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Abstract number of rationality, or consistency, requirements, called

e . . . avoiding sure losandcoherencelt turns out thanormal
Possibility measures can be given a behavioural interpreta- "~ = .5 . .
ossibility measures satisfy these requirements, and can

tion as systems of upper betting rates. As such, they shoul . : . .
. . : ; : . erefore be considered as reasonable imprecise probabil-
arguably satisfy certain rationality requirements. Using a. X P
) ; ) . L .. ity models [3, 4, 5, 14]. So can (precise) probability mea-
version of Walley's notion of epistemic independence suit- . . - o
.o . . sures. This points to a distinct advantage of the unifying
able for possibility measures, we investigate what these : . . I
pproach using the theory of imprecise probabilities: it al-

requirements tell us about the construction of independen . . )
L . . ows the comparison of both types of measures in a single
product possibility measures from given marginals. framework, using a common language and the same (be-

Kevwords. Possibility theorv. upper probability. coher- havioural) interpretation. This has for instance been done
Y ) Y Y, UPper p Y, ip a recent study [16], where it is argued that possibility

ence, conditioning, epistemic independence, independen . . ;
product g ep P P measures indeed seem to be better suited for modelling

linguistic uncertainty than probability measures.

This being said, it is by no means obvious that all of what
is commonly understood as ‘possibility theory’ will get
o - similar backing from the theory of imprecise probabili-
POSS'.b'“ty theory, as orlglnatepl by Zadeh [17_]’ can beties: the rationality criteria of avoiding sure loss and co-
described as collection of notions and techniques CeNparence can for instance be used to weed out those no-
tergdl arour:jdfthethnotmn of p(is?bmty :jneasu_ne :tt'.s ftions and techniques which are inconsistent with the be-
mainly used for the representation and manipulation Oty ;g ;g interpretation of possibility measures as upper
so-callediinguistic u.ncertamty produced by (potenﬂally robabilities. To give an example, in contradistinction to
vague) statements in natu_r ?I language. _It was Con_ce'vegrobability theory, a large variety of rules have been pro-
as an alternative to pr(_)bablllty theory, which, gccord|ng to posed for conditioning a possibility measure (see for in-
Zadeh, does not lend itself very well to modelling linguis- stance the overviews in [2, 7, 15]). In a recent paper [15]
tic uncertainty. In parallel with probability theory, notions Walley and De Cooman Ha\,/e shown that most of thesé
such as possibility integrals, product possibility MEASUreSy ) a5 avoid sure loss, but do not satisfy the stricter require-

conditional possibility measures and possiblili's.tic indeDen'ment of coherence. They have also suggested a number of
dence have been developed [2, 6, 7]. Possibility measures, , conditioning rules that guarantee coherence.
have also been studied under different names and guises,

and in other contexts, see for instance [1, 9, 10, 11, 12]. Two variables are said to lpistemically independettd a
subject when new knowledge about the value that one vari-
8ble assumes, does not change his beliefs about the value
the other variable takes [13, Chapter 9]. In the present pa-
per, we study some aspects of this notion of independence
for possibility measures. More specifically, we investigate
what the rationality criteria of avoiding sure loss and co-
herence tell us about the construction of independent joint
Bossibility measures from given marginal ones.

1 Introduction

In recent years, quite some effort has been invested in th
study of possibility measures in the framework of the the-
ory of imprecise probabilities [13]. In this approach, the
possibility of some event is given the behavioural inter-
pretation of a subject'sipper probability or upper bet-

ting rate, for the event, i.e., the infimum rate at which the
subject is willing to take bets on the event. A possibility
measure then represents a collection of such upper bettin
rates. Because specifying an upper betting rate amounts td/e have organised the paper as follows. In Section 2,
a commitment to act (bet) in certain ways, upper probabil-we briefly review definitions and basic results concerning
ities and in particular possibility measures are subject to &he interpretation of possibility measures as upper betting



rates, necessary for understanding much of what followsbeliefs using a possibility measutky y on X' x Y, with
In Section 3, we formulate a definition of epistemic in- distributiomrxy.3 ForC C X x Y, IIx y(C) is the sub-
dependence inspired by Walley’s original definition [13], ject’s upper probability for the event thaX, Y') assumes
and suitable in a ‘possibilistic’ context. We also derive a a value inC, and for(z,y) € X x Y, mx y(z,y) is his
necessary and sufficient condition, in terms of sets of dom-upper probability thatX, Y") assumes the value, y).

inated probability measures, for the consistency of ajomt_l_he marginals Iy and Iy of the so-callegjoint pos-

possibility measure with its marginals, under the eplstemlcsibi”ty measurelly y are defined as followsILy is a

independence assumption. This condition is quite com- - -
plicated, but we show in Section 4 that it can be sim- possibility measure of, andILy (4) = ILy y (4 x V)

plified significantly when one of the marginal possibil- IS the subject's upper probability that the variatieas-

; : . ) . o fsumes a value i C X (regardless of what valu¥
ity measures is unimodal: we obtain a characterisation o R - A
o takes); similarly,ITy is a possibility measure oy and
the coherent product possibility measures through an up- is hi bability th
per bound. The study for the plurimodal case seems t 1Ly (B) = ILxy (X x B) is his upper probability that
i o MS Wakes a value irB C Y. We denote the possibility distri-
be much harder, and we present a simplified SumCIent’butions offLy andlly by 7y andry respectively
X Y X Y .
r

and a different necessary, condition for coherence unde
the epistemic independence assumption in Section 5. Sedzonditional possibility measures [2, 3, 6, 7] can be given
tion 6 concludes the paper with additional discussion. the behavioural interpretation apdatedupper probabili-
ties [3, 15]. IIx|y (Aly) is then interpreted as a subject’s
infimum acceptable rate for taking bets on the eventihat
assumes avalue ih C X, after learning only that” takes
o o _ the valuey € Y; and similarly forIly | x (B|x). For each

A possibility measurdl on a finite setQ is a map de- ;¢ x, Ily (/) is assumed to be a possibility measure
fined on the power sgb(£2) of 2 and taking values in  on Y. with distributionry| x (-|); and for eachy € Y,

the real unit interval0, 1], that satisfiedI1(§)) = 0 and Iy (-|y) is assumed to be a possibility measuren
that is moreovemaxitive for all subsetsd and B of (2, with distributiony y-(-|y).*

II(AU B) = max{II(A),II(B)}. Itis completely deter- i . ) . o
mined by its(possibility) distributionr: © — [0, 1], de- Slncg_on a behgypural interpretation, the Jomt.and the
fined by (w) = II({w}) for all w € Q. Indeed, we have conq!tlonal pos§|b|I|ty measures represent a squect’s d|'s—
TI(A) = max{r(w): w € A} for any non-emptyd C Q. pO.SItIOI’l.S to act'ln certain ways, they should satisfy certain
rationality requirements, not only separately (they should
Possibility measures can be incorporated into the beg|| be normal!) butalso taken togetherA thorough dis-
havioural theory of imprecise probabilities [13] by inter- cyssion of such criteria in the general context of impre-
preting them as upper probabilities: for any event €2, ¢jse probabilities was given by Walley [13]. The special
I1(A) is then a subject’s upper probability éf i.e., hisin-  case of possibility measures was discussed by Walley and
fimum acceptable rate faakingbetson A, or one minus  pe Cooman [15], who also investigated which of a large
his supremum acceptable rate for bettagpinstA. This  number of so-called conditioning rules for possibility mea-
means that the subject is disposed to accept a bet whos§yres, available in the literature, satisfy these criteria. We
outcome isz — 1 if A occurs, andv if A doesn’t occur,  refer to their work for both motivation and mathematical
for all z > II(A). It tumns out [3, 4, 14] that a possibil-  development. For the purposes of the present paper, it will
ity measurell with this interpretation satisfies the ratio- syffice to recall the following characterisation of the crite-
nality criteria of avoiding sure loss and coherehit@nd  ria of avoiding sure loss and of coherehcéthe joint and
only if it is normal i.e., if I[I(2) = 1. We shall therefore  conditional possibility distributions (or equivalently, mea-
only consider normal possibility measures in what follows. syres) in terms of sets of dominated probability measures.
Normality implies that the distributiom has at least one |t can be easily inferred from Lemma 3 and the proof of
mode(or modal value),, for whichm(w,) = 1. Ifthereis  Theorem 1 in [15]. LetM,, be the set of probability mea-

only one such mode, then(andll) is calledunimodal A syres defined on the power set®tfx ) and satisfying the
distribution with more than one mode is callgldrimodal following inequalities:

2 Preliminary notions and results

Consider two variableX andY taking values in the re-
spective finite sets’ and). We only consider the inter- (Cy) P(A) <IIxy(A)forall A C X x Y;and
esting case that botki and)’ have more than one element. —; ” . . , ,
. . . . A specific and interesting case where this assumption makes sense,
We assume that a subject has certain beliefs about whicly jiscussed in [16].
values these variables assume, and that he models these4we only consider the case that the subject’s conditional upper prob-
abilities are possibility measures as well. This is perfectly compatible
1We only deal with possibility measures finite sets in this paper. with the epistemic independence assumption to be introduced and stud-
2We assume that the reader is familiar with these basic consistencyed later.
requirements in the theory of imprecise probabilities. See [3, 4, 13, 14]  5Walley [13, Section 7.1] speaks afoiding uniform sure losand of
for more details. weak coherengesee also Technical Remark 2 in [15].




(Co) P(B x {y})/P(X x {y}) < Tixy(Bly) for all
B C X andy € Y such thatP(X x {y}) > 0; and

(Cs) P({z} x C)/P({z} x ¥) < My x(Clz) for all
C C Y andz € X such thatP({z} x V) > 0.

Theorem 1. The joint possibility distributionrx y and
the conditional possibility distributionry | x (-|x): = €
X} and{mxy(-|y): y € Y} avoid sure loss if and only if

For probability measures (on finite spaces), the judge-
ment of epistemic independence together with coherence
leads uniquely to the product probability measure of the
marginals [13, Section 9.3.2]. We shall see that there is no
uniqueness in the case of possibility measures: for given
marginals, there is generally more than one joint possibil-
ity distribution that satisfies the independence and coher-
ence requirements. Our aim is to characterise such joint

M_ is non-empty. They are coherent if and only if there is distributions in a manner that is as simple as possible.

a non-empty seM of probabilities defined on the power
set of X x Y such that:

1. MIxy(A) =sup{P(A): P € M}forall A C X x
V.

2. Ix)y (Bly) = sup{P(B x {y})/P(X x {y}): P €
M, P(Xx{y}) > 0}forall B C X andy € Y, with
equality wherg(y) = max{my (v): v # y} < 1.

3. Iy x (Clz) = sup{P({x} x C)/P({z} x V): P €
M, P({z}xY) > 0}forall C C Yandz € X, with
equality whem(z) = max{mx (u): u # z} < 1.

If there is such a seM, then M. is the largest such set.

A simple necessaryondition for the coherence afy y,
{myx(-|z): z € X}and{7rxy (-ly): y € YV} was shown
in [15] to be the following:

mxv(z,Yy)
7TX|Y($\ZI)7TY\X(ZI|I) max{7x (), Ty (y)}
~ wxpy (zly) + Ty x Wlz) — mx )y (@) Ty x (y|T)

1)

forall z € X andy € Y, where{ is taken to be).

3 Epistemic independence and coherence

The first step we have to take is to apply the notion of
epistemic independence, formulated by Walley for general
imprecise models [13, Section 9] to the case that beliefs
are represented by possibility distributions.

Definition 1. We say thatY is irrelevant to X when
mxy(zly) = mx(z) forallz € X andy € Y. We say
that X andY are epistemically independenthen X is
irrelevant toY” andY is irrelevant toX .

Given the marginal distributionsx andmy, the judge-
ment of epistemic independence leads at once to values
for the conditional distribution$r x|y (-|y): y € Y} and
{my|x(-]z): = € X}. We now only have to require that
the jointwx y (which has marginalg x andny) should

be consistent with these conditional distributions.

Definition 2. We say that the normal joint possibility
distribution 7x y avoids sure loss under epistemic in-
dependencavhen the joint distribution and the condi-
tional possibility distributions{7y|x (:|z): = € X'} and
{mx1v(-ly): y € Y} given by

)

forall z € X andy € Y, avoid sure loss. Similarly, we
say that the joint distribution x y is coherent under epis-
temic independencehen these possibility distributions
are coherent. In that casex y will be called aninde-
pendent joint distributionor anindependent produadf

x|y (zly) = mx(z) and 7y x(ylr) =7y (y)

We are now ready to address the question that will occupytS marginalsrx andmy .

us in the rest of the paper. Assume that our subject ha
beliefs (or information) about the values assumed by th
variablesX andY separately, and that he has modelled
his beliefs in the form of the marginal possibility distri-

butions7x andnry. He also judges the variable§ and

Y to be epistemicalf independent: he judges that new
information about the value of one variable will not af-

e

?t turns out that the first consistency condition under epis-
temic independence is always satisfied. The second con-
dition is more involved, however. To see this, consider the
setM; (the counterpart of the s@#.. in the previous sec-
tion) of probability measures defined on the power set of
X x Y and satisfying the following inequalities:

fect his beliefs about the value the other variable assumes.
We intend to investigate what this independence assumptCl1) P(A) <IlLxy(A)forall AC X x V;and
tion, together with the rationality requirements of avoiding (CIy) P(Bx{y})/P(Xx{y}) <Ix(B)forall B C X

sure loss and coherence, tells us about the joint distribution
mx vy, Which models the subject’s beliefs about the values

X andY assume jointly.

andy € Y such thatP(X x {y}) > 0; and

(CI3) P({z}xC)/P({z}xY) <Ily(C)forallC C Y
andz € X such thatP({z} x V) > 0.

8There is more than one independence concept in possibility theory,

see for instance [2, 7]. Here, we use a version of Walley’s notion of epis- . . .
temic independence [13], because it has the most natural interpretatio®PPIYing Theorem 1 leads to the following result, which

in the behavioural context of the theory of imprecise probabilities. is the starting point for the further development.



Theorem 2. A normal joint possibility distributionrx y-

In the rest of this section, we investigate how the neces-

always avoids sure loss under epistemic independence, ogsary and sufficient condition of Theorem 2 can be simpli-

in other words M # 0. Itis coherent under epistemic in-

fied. Our efforts will culminate in Theorem 8, which is

dependence if and only if there is a non-empty set of probthe most important stepping stone for our investigation in

abilities M defined on the power set &f x ) such that:

1. IIxy(A) =sup{P(A): P e M}forall A C X x
).

2. lIx(B) > sup{P(B x {y})/P(X x {y}): P €
M, P(X x {y}) > 0} forall B C X andy € Y,
with equality wher3(y) < 1.

3. IIy(C) > sup{P({z} x C)/P({z} x YV): P €
M,P({z} xY) > 0}forall C C Yandz € X,
with equality whem(z) < 1.

If there is such a seM, thenM; is the greatest such set.

Proof. The coherence part follows immediately from The-
orem 1. The same theorem tells us thaty avoids sure
loss under epistemic independence if and onlyAf # 0.

It therefore only remains to be shown thet; # (). Con-
sider(z,y) € X x Y such thatrx y (x,y) = 1, and con-
sequentlyrx (x) = 7wy (y) = 1 (there always are such
x andy, sincery y is normal). Define the (degener-
ate) probability measuré on the power set oft x )

by P(z,y) = 1. Thenitis easy to see th&te M,. O

We can also take a look at the necessary condition for co-
herence (1), mentioned in the previous section. Using the

epistemic independence relation (2), we find:

mx (z)my (y) max{rx (z), 7y (y)}
mx(z) + 7y (y) — mx (@) 7y (y)

mx,y(2,y) < (NC)

forallz € X andy € Y, where% is taken to bé). This is
a very simplenecessarygondition for the coherence under
epistemic independence ok y, expressed only in terms
of thelocal valuestx y (z,y), mx(z) andzy (y) of the

joint distribution and its marginals. We can easily deduce
from this condition certain properties that will be used re-

peatedly further on. Their proof is fairly straightforward,
and is therefore omitted.

Lemma 3. If the normal joint distributionr x y satisfies
the necessary conditiiNC), then for all(x, y) € X x ):

1 nxy(z,y) < nx(z)my (y);
2.
3.

if 0 < ’/TX’y(l',y) = Wx(il') then’fry(y) =1;

if my is unimodal with unique modey,, then
mx(z) = Tx,y(T,Yo).

Jf 0 < mx(z) < 1and0 < 7wy(y) < 1 then
mx,y(z,y) < mx(z)my (y).

the following sections. First of all, in checking the coher-
ence condition, the following lemma will be very useful,
because it helps us verify whether a probability measure
belongs taM; or not. The proof is elementary, and there-
fore omitted.

Lemma 4. Let m be the number of elements i, and
n the number of elements §i. Consider a probability
measureP defined on the power set &f x ).

1. Assume that thewn elements = (z,y) of ¥ x ) are
labeled in such a way thatx y (z1) < mx,y(z2) <
-+ < 7mx y(2mn). ThenP satisfies conditiorf C1;)
if and only if P(z1) + --- + P(z;) < mx,y(z;) for
7=1....,nm.

2. Assume that the: elements oft’ are labeled in such
away thatry (r1) < mx(r2) < -+ < Tx(Tm).
Then P satisfies conditior{ CI5) if and only if for
all y € Y such thatP(X x {y}) > 0 and forj =

1,...,m,

P(zlay)++P(Ijay)
P(X x {y})

< mx ().

3. Assume that the elements ofy are labeled in such
away thatry (y1) < 7y (y2) < -+ < 7wy (yn).- Then
P satisfies conditioffCI3) if and only if for all x €

X suchthatP({z} x Y) > 0andforj =1,...,n,

Plz,y1) +--- + P(x,y;)
P({z} x )

< 7y (y5)-

Interestingly, coherence under independence is not influ-
enced by removing from the séf elementsr such that
x(x) 0 and from the sefy elementsy such that

7y (y) = 0.7 To see this, consider the marginal sets

X' ={reX:nx(z) >0}
Y ={yey:my(y) >0}

and denote byl’y ,- the restriction oflIx y- to the power

set of X’ x ). With this (normal) possibility measure,
with possibility distributionr’y -, we may associate a set
M, of probability measures on the power setdf x )’
satisfying the (corresponding) propertié€1,)—(CI3),
which by Theorem 2 completely determines the coherence
under independence of the joint distributinfy ,- (or the
possibility measurél’y ).

"For our subject, it is practically impossible that the variabteand
Y assume such values, since he is disposed tatlst oddsagainst the
event that they do.



Proposition 5. M; satisfies the conditions of Theorem 2
if and only if M/ satisfies them, or in other words, the
normal joint distributionr x y is coherent under indepen-

dence if and only ifr’y - is.

Proof. The proof is immediate if we observe that the ele-
ments ofM; and those of\1/ are in one-to-one correspon-
dence, and that 1, consists of the restrictions t&’ x )’

of the probabilities inM;. O

This implies that our results will remain valid if, instead of
using condition (2) to define epistemic independence, wi
use the alternative condition:

x|y (zly) = mx (z) if 7y (y) >0
Ty x (ylz) = my (y) if mx () >0

for all (z,y) € X x Y, which is sometimes found in the
literature (see for instance [8]).

Proposition 6. The set of probabilities\; satisfies the
first condition of Theorem 2 if and only if for &k, y) in
X x Ythereis aP in M; such thatP(z, y) = mx vy (z,y).
Proof. We first show that the condition is sufficient. In-
deed, for anyA C X x ), there is soméz 4,y4) € A
such thatllx y(A) = 7wxy(za,ya), and the condi-
tion tells us moreover that there is solfee M, such
that P(Z‘A,y,q) Wx,y(ajA,yA), WhenceHXy(A) <
P(A). Since for allQ € M,, condition (CI,) tells
us thatQ(A4) < IIxy(A), we infer thatIly y (A)
max{Q(4): Q € M,;}. Next, we show that the condi-
tion is necessary. Considét,y) € X x Y. If M, sat-
isfies the first condition of Theorem 2, ther y (z,y) =
sup{P(z,y): P € M;}. SinceM; is obviously closed in

Lemma 3 and the unimodality afy thatl = 7x(xp) =
7x,y (g, Y,). The probabilityP uniquely defined on the
power set of¥ x Y by P(zp,y,) = 1 is easily shown
to belong toM; and to attain the desired equality. Let us
therefore consider the case thak (B) < 1. Leta’ be
a modal point of the marginal distributiany. Note that
' & Bsox' # xg. Asmy is unimodal with unique
modey,, we must have thatx y (2, y,) = 1. We also
infer from Lemma 3 thatrx y (25, yo) = 7x(zg). Con-
sider the probability measurB uniquely defined on the
power set ofX x Y by P(zp,v,) = 7x,y(zB,y,) and

eP(xﬂyo) =1-nxy(zn,Yy,). We proceed to show that

P € M;. Observe thatrx y (z5,y,) < mx,y (2", yo)
1, so Lemma 4 tells us tha satisfieg CI,) if and only if
P(zp,y0) < mx,y(zB, o), Which holds by construction.
Next, observe thatx (zp) < mx(z') = 1. Since

X,y (¥B, Yo)

P(IByyo) _
P(X x {yo}) 1

andP (X x {y}) = 0 for everyy € Y\ {y,}, we may infer
from Lemma 4 thatP satisfies(CI3). Since moreover
my (Yo) = 1 we immediately infer from Lemma 4 thad
satisfieq CI3) as well. We may therefore indeed conclude
that P € M,. Itis now obvious that

P(B X {yo}) P(vayo)

P(X X {yo}) B P(X X {yo}) B 1
so the second condition of Theorem 2 is satisfied. [

<7x(xp)

71')((%3)

:HX(B)7

We may summarise these results in the following theorem.

Theorem 8. The normal joint distributionry y- is coher-
ent under independence if and only if it satis{iN€) and
if for all (z,y) in X x Y there is someP in M such that
P(‘Lay) = 7TX,Y("L'7y)‘

the natural topology, this supremum is actually achieved

for someP € M;, or in other words, there is some
P € M; such thatP(z,y) = mx v (z,y). O

Proposition 7. If the normal joint distributionr y y- satis-
fies the necessary conditigNC), then the setM; always
satisfies the second and third conditions of Theorem 2.

Proof. We show thatM; satisfies the second condition.
The proof for the third condition is completely similar (or
symmetrical). It follows from(CI2) that we need only
prove that for allB C X’:

Ix (B)

P(B x {y})
=sup{———+"—=: P M,;,P(X x >0},
wheng(y) < 1. Let us suppose, therefore, thi#ly,) < 1,
or in other words thatry is unimodal with unique mode
1. ConsiderB C X. Then there is someg € B such
thatIlx (B) = nx(zp). If Ix(B) = 1, it follows from

In checking whether the conditions of this theorem are ver-
ified, the following lemma will allow us to proceed some-
what faster.

Lemma 9. Assume that the normal joint distributian y
satisfies conditioNC) and let (z,y) be an element of

X x ) such that one of the following conditions is satisfied:

1. ﬂ'X,y(J?,y) =0;

. max{nx(x), 7y (y)} =1,

.0 < mxy(z,y) andmax{rx (x), 7y (y)} < 1, and
there arex’ € X andy’ € Y such thatry y (', y) =
Ty (y), mxy(z,y') = 7x(z) andrx y (', y') = 1.

Then there is & in M; such thatP(z, y) = mx v (z, y).

Proof. Assume that the first condition is satisfied. We
know from the first part of Theorem 2 thaut; # 0. It
follows from condition(CI,) andrx y(z,y) = 0 that
P(z,y) =nxy(zr,y) =0forall P € M,.



Next, if the second condition holds, we may assume with-We use Lemma 4. We may assume without loss of

out loss of generality thaty (y) = 1. If mx y (z,y) = 1,

consider the (degenerate) probability measure defined omrx y (z,y’)

the power setof’ x Y by P(z,y) =1 = nx vy (z,y). Itis
easily verified thaP € M;. If mx v (z,y) < 1, then there
is somez’ # z in X such thatry y (z/,y) = 1. Consider
the probability measur® uniquely defined on the power
set of ¥ x Y by P(z,y) = mx,y(z,y) andP(z',y) =

1 — 7mxy(z,y). It remains to be shown that ¢ M,.
First of all, recall thatrx y (z,y) < mxy(2',y) = 1, so
to prove thatP satisfies(C17,), Lemma 4 tells us that we
need only verify that’(z,y) < mx,v(,y), which holds
by construction. Next, observe that () < mx(2') =1
and thatP(X x {v}) > 0 only if v = y, so in order to
verify that P satisfies(CIy), Lemma 4 tells us that we
need only verify thatP(z,y)/P(X x {y}) < mx(x), or
equivalently,7x y (z,y)/1 < wx(z), which holds triv-
ially. Finally, sinceP(u,v) > 0 only if v = y, and since
my(y) = 1, we infer from Lemma 4 thaP also satis-
fies(CI3), soindeed? € M;.

To conclude the proof, let us assume that the third con-

dition holds. Lemma 3 then tells us thak y (z,y) <
mx(x)my(y). Consequently, there is some € (0,1)
such thatrx y (z,y) = arx(z)my (y). The same lemma
also allows us to deduce thak (') = my(y’) = 1 and
thereforex’ # x andy’ # y. We now define the finitely
additive set functior on the power set ok’ x ) by:

)
P(z,y) = arx(z) — mxy(z,y)
P(2',y) = ary (y) — 7mx v (2,y)
P(2',y') =1 —alnx(z) + 7y (y)] + 7x v (z,y)

and P(u,v) = 0 for all other(u,v) € X x ). We show
that P is a probability. Itis clear thaP(z, y) + P(x,y') +

generality thatrx (z) < 7wy (y), whencerx y(z,y) <
< wxy@,y) < wxy(@,y) = L
Clearly, P(x,y) = mx,y(x,y) andP(z,y) + P(x,y') =
arx(z) < mx(z) = mx y(z,y"). Moreover,

P(z,y) + P(z,y') + P(z',y)
= afrx(x) + 7y (y)] — mx v (z,y)
mx(z) + 7y (y) — mx (@)7y (y)
mx (@)my (y)
<7y (y) = mxy (@' y),

- 7TX,Y(£>y)

where the last inequality follows from (NC). We may
therefore conclude from Lemma 4 th&tsatisfies(CI1).
Next, observe thatx (z) < mx(z') = 1,

P(I,y) _ 7TX7y($,y) - (JZ)
P(Xx{y})  amy(y)
and
Plx,y) _ arx(z) —mxy(z,y)
P(X x{y'}) 1—any(y)

arx(z) — mxy(z,y)
mx(7) — arx(z)my (y)
arx(r) —mxy(z,y)
mx(2) — 7x,v(z,Y)

=7x(x)

=Tx (LC <7x ((E)
For everyv € Y different fromy andy’, we have that
P(X x {v}) = 0, so we may conclude from Lemma 4
that P satisfieg CI,). The proof thatP satisfieg CI3) is
completely symmetrical. O

4 The unimodal case

P(z',y) + P(2',y") = 1, so it remains to be shown that It turns out that when at least one of the marginal distri-
all these terms are non-negative. First of all, it is obviousbutionstx andry is unimodal, the conditions for coher-

that P(z,y) = mx,v(z,y) > 0. Moreover
1
mx (z)

and from the symmetry, we infer that alg(z,y’) > 0.
Finally, since

P(',y) = mx.y (z,y)( ~1)>0

alrx () + 7y (y)] — 7xv ()

1 1
_WX,Y(LC,y)(ﬂ'X(I) + 7Ty(y) 1)
I y)ﬂx(ﬂf) + 7y (y) — mx (@) 7y (y)

o mx (x)my (y)
<1,

ence under epistemic independence, stated in Theorem 8,
simplify significantly: in this case, the necessary condi-
tion (NC) is also sufficient.

Theorem 10. If the marginal distributionsrx and 7y

are not both plurimodal, then the normal joint distribu-
tionx y is coherent under epistemic independence if and
only if for all (z,y) € X x Y-

mx (v)Ty (y) max{mx(z), 7y (y) }
mx(z) + 7y (y) — mx(z)my (y)

mxy(2,y) <

Proof. Itis enough to check that the condition is sufficient.
Assume therefore that (NC) holds. It follows from Theo-
rem 8 thatrx y is coherent under epistemic independence
if and only if for all (x, y) € X x Y there is somé& € M;

where the last inequality follows from (NC), we see that such thatP(z, y) = mx vy (x,y). This is what we now set

P('y') =1 —alrx(@) + mv(y)] + nxy(z,y) = 0.
The proof is complete if we can show th& € M;.

out to prove. Let us assume without loss of generality that
7y is unimodal with unique modg,, and let(z,y) be



an arbitrary element ot x ). Lemma 9 (conditions 1 implies in particular that there is 2 € M, such that
and 2) tells us that we may assume that 7wy vy (z,y) P(ay,b1) = B, and which also implies that < 3/26.
andmax{7x(z), 7y (y)} < 1. We show that in this case Assume in addition that > 0, whenceP({a;} x V) > 0
condition 3 of Lemma 9 holds because of the unimodalityand P(X x {b;}) > 0. There is somex € (0,1)
of my, so that there is nothing left to prove. Indeed, theresuch that3 = anx(a;)my(b1) (Use Lemma 3). Since
is somez’ € X such thatry (y) = mx,y(2',y), whence  P(a1,b1)/P({a1} x V) < my(b1) becauseP? € M;, it
we deduce thatrx (z') = 1 and thereforer’ # x, us-  follows thatP({a1} x Y) > arx(a1), whence
ing Lemma 3. Similarly, there is somg € ) such that
mx(z) = mx.y(z,y'), whencery (y') = 1 and therefore P(ay,bz) > arx(a1) — B = amx(a1)[l — 7y (b1)].
Yy = yo, andy’ # y. Also, there is somg” € Y such
thatmx y(2',y") = mx(2’') = 1, whencery (v") = 1,
again by Lemma 3. Thereforg’” = v = y,, and
T 'y )=m= T y,) =T 7, y") =1. O

xy (@ y) =mxy (' y0) = mx v (2',y") P x {3a]) > P(ay, by)

This implies thatP(X x {b2}) > 0. Consequently, it
follows from P(a1,bs)/P(X x {b2}) < mx(ay) that

7rX(a1) 2 Oé[l — Fy(bl)].

What we have in particular proved is that given two

marginal possibility distributions x andry, at least one  We find in a completely similar (or symmetrical) way that

of which is unimodal, the largest independent product pos-

sibility distribution that is coherent, is given by P({as} x V) > P(aivbb)l) > afl
Ty (01

By combining these inequalities we find that

—7x(a)].
mxy(z,y) = T(rx(x), 7y (y)),

whereT is the binary operatdr: [0, 1] — [0,1] on the

unit interval defined by P(ay,by)+P(ag,by)+P(a1,by)+P(ag, bs)+P(as, bo)
(0, ) af max{a, 3} = P(a1,b1) + P({az} x V) + P(X x {b2})
G T Y B—ap > B+ all —my(b1)] + afl — 7x(a1)]
for all « andg in [0, 1]. The operatofl’ is non-decreasing =4 ( 2 I + 1)
in both arguments, and has unitand zero0, so it is a mx(a)my (b))  wx(ar)  wy(b1)

so-called triangular seminorm. It is moreover continuous 52 —nx(a1) — my (b1) + mx(a1)my (b1)
and commutative, but it is not a triangular norm, because it o mx (a1)my (b1)
does not satisfy the associative property. To see this, take ] ]
a =1/4, 8 = 1/2 andy = 3/4; thenT(c, T(B3,7)) = and if 3 > 1/9, or in other words, if
81/1540 < 9/124 = T(T(a, B), 7).

)

mx (a1)my (by)
2 —7x(a1) —my (b1) + mx(a1)my (b1)’

wx,y(a1,b1) >

5 The general case
this contradicts the fact tha? is a probability measure.
We now turn to the general case that both distributiogs ~ We conclude that there can be no coherencesfor 1/9!
andry may be plurimodal. The first thing to note is that
the result of the previous case cannot be extended. To s

this, consider the following counterexample. S )
Examplel. Let X = {ai,as,as}, ¥ = {b1,bs,bs} Theorem 11. If the normal joint distributionrx y satis-

fies

eThi:s counterexample gives us a hint about a sufficient con-
Gition for independence and coherence in the general case.

and consider the normal joint possibility distributiog y-
given by the following diagram:
mxy (@) < min {T(rx (@), 7y (),

Txy | b1 by b3 | mx mx (2)my (y) }
ar | B 5 0] 5 2 —7x(x) =y (y) + mx (2)7my (y)
1
a2 3 0 b forall (z,y) € X x ), then it is coherent under epistemic
as 0 1 0 1 independence.
Ty % 1 1

Proof. Since (NC) is in particular satisfied, Theorem 8
where, of course) < 5 < 3/10. Itis clear that the nec- tells us that we only have to show that for evény y) €
essary condition (NC) for coherence under independencet’ x ) there is someP € M; such thatP(z,y) =
is satisfied provided that < 7'(1/2,3/10) = 3/26. As-  wxy(x,y). We infer from Lemma 9 (conditions 1
sume thatrx y is coherent under independence, which and 2) that we may assume that< =xy(z,y) and



max{7mx(z), 7y (y)} < 1. Then there are’ € X and

y' € Ysuchthatrx y (¢/,y) = 7y (y) andrx y (z,y') =

mx(z). It follows from the assumptions and Lemma 3
that tx(2') = 7ny(y’) = 1, whence alsa’ # z and

y # y. Lemma 9 (condition 3) tells us that we may
assume thatrx y (z/,y’) < 1. Consequently, there are

' # 2" in X andy” # y' in Y such thatrx y (¢, y"”) =
wx,y(@”’,y’) = 1. Note thatrx(z") = ny(y") = 1,
so mx and wy are in this case plurimodak” # x

and y” # y. It also follows from the assumptions
and Lemma 3 that there is some € (0,1) such that

xy(2,y) = arx(z)Ty(y).
loss of generality that x (x) < 7y (y). Let P be the prob-

We can assume without

ability measure uniquely defined on the power setof)

by P(z,y) = mx,v (2, y),

P(z',y) = ary (y) — mxv(z,y)

- ﬂ—X,Y(xvy)

x(x)

1 —Wx(x)

Plz,y) = arx(x) — mxy(2,y)

- ’/TX,Y(zvy)

Ty (y)

1 —7y(y)

P(a',y") = a[l = 7x(z) = 7y ()] + 7x v (2,9)

- ﬂ—X,Y(zvy)

and P(z",y) = 1 — a.

1—7mx(z)1l—my(y)

Tx(z)

Ty (y)

(It is easy to see that all
these terms are non-negative and add up to one.)
only remains to be shown tha? € M;. We use

Lemma 4. Recall thatrx y(z,y) < wxy(z,y) <

WX’y(LL'I,y) S 7TX,y(£Cl7y//) = WX’y(LU”?y/) = 1. Ob-

serve thalP(z, y) = mx v (z,y) and that

P(z,y) + P(z,y") = arx(z) < mx(z) = nx v (x,9).

Also P(x,y) + P(x,y’) + P(a’,y) is equal to

mx () + 7y (y) — mx (@) 7y (y)

7T)(,Y(xay)

mx (@)Ty (y)

and is therefore is dominated by y (2, y) = 7wy (y) if

and
L-mx(@)
Py TR
P({a'} x V) L(x’y)[lfﬂx(ff)] |
mx (x)my (y)

we infer from Lemma 4 thaP satisfies(CI3). Similarly,
note thatP(X x {y}) = amy(y) > 0, P(X x {y'}) >0
and P(X x {y"}) = P(z/,y") > 0 and thatP(X x
{v}) = 0 for all otherv € Y. Sincerx(z) < mx(a') =
mx(z") =1, P(x,y") =0,

= Wx(.’b),

P(X x{y})  amy(y

and since it is easily verified th&(x, y') /P(X x{y'}) <
mx (x) if and only if

P(z,y) Txy(T,y)
)

mx (z)my ()
<
YY) S @ §) - mx (@)~ @)
which is implied by the hypothesis, we infer from

Lemma 4 thatP also satisfieg CI5), so we may indeed
conclude thaf? € M;. O

This theorem provides us with a sufficient condition for
the coherence under epistemic independence of possibility
measures. The condition is not necessary, however. To see
this, it is enough to consider the case that (NC) holds and
one of the marginal distributions is unimodal, but where
Ifor some(z,y) € X x J,

mx (7)my (y)
2—7x(z) — 7wy (y) + mx(z)7y (y
mx (#)my (y) max{mx (), 7y (y)}
mx(x) + 7y (y) — nx(@)my (y)
Then we deduce from Theorem 10 tha¢ y- is coherent
under epistemic independence. Stilly y does not sat-
isfy the condition given by the last theorem. The condition

is not necessary in the case that both marginals are pluri-
modal either, as the following counterexample shows.

Example2. Let X = {al, as, ag}, Yy = {bh ba, bg}
and consider the normal joint possibility distributiog y

) < 7TX’y({L‘7y)

and only if given by the following diagram:
Wxﬂy(x, y) < ( ) +’/’I‘X((z))7ri/(y)2( ) ( )’ TX,Y by b b3 X
T \T Ty \Y TX\T)Ty \Y ay ﬁ % 0 1%
which is implied by the hypothesis. We may therefore con- az 1 1)1
clude from Lemma 4 thaP satisfie CI). Note also that as |0 1 0
P{z} xY) = arx(z) > 0, P{2'} x V) = o[l — 1 1 1
mx(z)] >0andP({z"} x ¥)=P(",y')=1—a >0 ™ol 3

and thatP({u} x Y) = 0 for all otheru € X. Since

my(y) <7y (y) =7y (y’) =1, P(z",y) = 0,

P(x,y)

o 7T-X,Y(x7 y)

P({z} x))

armx(x)

=7y (y),

wherel/9 < 8 < 3/26. Thennx y (a1,b1) = [ does not
satisfy the condition stated on the previous theorem, as

ﬂx(al)ﬂ'ya)l) o 1

2 —7x(ar) —my(b1) + wx(a)wy (b)) 9



We show thatrx y is nevertheless coherent under inde- possibility measure: if it were, its distribution would be
pendence. Clearly, (NC) is satisfied, 8s< 3/26 = given by the product rule, which is generally not coherent!
T(1/2,3/10). Consider(z,y) € X x ), then we show
that there is & € M, such thatP(z, y) = mx v (z,y). It
follows from Lemma 9 (conditions 1 and 2) that we may
assume thatx y (z,y) > 0 andmax{nx (z), 7y (y)} <

1, so we need only look at = a; andy = b;. Note
thatﬂ'X,y(al, b2) = 77)((&1), WX’y(az, bl) = 7T'y(b1) and
7x,y(az,b2) = 1 so Lemma 9 (condition 3) tells us that
there is aP € M, such thatP(a,,b1) = mx vy (a1,b1) =

B, andrx y is coherent under independence.

The results in this paper indicate that the theory of im-
precise probabilities has useful things to say about inde-
pendence in possibility theory. But we should warn the
reader against too much optimism. Indeed, possibility
measures are rather imprecise uncertainty model$l if
is a normal possibility measure (and therefore a coher-
ent upper probability) on some s&@t andN is its con-
jugate lower probability, also called necessity measure,
and defined byN(A) = 1 — II(cod), wherecoA is

the set-theoretic complement df C €, then we have

6 Conclusions thatTI(A) < 1 = N(A) = 0: the probability interval
[N(A),II(A)] always contains zero or one (or both). Al-
ternatively, it always holds fod C ) thatII(A) = 1

or II(co4) = 1, meaning that a subject whose beliefs are
modelled by the upper probabilify will not be disposed

to bet againstl or againstoA, and this for allA C ©2. On

In this paper, we have continued the study of the impli-
cations of giving possibility measures a behavioural in-
terpretation in terms of upper betting rates, initiated in
[3, 4, 5, 14, 15]. In particular, we have looked at the con- ; X X o
sequences of the rationality requirements of avoiding suré behawoural_ |nterpret<_':1t|on, pt_)ss,lblllty measures there-
loss and coherence when forming independent products ofP'® Model fairly weak information states. On the other
marginal possibility measures. The definition of indepen- hand, a judgement O_f mdependence_ IS _qmte mfo_rmanve,
dence that was used here, is based on Walley's [13] nof’_‘nd we suspect that in some cases it v_wI.I _be too informa-
tion of epistemic independence: two variables are e|OiS_t|ve to be adequately modelled by possibility measures, or

temically independent for a subject when his beliefs abou within the context of possibility theory. This is iIIustratgd
the value taken by one variable are not influenced by ne y the fact that, as we have seen above, the greatest inde-

knowledge about the value of the other variable. In thePendent joint possibility measut(Ily (4), Iy (B)) can
context of possibility theory, where beliefs are expressedb,e appreciably smaller than the independent natgral .
in terms of possibility measures, it seems natural to ex_smnE(AxB) - HX(A)HY(,B) on productsd x B: 'fwe,
press epistemic independence in terms of the equality ofeStI’ICt ourselves t(_) possibilistic models, we are obliged,
conditional and marginal possibility distributions (or mea- In order to_ capture_mdependence, to use products that are
sures), as we did in Definition 1. We have obtained a sim-M°r€ Precise than if we had used a more general approach,

ple characterisation for the coherence under independence ¥ with gohereqt upper probabilities. This identifies a
of a joint possibility distribution in the unimodal case, and weakness in possibility theory.

we have found a simple sufficient condition, as well as awe also want to warn the reader against too careless an
different, necessary one in the plurimodal case. It is notinterpretation of our results. To see what is involved here,
clear to us whether in the general case, there is a simpl¢et us consider the following very simple example.
necessary and sufficient condition involving only tbeal Example3. Let X take values int = {a1,a>} and lety’
values of the joint and marginal possibility distributions.  {ake values iy = {by,bo}. Assume that we know that

An immediate conclusion of Lemma 3 and Theorems 10X andY” jointly can only assume the valugs,,b;) or

and 11 is that the so-called minimum and product rules(@2,b2), and nothing more. This is clearly incompatible
for forming joint distributions from given marginals, With the epistemic independence&fandY’: if we know
which vyield 7xy(z,y) = min{mx(z),7y(y)} and what vall_JeY takes, we know the _valu_e of, ar!d vice
mx.y(z,y) = nx(z)my(y) respectively, and which are Versa. Itis ofte_n_argued _thz_it th_e given mformatl_on can be
quite common in possibility theory (see for instance [2, 6, Modelled by a joint possibility distributiomx y-, with

7, 17]), are only coherent wher (z) andry (y) assume
only the value$) and1.

mx,y(a1,b1) = mx,y (a2, b2)

1
3)
We could also consider the so-called independent natu- mxy (a,b2) = mxy (az,br) = 0.
ral extensionE [13, Section 9.3] of two marginal possi- This is equivalent to observing that we are prepared to
bility measuredIx andIly. This is the greatest (least- bet at any odds against the evélit,, b3), (az,b1)}. The
committal or most conservative) coherent and independentower probability (or necessityyx y ({(ax, bx)}) is zero,
joint upper probability which need not be a possibility which models that we are not prepared to bet on the occur-
measure. In fact, on products x B it can be shown that rence of{(ax, br)} at any oddsk = 1,2. This is reason-
E(A x B) = Ilx(A)lly(B), whereA C X andB C Y able, because we hav® information at allabout which

[13, Section 9.3.5].F will therefore in generahotbe a  of the two eventd(ay, b;)} and{(as, b2)} will occur.



Not surprisingly, the marginal distributions are vacuous,

or completely uninformativerx (a1) = mx(a2) = 1 and

my (b1) = my(be) = 1. What may seem suprising, how-
ever, is that, according to Theorem 8 and Lemma 9, the
joint distributionrx y is coherent under epistemic inde-

pendencerx y is a perfectly rationaindependenprod-

uct of the marginalsx andry, even if it is not the most

Fuzzy Measures and Integrals — Theory and Appli-
cations pages 124-160. Physica-Verlag (Springer),
Heidelberg, 2000.

[4] G.de Cooman and D. Aeyels. Supremum preserving

upper probabilitiesIinformation Sciences18:173—
212,1999.

conservative one! This seems to contradict our earlier [5] G. de Cooman and D. Aeyels. A random set de-

observation that the available knowledge is incompatible

with the epistemic independence EfandY'.

To see what goes wrong, we need to look at the condi-

tional possibility distributiong{7y | x (:|z): = € X} and

{mx1v(-ly): y € Y}. Itfollows from Theorem 1 that they

are coherent withrx y- if and only if

WX‘y(ak‘bk) :7Ty|X(bk|ak) :1, k:1,2.

This means that, in particular, both the vacuous condi-

tional distributions
Txy (arlbe) = my x (belax) =1, Kk L=1,2 (4)
and the precise conditional distributions

ifk=1¢
Tx|y (ak|be) = my x (belar) = {é ;f Z "y )

are coherent with the joint distributiony y: contrary to

what we are often used to in (precise) probability theory, [9]
we cannot rely on coherence to provide us with unique
conditional distributions (see also [15]). The joint distribu-

tion (3)is not a fully adequate model of the given informa-
tion! To remedy this, we have to repress an ingrained (pre-
cise) probabilistic reflex and also specify the conditional [10]

distributions{my | x (:|z): x € X} and{mx|y(-|ly): y €

Y} explicitly, as these cannot be determined uniquely from 11]
the jointmx y. Now the only conditional distributions that

reflect the given information are given by (5). Of course,
these are different from the marginal distributions, reflect-
ing that the variableX andY are not epistemically inde-

pendent. The problem above could only occur because we
assumed that the joint distribution adequately represent
the given information. But it doesn't: as far as coherence
is concerned, this joint is compatible with the vacuous con-

scription of a possibility measure and its natural ex-
tension. IEEE Transactions on Systems, Man and
Cybernetics—Part A: Systems and Hum&ts124—
130, 2000.
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