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Abstract

An incomplete data problem arises when sample
realizations are not fully observable: some realizations may
be entirely or partially missing; some variables may be
interval-measured. Whatever the specific form of the
incomplete data problem, the generic consequence is
imprecise identification of the population distribution
generating the data. This paper describes completed and
ongoing research showing how incomplete data problems
lead to imprecise identification of regressions and of
parameters solving extremum problems.
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1 Introduction

Inference from incomplete data is a commonplace problem
of empirical research. Consider a survey researcher who
draws a random sample of persons from a population of
interest and queries each person about some variables w
taking values in some space W. The objective is to infer
the population probability distribution P(w). A problem of
incomplete data arises if the researcher does not fully
observe the realizations of w.

Incomplete data problems take various forms in practice.
Some realizations of w may be entirely missing, as when a
person selected for participation in a survey refuses to be
interviewed. Other realizations of w may be partly missing,
as when a person agrees to be interviewed but then
responds to only a subset of the questions posed. Or w may
be measured only within intervals, as when survey
respondents are asked to provide categorical responses to
questions.

Whatever the specific form of the incomplete data problem,
the generic consequence is imprecise identification of the
population distribution generating the data. Incomplete
observation of realizations of w generally enables one to
learn that P(w) is a member of a set of feasible
distributions, say ¥, all of which are consistent with the
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available empirical evidence. Let T[P(w)] denote a
parameter of interest, perhaps the mean or median of w.

The identification region for this parameter is [T({),
Pe?].

This paper describes completed and ongoing research on
imprecise identification from incomplete data. Our
perspective is deliberately conservative — we focus on
“worst case” scenarios in which the researcher has no prior
information on the distribution of interest or on the process
preventing complete observation of sample realizations.
Our "worst-case" analysis contrasts with the "best-case"
approach that dominates the literature on inference from
incomplete data. Consider in particular the problem of
missing data. A common practice is to assume that data are
missing completely at random (MCAR) and to perform
analyses using only observations with complete data.
Conventional methods for imputing missing data assume
that missingness is random conditional on specified
covariates. On occasion, a model of non-random missing
data may be asserted. Either way, the identification
problem is solved and efficiency of estimation becomes the
central matter of concern to statisticians. We have
emphasized in Manski (1995), Horowitz and Manski (1998,
2000) and elsewhere that it is not sufficient for empirical
researchers to know the inferences that can be made if
specified assumptions hold. It is also important to be able
to characterize the inferences that may be made without
imposing these assumptions. An especially appealing
feature of conservative analysis is that it enables
establishment of a domain of consensus among researchers
who may hold disparate beliefs about what assumptions are
appropriate.

Section 2 describes completed research on the
nonparametric identification of regressions when outcome
or covariate data are missing. Sections 3 through 5
describe ongoing research on the analysis of extremum
problems from incomplete data. Section 3 presents the
inferential problem in abstraction and poses central open
questions. The complexity of the general problem makes it
prudent to examine important special cases and to develop
analytical approaches that provide at least partial results. In



this vein, Section 4 discusses the inferential problem when
the space W is finite; this restriction somewhat simplifies
matters. Section 5 introduces a set of minmax methods for
computing relatively simple outer identification regions.
These are regions which enclose the (sharp) identification
regions that fully express what can be learned about the
parameter of interest.

To keep attention focused on the core problem of
identification created by incomplete data, this paper does
not dwell on the routine problem of statistical induction
from samples to populations. Much of the discussion
below supposes that the researcher knows the values of
population features which are identified by the sampling
process. In practice, one may generally estimate such
features consistently by their sample analogs.

The body of research described in this paper constitutes
part of a growing modern literature on imprecise
identification of probability distributions. A paper
presented at ISIPTA 1 described another part of this
literature — research on imprecise identification of
distributions of treatment response (Manski, 2001). A non-
technical exposition of a variety of findings is given in
Manski (1995).

2 Regression with Missing Outcome or
Covariate Data

In this section, W = Y x X, where Y is a bounded real
outcome space and X is a covariate space. Each member j
of a population J has a value w; = (y;, x) € Y x X. The
range of Y is normalized to be the unit interval [0, 1]. Let
A be any measurable subset of X such that A is on the
support of P(x). The objective is to learn about the
conditional expectation E(y|x € A). A random sample is
drawn, but some data on (y, x) are missing.'

Empirical researchers have to contend with general patterns
of missing data. Itis instructive, however, to consider three
polar cases: missing outcomes (Section 2.1), jointly missing
outcomes and covariates (Section 2.2), and missing
covariates (Section 2.3). After examining these polar cases
in detail, we briefly consider more general patterns of
missing data (Section 2.4). See Horowitz and Manski
(1998, 2000) for empirical applications of the findings
described below.

! Boundedness of the outcome space Y is necessary if worst-case
inference on E(y ‘ X € A) in the presence of missing data is to yield
informative conclusions. However, boundedness of Y is not necessary for
inference on conditional probabilities of the form P(y € B|x € A), where
B c Y. The reason is that P(y € B|x € A) is the conditional expectation
of the indicator function 1[y € B], which is bounded.

2.1 Missing Outcome Data

Manski (1989) analyzed the case in which x is always
observed but data on y may be missing. Let z=1 if (y, X)
are observed, z = 0 if only x is observed. Use the law of
iterated expectations to write

(1) E(y|x€A) = E(y|x€ A, z=1)P(z=1|x€ A)
+E(y|x € A, z=0)P(z=0]|x € A).

The quantities E(y|x €A z=1)and P(z|x € A) are
identified by the sampling process, but E(y | XxEA,z=0)is
not. The last quantity must lie in the interval [0, 1]. Hence
we obtain the identification region

(2) E(y[x€A) €
[E(y|x € A,z=1)P(z=1]|x € A),
E(y|x€A,z=1)P(z=1|x€ A)+P(z=0|x € A)].

Observe that the width of this interval increases from zero
to one as the response probability P(z=1 | x € A) falls from
one to zero

2.2 Jointly Missing Outcome and Covariate Data

Horowitz and Manski (1998) analyzed the case in which
some realizations (y, x) are entirely missing, the remainder
being fully observed. Letz =1 if (y, x) are observed, z =
0 otherwise. Use the law of iterated expectations (1) and
Bayes Theorem to write

(3) E(y|x€A) =

(A, DP(z= 1)

E(y|x€A,z: 1)
T(A, DP(z=1) + (A, 0)P(z = 0)

(A, 0)P(z = 0)
+ E(y|x€ A, z=0) — ,
(A, 1)P(z=1) + Ti(A, 0)P(z = 0)

where T(A, j) = P(x € A|z=j). The quantities E(y|x € A,
z = 1), T(A, 1), and P(z) are identified by the sampling
process but E(y|x € A, z=0) and T(A, 0) are not. The
identification region for E(y | X € A) is obtained by
evaluating (3) over all values E(y | x€A z=0)€e[0,1]
and (A, 0) € [0, 1]. The result is

4) E(y|xeA) €
[E(y|x € A, z=1)P(z=1|x € A),
E(y|x €A, z=1)P(z=1|x € A)+P(z=0]|x € A)],



where

(A, 1) P(z=1)
P(z=1|x€A) =

(A, 1) P(z=1) + P(z= 0)

is the effective response probability.

Region (4) has the same form as (2), except that the
effective response probability P(z =1 | X € A) replaces the
unknown P(z = 1 |x € A). Observe that the width of the
identification region increases from zero to one as either
T(A, 1) or P(z=1) falls from one to zero.

2.3 Missing Covariate Data

Horowitz and Manski (1998) analyzed the case in which y
is always observed but data on x may be missing; now z =1
if (y, x) are observed and z = 0 if only y is observed. This
case is more complex than those discussed thus far.

To determine the identification region, reconsider the
analysis of jointly missing outcome and covariate data in
Section 2.2. There the available data constrained the right
side of equation (3) by identifying E(y|x €A z=1),
T(A, 1), and P(z) If only covariate data are missing, the
data also identify the distribution P(y | z=0). Knowledge
of this distribution jointly constrains E(y | x€A,z=0)and
T(A, 0) through the equation

(5) P(y|z=0) = P(y|x € A, z=0)T(A, 0)
+P(y|x € A, z=0)T(A, 0),
where A denotes the complement of A.

To determine the implications of (5), first letp € [0, 1] and
suppose that T(A, 0) = p. Let ¥ denote the set of all
distributions on Y. Then the values for the distribution
P(y | X € A, z=0) that are consistent with (5) are

© Fp) = ¥ 0 {[Ply|z=0)-(1-p¥lp: Y € T}
The implied set of feasible values for E(y | XEA,z=0)is

(7) E(y|x €A, z=0) € [g(p), g(P)].

where g,(p) = inf [[ydy, § € ¥(p)] and g,(p) = sup
[[ydy, ¢ € P(p)]. It can be shown that gy(p) and g,(p) are
the means of two truncated versions of P(y|z = 0),
specifically the distributions formed from the left and right
tails containing mass p (see Horowitz and Manski, 1995).

Combining (3) and (7) yields

(8) E(y|x€A) €

pP(z=1)
{E(y|x€ A, z=1)

pP(z=1) + (1 - p)P(z=0)

pP(z = 0)

+g(p) ,
pP(z=1)+(1-p)P(z=0)

pP(z=1)

E(y|x€A,z= 1)
pP(z=1)+ (1 -p)P(z=0)

pP(z=0)

+g,(p) 3.
pP(z=1)+ (1 -p)P(z=0)

If it were known that T(A, 0) = p, the right side of (8)
would give the identification region for E(y|x € A).
However, the available data place no constraint on Tt(A, 0).
Hence the identification region for E(y | X € A) is the union
over p € [0, 1] of the intervals on the right side of (8).

In general, this region does not have a simple form
comparable to those reported in Sections 2.1 and 2.2.
However, one special case yields an exceedingly simple and
surprising result. Suppose that P(y\z =0) is found to be
degenerate, with all mass at E(y | x € A,z=1). Then g,(p)
=g/(p) = E(y|x €A,z= 1) forall p € (0, 1]. Hence (8)
reduces to E(y|x EA)= E(y|x €A, z= 1)forallp € [0,
1]. Thus E(y | X € A) may be precisely identified, even if x
is never observed.

2.4. General Patterns of Missing Data

Succinct characterization of the identification region for
E(y|x € A) is elusive in general settings where some
sample realizations may have missing outcome data, others
have missing covariate data, and still others have jointly
missing outcomes and covariates. The literature to date
contains two sets of findings.

Horowitz and Manski (2000) show that the identification
region has a tractable closed form expression if y is a binary
outcome variable and if covariate data, when missing, are
entirely missing. (Thus, if x is a vector, it is presumed that
each realization of x is either fully observed or that all
components of x are missing.) This article also gives a
closed-form expression for the feasible values of contrasts
of the form E(y|x € A) - E(y|x € B), where A and B are
any two disjoint subsets of X. Analysis of such contrasts is
subtle because a missing covariate realization cannot
simultaneously lie in the sets A and B. Hence the
identification region for E(y|x € A) - E(y|x € B) is a
proper subset of the region formed by considering all



feasible values of E(y|x € A) and all feasible values of
E(y|x € B).

Zaffalon (2001) supposes that the set Y x X is finite and
permits an arbitrary pattern of missing data. This extends
the setting of Horowitz and Manski (2000) in two respects;
y need not be binary and realizations of the x vector may be
partly observed. The price paid for this generality is that a
closed-form expression for the identification region does
not emerge. However, computation of a sample analog
estimate of the identification region is tractable. Zaffalon
shows that estimates of the smallest and largest feasible
values of E(y \ X € A) can be obtained by solving fractional
linear programming problems.

3 Extremum Problems with Incomplete Data

A very large part of formal empirical research uses sample
data to estimate the value of a finite-dimensional parameter
that minimizes the expectation of a random function.
Leading special cases include estimation of best predictors
and maximum likelihood estimation.

Let B be a finite-dimensional real parameter space. Let
h(*, *): W x B ~ R! be a specified function. Assume that
E[h(w, *)] exists and has a minimum at some b € B.
Suppose that a random sample of realizations of w are
drawn. The objective is to infer b.?

Empirical researchers routinely report estimates based only
on those sample realizations that are completely observed.
This practice is justified if the same population probability
distribution generates the realizations that are completely
and incompletely observed; however, it usually is not
justified otherwise. Let z =1 if a realization is completely
observed and z = 0 otherwise. The standard practice is to
estimate b, = argmin ..z E[h(w, ¢) | z = 1] rather than the
parameter of interest, namely b = argmin . . 3 E[h(w, ¢)].
Obviously, b, = b if P(w|z = 1) = P(w). However, b,
usually differs from b otherwise.

Empirical researchers need to understand what can be
learned about the parameter of interest when the researcher
has no prior information on the distribution generating the
realizations that are incompletely observed. This motivates
our ongoing research that seeks to characterize and find
tractable ways to estimate the identification region for b.

3.1 The Identification Region and its Sample Analog

To begin, we need an appropriately general description of

? The nonparametric regression problem of Section 2 is a special case.
Let W=Y x X,B=R',and A ¢ X. Leth[(y, x),c] = 1[x € a](y - c)~
Then b= E(y|x € a).

an incomplete data problem, one that embraces both
missing data problems and interval measurement problems.
This is accomplished by supposing that precise realizations
of w may not be observable, but sets containing w are
observable. Thus, let each member j of the population J be
characterized by a value w; € @; © W. A random sample of
size N is drawn from the population and the researcher
observes the set-valued realizations (w;,, i =1, .. ., N).
When a realization of w contains a single value, the
researcher has complete data on w. When w contains
multiple values, W constitutes incomplete data on w.

Supposing that (w, W) is measurable, let P(w) denote the
population distribution of the sets w and let P(w| W) be the
distribution of w among persons who have observable
characteristics . Consider the expectation function

(9) E[h(w, )1 = [, []. h(w, )dP(w|®)] dP(w).

The sampling process identifies the distribution P(w) but
reveals nothing about the conditional distributions P(w | w).
Let ¥(w) denote the set of all distributions with support .
Then the identification region for b is

(10) B, {argmin [ [h(w, c)d(w|w)]dP(w),
ceEB

U(w|w) € F(w), w € Q},

where Q is the collection of all measurable subsets of W.
The natural estimate of B, is its sample analog

1 N
{argmin - Y [h(w, c)dyi(w|w),
ceEB Ni=1l
Yw|w) e P(w),i=1,...,N.

(I1) By

3.2 Central Questions

The above provide a notationally compact description of a
very broad range of incomplete data problems. However,
the abstraction of the description works against constructive
analysis. It seems inevitable that to make progress, attention
must be focused on suitably circumscribed classes of
functions h(*, *) and/or suitably restricted forms of the sets
w that define the incomplete data problem. This done, the
central questions that we would like to address include
these:

Characterization of B,: Is the identification region B, a
proper subset of B, and hence informative? When B, is
informative, what is its geometry?

Computation of B,y: Does the estimate B have a tractable
closed-form? If not, is numerical computation feasible?

Statistical Inference: What is the sampling behavior of B
as an estimate of B,?

Prospects for Tractable Partial Analysis: If it is
intractable to characterize B, and compute B,y are there



tractable approaches that provide useful partial results?

Sections 4 and 5 report progress in addressing these
questions. Also see Manski and Tamer (2001) for analysis
of inference on regressions in the presence of interval data.

4 Inference when W is Finite

If W is finite, then each subset w is finite and ¥(w) is the
collection of multinomial distributions placing all mass on
®. Hence Y(w|w) € P(w) is a point on the |W|-
dimensional simplex. This simplifies matters somewhat.

Let O(): B = R! be a specified function mapping the
parameter space into the real line. The identification region
for O(b) is [O(c), c € B,]. Suppose that one wants to learn
inf[O(c), ¢ € By]. The sample analog is inf[0(c), ¢ € Byy].
If W is finite, inf [0(c), ¢ € Byy] can be determined by
solving a two-stage, finite-dimensional extremum problem
whose second stage is a nonlinear programming problem.
Solution of this problem is tractable in some cases of
empirical interest.

Consider, for example, the best linear predictor (BLP)
under square loss of areal outcome y given a d-dimensional
covariate vector Xx. The BLP has the form x'b, where b =
[E(xx")]'E(xy) is the solution to the familiar least squares
extremum problem. A common problem in empirical
research is to learn the BLP when some observations of y
and/or x are missing or otherwise incomplete. In ongoing
work we have found that, provided d is not too large, it is
tractable to compute the smallest and largest values of x'b
that are consistent with the available data.

5 Minmax Outer Identification Regions

This section develops simple methods for partial inference
on b when data are incomplete. The objective is to develop
methods that may be implemented routinely with at most
minor enhancements to standard statistical software. The
methods described here achieve their simplicity in two
ways. First, we treat incompletely observed realizations as
entirely missing. Second, we use the data to determine
minmax outer identification regions for b; that is, regions
which enclose B,. Thus, the methods examined here
achieve simplicity by exploiting only part of the
information available to the researcher.

5.1 Three Minmax Regions

Let z=1 if w is completely observed and z = 0 otherwise.
For ¢ € B, let S,(c) = E[h(w, c)\z = 1] and Sy(c) =
E[h(w, ¢)|z=0]. Then

(12) E[h(W, ¢)] = S,(c)P(z=1) + Sy(c)P(z=0).

Leth;(c) =inf .y h(w,c). Then
(13) E[h(w, c)] > S,(c)'P(z=1) + hy(c)'P(z=0).
Let b, € argmin .. S,(c) and hy(b,) = sup ,, . w h(w, b)).
Then
(14) Elh(w,b)] < S,(b)-P(z=1) + hy(b,)P(z=0).
Hence ¢ cannot minimize E[h(w, *)] if
(15) Sy(c)'P(z=1) +hy(c)P(z=0)

> S,(b)P(z=1) + hy(b)P(z=0).
This yields the minmax outer identification region
(16) B, = {c € B: S;(c)-S,(b) <

[hy(b,) - hy(©)]-P(z = 0)/P(z = 1)}.

Region B, is potentially informative ifh(:, c) is bounded on
W for each ¢ € B. It is not necessary that h(:, *) be
uniformly bounded, nor that W be a finite set. When B, is
potentially informative, the size of the region depends on

the specifics of the problem. However we can conclude
that, in general, B,, ~ basP(z=0) - 0.

Region B,, is a subset of an outer identification region
reported in Manski (1994). There attention was restricted
to cases in which h(:, *) is uniformly bounded in a finite
interval [K;, K]. Applying the same reasoning as in (12)
through (16) yields the region

(17) By = {c € B:§,(c) - Sy(by) <
Ky -K)P(z=0)/P(z=1)}.
Yet another outer region may be obtained if h(-, *) is

uniformly bounded from below but not necessarily from
above. This is

(18) B, = {c€B:S,(0)-8,(b) <
[hy(b,) - K,]P(z = 0)/P(z = 1)}.
Clearly B,, < B,, < B,, However, the three regions

have the reverse ranking computationally, with B, being
easiest to compute, followed by B,

5.2. Minmax Estimation Regions

Now consider the sample analogs of the regions derived
above. Let N(1) denote the sub-sample of observations
withz=1and letN, = |N(1)|. Let N, be the number of
observations with missing data and N = N, +N,. Then the
sample analog of B, is

(19) By = {c € B: Sjy(c) - Spn(by) <
[hy(byy) - hi(€)]'Ny/N, },

where S;(c) = (I/N) Y. Ny h(w;, ©) and where b,y €
argmin . 5 S,(c). Sample analogs of B, and B,,, may be
formed analogously.



The empirical requirements for computation of minmax
estimation regions are access to the sub-sample N(1) of
complete data and knowledge of the number N, of
observations with incomplete data. Computation of B
requires solution of these extremum problems:

(i) min . S;y(c)
(ii) sup ¢ w h(w, byy)
(iii) inf .y h(w, c), c € B.

Problem (i) is standard, it being the extremum problem
solved by researchers who assume that P(w \ z=1)=P(w)
and who consequently choose to discard incomplete data.
The complexity of problems (ii) and (iii) depends on the
form of h(*, *) and W. Problem (ii) needs to be solved only
once, at b,,, and so will rarely pose a difficulty in
applications. Problem (iii) must be solved at each ¢ € B,
and so may more often be an issue. When solution of (iii)
is problematic, an empirical researcher may prefer to
compute the region B, which requires only solution of
problems (i) and (ii).

5.3 Best Linear Prediction Under Square Loss

Computation of B, is particularly simple in the familiar
problem of best linear prediction under square loss. Let W
=Y x X and h(w, ¢) =(y - x'c)?, with Y a bounded subset
of R!, X a rectangular bounded subset of R¥, and B < R,
In problems of this form,

(20) Sy(c)-8,(b) = (c-b) E(xx[z=1)(c-b)).

The solution to problem (ii) occurs at an extreme point of
Y x X, namely

(21) hy(b) =
max {[yy - Zjblj “ (X 1[by; > 0] +xy;*1[by; < onrA
[y, - Zjblj'(XLj'l[b1j<0] +XUj'1[b1j>0])]2}-

where y; = inf(Y), yy; = sup(Y), x, = inf(X), and x; =
sup(X). A uniform lower bound on (y - x'c)* is provided
by the value K; = 0. Hence the minmax region B, is an
ellipse centered on b,, namely

(22) B,, = {c €R" (c-b)'E(xx'|z=1)(c - b))
< Y hy(b,)'P(z = 0)/P(z = 1)}.
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