.
Assume therefore that (NC) holds. It follows from Theo-
rem 8 thatπX,Y is coherent under epistemic independence
if and only if for all (x, y) ∈ X ×Y there is someP ∈Mi
such thatP (x, y) = πX,Y (x, y). This is what we now set
out to prove. Let us assume without loss of generality that
πY is unimodal with unique modeyo, and let(x, y) be



an arbitrary element ofX × Y. Lemma 9 (conditions 1
and 2) tells us that we may assume that0 < πX,Y (x, y)
andmax{πX(x), πY (y)} < 1. We show that in this case
condition 3 of Lemma 9 holds because of the unimodality
of πY , so that there is nothing left to prove. Indeed, there
is somex′ ∈ X such thatπY (y) = πX,Y (x′, y), whence
we deduce thatπX(x′) = 1 and thereforex′ 6= x, us-
ing Lemma 3. Similarly, there is somey′ ∈ Y such that
πX(x) = πX,Y (x, y′), whenceπY (y′) = 1 and therefore
y′ = yo, andy′ 6= y. Also, there is somey′′ ∈ Y such
that πX,Y (x′, y′′) = πX(x′) = 1, whenceπY (y′′) = 1,
again by Lemma 3. Thereforey′′ = y′ = yo, and
πX,Y (x′, y′) = πX,Y (x′, yo) = πX,Y (x′, y′′) = 1.

What we have in particular proved is that given two
marginal possibility distributionsπX andπY , at least one
of which is unimodal, the largest independent product pos-
sibility distribution that is coherent, is given by

πX,Y (x, y) = T (πX(x), πY (y)),

whereT is the binary operatorT : [0, 1]2 → [0, 1] on the
unit interval defined by

T (α, β) =
αβ max{α, β}
α + β − αβ

for all α andβ in [0, 1]. The operatorT is non-decreasing
in both arguments, and has unit1 and zero0, so it is a
so-called triangular seminorm. It is moreover continuous
and commutative, but it is not a triangular norm, because it
does not satisfy the associative property. To see this, take
α = 1/4, β = 1/2 andγ = 3/4; thenT (α, T (β, γ)) =
81/1540 < 9/124 = T (T (α, β), γ).

5 The general case

We now turn to the general case that both distributionsπX

andπY may be plurimodal. The first thing to note is that
the result of the previous case cannot be extended. To see
this, consider the following counterexample.
Example1. Let X = {a1, a2, a3}, Y = {b1, b2, b3}
and consider the normal joint possibility distributionπX,Y

given by the following diagram:

πX,Y b1 b2 b3 πX

a1 β 3
10 0 3

10

a2
1
2 0 1 1

a3 0 1 0 1

πY
1
2 1 1

where, of course,0 ≤ β ≤ 3/10. It is clear that the nec-
essary condition (NC) for coherence under independence
is satisfied provided thatβ ≤ T (1/2, 3/10) = 3/26. As-
sume thatπX,Y is coherent under independence, which

implies in particular that there is aP ∈ Mi such that
P (a1, b1) = β, and which also implies thatβ ≤ 3/26.
Assume in addition thatβ > 0, whenceP ({a1}×Y) > 0
and P (X × {b1}) > 0. There is someα ∈ (0, 1)
such thatβ = απX(a1)πY (b1) (use Lemma 3). Since
P (a1, b1)/P ({a1} × Y) ≤ πY (b1) becauseP ∈ Mi, it
follows thatP ({a1} × Y) ≥ απX(a1), whence

P (a1, b2) ≥ απX(a1)− β = απX(a1)[1− πY (b1)].

This implies thatP (X × {b2}) > 0. Consequently, it
follows fromP (a1, b2)/P (X × {b2}) ≤ πX(a1) that

P (X × {b2}) ≥
P (a1, b2)
πX(a1)

≥ α[1− πY (b1)].

We find in a completely similar (or symmetrical) way that

P ({a2} × Y) ≥ P (a2, b1)
πY (b1)

≥ α[1− πX(a1)].

By combining these inequalities we find that

P (a1, b1)+P (a2, b1)+P (a1, b2)+P (a2, b3)+P (a3, b2)

= P (a1, b1) + P ({a2} × Y) + P (X × {b2})
≥ β + α[1− πY (b1)] + α[1− πX(a1)]

= β
(

2
πX(a1)πY (b1)

− 1
πX(a1)

− 1
πY (b1)

+ 1
)

= β
2− πX(a1)− πY (b1) + πX(a1)πY (b1)

πX(a1)πY (b1)
,

and ifβ > 1/9, or in other words, if

πX,Y (a1, b1) >
πX(a1)πY (b1)

2− πX(a1)− πY (b1) + πX(a1)πY (b1)
,

this contradicts the fact thatP is a probability measure.
We conclude that there can be no coherence forβ > 1/9!

This counterexample gives us a hint about a sufficient con-
dition for independence and coherence in the general case.

Theorem 11. If the normal joint distributionπX,Y satis-
fies

πX,Y (x, y) ≤ min
{

T (πX(x), πY (y)),

πX(x)πY (y)
2− πX(x)− πY (y) + πX(x)πY (y)

}

for all (x, y) ∈ X ×Y , then it is coherent under epistemic
independence.

Proof. Since (NC) is in particular satisfied, Theorem 8
tells us that we only have to show that for every(x, y) ∈
X × Y there is someP ∈ Mi such thatP (x, y) =
πX,Y (x, y). We infer from Lemma 9 (conditions 1
and 2) that we may assume that0 < πX,Y (x, y) and



max{πX(x), πY (y)} < 1. Then there arex′ ∈ X and
y′ ∈ Y such thatπX,Y (x′, y) = πY (y) andπX,Y (x, y′) =
πX(x). It follows from the assumptions and Lemma 3
that πX(x′) = πY (y′) = 1, whence alsox′ 6= x and
y′ 6= y. Lemma 9 (condition 3) tells us that we may
assume thatπX,Y (x′, y′) < 1. Consequently, there are
x′′ 6= x′ in X andy′′ 6= y′ in Y such thatπX,Y (x′, y′′) =
πX,Y (x′′, y′) = 1. Note thatπX(x′′) = πY (y′′) = 1,
so πX and πY are in this case plurimodal,x′′ 6= x
and y′′ 6= y. It also follows from the assumptions
and Lemma 3 that there is someα ∈ (0, 1) such that
πX,Y (x, y) = απX(x)πY (y). We can assume without
loss of generality thatπX(x) ≤ πY (y). LetP be the prob-
ability measure uniquely defined on the power set ofX×Y
by P (x, y) = πX,Y (x, y),

P (x′, y) = απY (y)− πX,Y (x, y)

= πX,Y (x, y)
1− πX(x)

πX(x)
P (x, y′) = απX(x)− πX,Y (x, y)

= πX,Y (x, y)
1− πY (y)

πY (y)
P (x′, y′′) = α[1− πX(x)− πY (y)] + πX,Y (x, y)

= πX,Y (x, y)
1− πX(x)

πX(x)
1− πY (y)

πY (y)

and P (x′′, y′) = 1 − α. (It is easy to see that all
these terms are non-negative and add up to one.) It
only remains to be shown thatP ∈ Mi. We use
Lemma 4. Recall thatπX,Y (x, y) ≤ πX,Y (x, y′) ≤
πX,Y (x′, y) ≤ πX,Y (x′, y′′) = πX,Y (x′′, y′) = 1. Ob-
serve thatP (x, y) = πX,Y (x, y) and that

P (x, y) + P (x, y′) = απX(x) < πX(x) = πX,Y (x, y′).

Also P (x, y) + P (x, y′) + P (x′, y) is equal to

πX,Y (x, y)
πX(x) + πY (y)− πX(x)πY (y)

πX(x)πY (y)

and is therefore is dominated byπX,Y (x′, y) = πY (y) if
and only if

πX,Y (x, y) ≤ πX(x)πY (y)2

πX(x) + πY (y)− πX(x)πY (y)
,

which is implied by the hypothesis. We may therefore con-
clude from Lemma 4 thatP satisfies(CI 1). Note also that
P ({x} × Y) = απX(x) > 0, P ({x′} × Y) = α[1 −
πX(x)] > 0 andP ({x′′} × Y) = P (x′′, y′) = 1− α > 0
and thatP ({u} × Y) = 0 for all otheru ∈ X . Since
πY (y) ≤ πY (y′) = πY (y′′) = 1, P (x′′, y) = 0,

P (x, y)
P ({x} × Y)

=
πX,Y (x, y)
απX(x)

= πY (y),

and

P (x′, y)
P ({x′} × Y)

=
πX,Y (x, y)

1− πX(x)
πX(x)

πX,Y (x, y)
πX(x)πY (y)

[1− πX(x)]
= πY (y),

we infer from Lemma 4 thatP satisfies(CI 3). Similarly,
note thatP (X × {y}) = απY (y) > 0, P (X × {y′}) > 0
and P (X × {y′′}) = P (x′, y′′) > 0 and thatP (X ×
{v}) = 0 for all otherv ∈ Y. SinceπX(x) ≤ πX(x′) =
πX(x′′) = 1, P (x, y′′) = 0,

P (x, y)
P (X × {y})

=
πX,Y (x, y)
απY (y)

= πX(x),

and since it is easily verified thatP (x, y′)/P (X ×{y′}) ≤
πX(x) if and only if

πX,Y (x, y) ≤ πX(x)πY (y)
2 + πX(x)πY (y)− πX(x)− πY (y)

which is implied by the hypothesis, we infer from
Lemma 4 thatP also satisfies(CI 2), so we may indeed
conclude thatP ∈Mi.

This theorem provides us with a sufficient condition for
the coherence under epistemic independence of possibility
measures. The condition is not necessary, however. To see
this, it is enough to consider the case that (NC) holds and
one of the marginal distributions is unimodal, but where
for some(x, y) ∈ X × Y,

πX(x)πY (y)
2− πX(x)− πY (y) + πX(x)πY (y)

< πX,Y (x, y)

≤ πX(x)πY (y)max{πX(x), πY (y)}
πX(x) + πY (y)− πX(x)πY (y)

.

Then we deduce from Theorem 10 thatπX,Y is coherent
under epistemic independence. Still,πX,Y does not sat-
isfy the condition given by the last theorem. The condition
is not necessary in the case that both marginals are pluri-
modal either, as the following counterexample shows.
Example2. Let X = {a1, a2, a3}, Y = {b1, b2, b3}
and consider the normal joint possibility distributionπX,Y

given by the following diagram:

πX,Y b1 b2 b3 πX

a1 β 3
10 0 3

10

a2
1
2 1 1 1

a3 0 1 0 1

πY
1
2 1 1

where1/9 < β < 3/26. ThenπX,Y (a1, b1) = β does not
satisfy the condition stated on the previous theorem, as

πX(a1)πY (b1)
2− πX(a1)− πY (b1) + πX(a1)πY (b1)

=
1
9
.



We show thatπX,Y is nevertheless coherent under inde-
pendence. Clearly, (NC) is satisfied, asβ < 3/26 =
T (1/2, 3/10). Consider(x, y) ∈ X × Y , then we show
that there is aP ∈Mi such thatP (x, y) = πX,Y (x, y). It
follows from Lemma 9 (conditions 1 and 2) that we may
assume thatπX,Y (x, y) > 0 andmax{πX(x), πY (y)} <
1, so we need only look atx = a1 and y = b1. Note
thatπX,Y (a1, b2) = πX(a1), πX,Y (a2, b1) = πY (b1) and
πX,Y (a2, b2) = 1 so Lemma 9 (condition 3) tells us that
there is aP ∈ Mi such thatP (a1, b1) = πX,Y (a1, b1) =
β, andπX,Y is coherent under independence.

6 Conclusions

In this paper, we have continued the study of the impli-
cations of giving possibility measures a behavioural in-
terpretation in terms of upper betting rates, initiated in
[3, 4, 5, 14, 15]. In particular, we have looked at the con-
sequences of the rationality requirements of avoiding sure
loss and coherence when forming independent products of
marginal possibility measures. The definition of indepen-
dence that was used here, is based on Walley’s [13] no-
tion of epistemic independence: two variables are epis-
temically independent for a subject when his beliefs about
the value taken by one variable are not influenced by new
knowledge about the value of the other variable. In the
context of possibility theory, where beliefs are expressed
in terms of possibility measures, it seems natural to ex-
press epistemic independence in terms of the equality of
conditional and marginal possibility distributions (or mea-
sures), as we did in Definition 1. We have obtained a sim-
ple characterisation for the coherence under independence
of a joint possibility distribution in the unimodal case, and
we have found a simple sufficient condition, as well as a
different, necessary one in the plurimodal case. It is not
clear to us whether in the general case, there is a simple
necessary and sufficient condition involving only thelocal
values of the joint and marginal possibility distributions.

An immediate conclusion of Lemma 3 and Theorems 10
and 11 is that the so-called minimum and product rules
for forming joint distributions from given marginals,
which yield πX,Y (x, y) = min{πX(x), πY (y)} and
πX,Y (x, y) = πX(x)πY (y) respectively, and which are
quite common in possibility theory (see for instance [2, 6,
7, 17]), are only coherent whenπX(x) andπY (y) assume
only the values0 and1.

We could also consider the so-called independent natu-
ral extensionE [13, Section 9.3] of two marginal possi-
bility measuresΠX andΠY . This is the greatest (least-
committal or most conservative) coherent and independent
joint upper probability, which need not be a possibility
measure. In fact, on productsA × B it can be shown that
E(A × B) = ΠX(A)ΠY (B), whereA ⊆ X andB ⊆ Y
[13, Section 9.3.5].E will therefore in generalnot be a

possibility measure: if it were, its distribution would be
given by the product rule, which is generally not coherent!

The results in this paper indicate that the theory of im-
precise probabilities has useful things to say about inde-
pendence in possibility theory. But we should warn the
reader against too much optimism. Indeed, possibility
measures are rather imprecise uncertainty models: ifΠ
is a normal possibility measure (and therefore a coher-
ent upper probability) on some setΩ, andN is its con-
jugate lower probability, also called necessity measure,
and defined byN(A) = 1 − Π(coA), where coA is
the set-theoretic complement ofA ⊆ Ω, then we have
that Π(A) < 1 ⇒ N(A) = 0: the probability interval
[N(A),Π(A)] always contains zero or one (or both). Al-
ternatively, it always holds forA ⊆ Ω that Π(A) = 1
or Π(coA) = 1, meaning that a subject whose beliefs are
modelled by the upper probabilityΠ will not be disposed
to bet againstA or againstcoA, and this for allA ⊆ Ω. On
a behavioural interpretation, possibility measures there-
fore model fairly weak information states. On the other
hand, a judgement of independence is quite informative,
and we suspect that in some cases it will be too informa-
tive to be adequately modelled by possibility measures, or
within the context of possibility theory. This is illustrated
by the fact that, as we have seen above, the greatest inde-
pendent joint possibility measureT (ΠX(A),ΠY (B)) can
be appreciably smaller than the independent natural exten-
sionE(A×B) = ΠX(A)ΠY (B) on productsA×B: if we
restrict ourselves to possibilistic models, we are obliged,
in order to capture independence, to use products that are
more precise than if we had used a more general approach,
e.g., with coherent upper probabilities. This identifies a
weakness in possibility theory.

We also want to warn the reader against too careless an
interpretation of our results. To see what is involved here,
let us consider the following very simple example.
Example3. Let X take values inX = {a1, a2} and letY
take values inY = {b1, b2}. Assume that we know that
X andY jointly can only assume the values(a1, b1) or
(a2, b2), and nothing more. This is clearly incompatible
with the epistemic independence ofX andY : if we know
what valueY takes, we know the value ofX, and vice
versa. It is often argued that the given information can be
modelled by a joint possibility distributionπX,Y , with

πX,Y (a1, b1) = πX,Y (a2, b2) = 1

πX,Y (a1, b2) = πX,Y (a2, b1) = 0.
(3)

This is equivalent to observing that we are prepared to
bet at any odds against the event{(a1, b2), (a2, b1)}. The
lower probability (or necessity)NX,Y ({(ak, bk)}) is zero,
which models that we are not prepared to bet on the occur-
rence of{(ak, bk)} at any odds,k = 1, 2. This is reason-
able, because we haveno information at allabout which
of the two events{(a1, b1)} and{(a2, b2)} will occur.



Not surprisingly, the marginal distributions are vacuous,
or completely uninformative:πX(a1) = πX(a2) = 1 and
πY (b1) = πY (b2) = 1. What may seem suprising, how-
ever, is that, according to Theorem 8 and Lemma 9, the
joint distributionπX,Y is coherent under epistemic inde-
pendence: πX,Y is a perfectly rationalindependentprod-
uct of the marginalsπX andπY , even if it is not the most
conservative one! This seems to contradict our earlier
observation that the available knowledge is incompatible
with the epistemic independence ofX andY .

To see what goes wrong, we need to look at the condi-
tional possibility distributions{πY |X(·|x) : x ∈ X} and
{πX|Y (·|y) : y ∈ Y}. It follows from Theorem 1 that they
are coherent withπX,Y if and only if

πX|Y (ak|bk) = πY |X(bk|ak) = 1, k = 1, 2.

This means that, in particular, both the vacuous condi-
tional distributions

πX|Y (ak|b`) = πY |X(b`|ak) = 1, k, ` = 1, 2 (4)

and the precise conditional distributions

πX|Y (ak|b`) = πY |X(b`|ak) =

{

1 if k = `
0 if k 6= `

(5)

are coherent with the joint distributionπX,Y : contrary to
what we are often used to in (precise) probability theory,
we cannot rely on coherence to provide us with unique
conditional distributions (see also [15]). The joint distribu-
tion (3) is not a fully adequate model of the given informa-
tion! To remedy this, we have to repress an ingrained (pre-
cise) probabilistic reflex and also specify the conditional
distributions{πY |X(·|x) : x ∈ X} and{πX|Y (·|y) : y ∈
Y} explicitly, as these cannot be determined uniquely from
the jointπX,Y . Now the only conditional distributions that
reflect the given information are given by (5). Of course,
these are different from the marginal distributions, reflect-
ing that the variablesX andY are not epistemically inde-
pendent. The problem above could only occur because we
assumed that the joint distribution adequately represents
the given information. But it doesn’t: as far as coherence
is concerned, this joint is compatible with the vacuous con-
ditional distributions (4), for which the epistemic indepen-
dence conditions (2) are satisfied.
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