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Abstract

Reliability analysis of engineering systems conven-
tionally represents the system state variables as precise
probability distributions and generates precise estimates
of the probability of system failure. It is demonstrated
how this conventional approach can be extended to
handle imprecise knowledge about the system state
variables, represented in general as random sets, in order
to generate bounds on the probability of failure. The
conventional assumption of a precise limit state function
is then relaxed. A new method based on linguistic
covering of the state variable space with fuzzy set labels
is introduced and is used to generate an imprecise limit
state function from very scarce experimental data.
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1 Introduction
Engineering reliability analysis is conventionally based
on the use of probabilistic information about the loads
and responses of an engineering system to estimate the
system probability of failure. Whilst use of reliability
methods is now widespread, they have been criticised on
several grounds [2,3,12]. Amongst the most significant
are the constraints that the information input into the
analysis has to be in a precise probabilistic format and
the model (known as the limit state function) through
which this information is extended is a precise model.
The former constraint has been addressed quite widely
by reformulating reliability calculations to accept
information in a range of formats, including probability
intervals [7], fuzzy sets [2,4,6,20] convex modelling [12]
and random sets [22,23].

The latter problem of the precise form of the limit state
function is more profound than the format of the

parameters themselves. Conventionally, uncertainty in
the limit state function has been addressed by adding
another random variable to the state variable set to
represent uncertainty. However, the empirical meaning
of this variable is far from clear and its precise
probabilistic format can be hard to justify.

It is interesting to note that whilst reliability theory first
emerged for analysis of structural and mechanical
systems it has been most challenged in rather more
complex engineering domains. This helps to explain why
it is in fields such as geotechnical/rock engineering
[8,23] and hydraulic engineering [13,15] that reworkings
of conventional reliability theory have been proposed to
address some of the difficulties outlined above. This
paper uses examples of reliability analysis of flood
defence dike to demonstrate how imprecise parameters
and limit state functions can be used in reliability
calculations.

2 Formulation of the reliability problem
Reliability analysis calculates pf, the probability of
failure of a system characterised by a vector x = (x1,…xn)
of basic variables on X = nR . The resistance r of the
system can be expressed as r = gr(x) and the loading
effect s as s = gs(x). The probability of failure pf is the
probability p of (r ≤ s):

pf = p(r ≤ s) (1)

or in general

pf = p(g(x) ≤ 0) (2)

where g is termed the ‘limit state function’ and the
probability of failure is identical to the probability of
limit state violation. The resistance r and load effect s are
generally implicit in x.
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If fX(x) is the joint probability density function over the
basic variables, then

pf = p(g(x) ≤ 0) = �
≤0)(
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If the n basic variables are independent then
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3 Reliability calculations with random set
variables
Whilst it is conventional to represent the basic variables
x as precise random variables, in practice the information
about these variables may be quite imprecise, suggesting
that the probability distribution on X should be extended
to the power set ℙ(X). The probability mass distribution
across the power set can then in general be handled
through random set theory, providing a coherent
structure for handling both probabilistic and possibilistic
parameters [10,11]. The reliability problem then becomes
that of finding the bounds on

pf = ( )0≤)x(gp (5)

subject to the available knowledge restricting the allowed
values of x. The dependency between (x1,…xn) can be
expressed as a random relation R, which is a random set
(ℜ , ρ) on the Cartesian product X1×…×Xn, in which case
the range of g is the random set (ℱ, m) such that [11]:

ℱ = {g(Ri) | Ri ∈  ℜ },     g(Ri) = {g(x) | x ∈  Ri} (6)
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If the set of failed states is labelled F ⊆  X, the upper and
lower bounds on the probability of failure are then the
Plausibility Pl(F) and Belief Bel(F) respectively:

Bel(F) ≤ pf ≤ Pl(F) (7)

where
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Equations (6) to (9) form the basis for evaluation of the
bounds on system reliability with random set variables.

3.1 Special cases

A number of interesting special cases of Equation (6) are
addressed below, by considerations of the situation when
x = (x1, x2), so g is a mapping X1×X2 → Z. The extension
to several variables in x is straightforward.

(i)  Set-valued variables
When (ℜ , ρ) is such that ℜ  = {A×B}, then (6) gives

g(A,B) = {g(x1,x2) | x1 ∈  A, x2 ∈  B} (10)

This is a fundamental definition of interval analysis [19].
A particular case is when the variables x, are a
combination of l intervals,

(x1,…, xl) = u ∈  [a, b] (11)

and n - l probability distributions,

(xl+1,…, xn) = v. (12)

The probability of failure can be evaluated at each vertex
of the space of interval variables x1,…,xl:
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Vf dv | u ∈  [a, b]} (13)

and the bounds on the probability of failure derived from
the vertex method [9]. The vertex method is numerically
straightforward alongside the integration of probability
distributions, and can in practice be used to reduce the
dimensionality of the convolution integral (Equation (3))
to manageable proportions.

(ii)  Consonant random Cartesian products
Consonant random Cartesian products correspond to
decomposable fuzzy relations, in which case ℜ  is the set
of the level-cuts of the equivalent fuzzy relation R. In this
case R is consonant and µR is given by

µR(x1, x2) = �
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These level cuts are Cartesian products if and only if ∃
F1, F2 fuzzy sets on X1 and X2 such that

µR(x1, x2) = ( ))(),( 21 21
min xx FF µµ (15)

R is then a fuzzy Cartesian product denoted F1×F2.

When (ℜ , ρ) is a consonant random relation, then (ℱ, m)
obtained through Equation (6) is consonant and
equivalent to the fuzzy set g(R) defined by:
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For consonant random Cartesian products, putting
Equation (15) into Equation (16) gives:
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This is Zadeh’s extension principle [25], i.e. the
fundamental equation of fuzzy arithmetic with non-
interactive variables.

(iii)  Stochastically decomposable Cartesian products
(ℜ , ρ) is a stochastically decomposable random
Cartesian product on X1×X2 when

∀ R∈ ℜ , ∃  A1⊆  X1, A2⊆  X2, R ⊆  X1× X2 (18)

and

∀ A1, A2, ρ12( A1×A2) = m1(A1). m2(A2). (19)

A stochastically decomposable random Cartesian product
can be specified by means of two stochastically
independent random sets S1 and S2, with the joint basic
assignment ρ12 being given by (19). In this case the
general extension principle in (6) becomes
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(iv)  Joint probability distributions
Another particular case of (6) is when ∀ R ∈ ℜ , ∃  x1, x2, R
= {(x1, x2)}, in which case ρ defines the joint probability
assignment on X1×X2 and (ℱ, m) as defined by (6) gives
a probability assignment on X such that

p(z) = m({z}) = �
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and in this case

pf  = p(g(x1, x2) ≤ 0) = �
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which is equivalent to Equation (3).

When (ℜ , ρ) is a joint probability distribution which is
stochastically decomposable, i.e.

p(x1, x2)= p1(x1).p2(x2), (23)

p1 and p2 are probability assignments of stochastically
independent variables and
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so

pf  = p(g(x1, x2) ≤ 0) = �
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which is equivalent to Equation (4).

3.2 Consonant approximations to random sets

In general, whilst the parameters of x will often each be
one of the special cases introduced above, z (=g(x)) will
be a non-consonant random set on Z. However, it is
possible to benefit from the computational efficiency of
Equation (17) by identifying consonant approximations
to non-consonant marginal variables in x. The approach
is particularly attractive during reliability-based systems
optimisation [22], when multiple calls are made to the
reliability function.

Proposition 1 (see [11]). If (ℱ1, m1) and (ℱ2, m2) are the
images through function g: X1×X2→Z of random
relations (ℜ 1, ρ1) and (ℜ 2, ρ2) on X1×X2, respectively,
then (ℱ1, m1) ⊆  (ℱ2, m2) as soon as (ℜ 1, ρ1) ⊆  (ℜ 2, ρ2).

Consequently

[Bel1(A), Pl1(A)] ⊆  [Bel2(A), Pl2(A)], (26)

which can be used as an efficient mechanism for
bracketing the probability of failure.

(ℱ1, m1) ⊆  (ℱ2, m2) in this case signifies strong inclusion
[10], for which the following three conditions must hold
(i) ∀ A∈ ℱ1, ∃  B∈ ℱ2, A⊆ B,
(ii) ∀ B∈ ℱ2, ∃  A∈ ℱ1, A⊆ B,
(iii) there is a non-negative assignment matrix W with

entries W(A,B), A∈ ℱ1, B∈ ℱ2,
∀ A∈ ℱ1, �
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where W(A,B) = 0 as soon as A ⊄  B.

(ℱ1, m1) is weakly included [10] in (ℱ2, m2) if ∀ A∈ X
Bel1(A)≥Bel2(A).

Note, however, that it is not sufficient to demonstrate
inclusion of the marginal variables for Proposition 1 to
apply, since the proposition is expressed in terms of the
relations (ℜ 1, ρ1) ⊆  (ℜ 2, ρ2). Thus, for example [10], if
F1 and F2 are fuzzy sets on X1 and X2 respectively, such
that they are outer approximations to random sets U1 and
U2, respectively, then generally the fuzzy Cartesian
product F1×F2 defined by Equation (15) is not an outer
approximation of the stochastically decomposable
random relation U1×U2 defined by Equation (19). If UF1
and UF2 are consonant random sets equivalent to F1 and
F2, then the random set UF1×UF2 is a strong outer
approximation to U1×U2, but is no longer consonant. The
minimal outer approximation R of UF1×UF2 whose focal
sets are in the set R of level cuts of F1×F2 has the
membership function:

µ = )]2.(),2.(min[
2211 FFFF µµµµ −− (27)



The best lower bound approximation (in the sense of
weak inclusion) of UF1×UF2 is the fuzzy set F1.F2 defined
by 

212.1
. FFFF µµµ = [10].

Besides generalising reliability calculations to handle a
range of set-valued variables, the above approach can
also be used to bracket Monte Carlo simulation results
[11]. The approach has been demonstrated in reliability
analysis of rock mass response [23] and can drastically
reduce the computational burden of reliability
calculations, as well as providing an explicit evaluation
of the error involved in the calculation.

3.3 Numerical example of reliability analysis
with random set variables

Systems of dikes provide protection against flooding in
many countries. Whilst in the past design and safety
assessment of flood defence systems has been based on
deterministic methods and factors of safety, reliability
methods are being increasingly widely adopted as the
basis for risk-based decision-making. Reliability methods
are particularly attractive in the context of flood defence
because the main hydraulic loads (rainfall, flood water
levels, wave heights) are well described as random
processes. However, there is much less statistical data
about other determinants of system reliability, for
example dike soil strengths.

The example presented here is based on a previous
conventional reliability analysis of a dike on the Frisian
coast in the Netherlands, along the Wadden Sea [14]. The
behaviour of the concrete block revetment on the
seaward slope of the dike is described by basic variables
x = (∆,D,Hs,α,M,sop) where
∆ is the density of the revetment blocks,
D is the diameter of the revetment blocks,
Hs is the significant wave height,
α is the slope of the revetment,
M is a model parameter and
sop is the offshore peak wave steepness.
The limit state function g(x) is given by

g(x)
α

ξ
cosM

HD op
s−∆= (28)

where ξop = sop
-0.5tanα. The wave height Hs in shallow

water is related to the water depth. Given a particular
water level h, the wave height is normally distributed
with

05.004.0,117.0224.0 || −=+= hh hHhH ss
σµ (29)

where h is Gumbel distributed with parameters α = 0.36,
ξ = 2.91 and there are 3 storm events each year. The
wave height therefore also conforms reasonably closely
to a Gumbel distribution with α = 0.12 and ξ = 0.94. The

Variable µ σ Lower
bound

Upper
bound

sop 0.036 0.004 - -
tanα 0.33 0.01 0.32 0.34

M 4.06 0.698 3.0 5.2
∆ 1.62 0.02 1.60 1.65
D 0.70 0.02 0.68 0.72

Table 1: Means and standard deviations of normally
distributed parameters [16]. Interval bounds for

imprecise parameters

other parameters in the original analysis were assumed to
be normally distributed and independent (Table 1). The
situation therefore corresponds to the special case of
stochastically independent state variables (Section
3.1(iv)). The probability of failure of 9×10-4 per year is
calculated according to Equations (3) and (4), which are
conveniently solved using first order second moment
(FOSM) or Monte Carlo methods [18].

3.3.1 Interval measurements of imprecisely known
parameters and probability distribution of random
loading parameters

Whilst the hydraulic loading parameters Hs and sop are
derived from statistical analysis of the variable loads at
the site, the other parameters, which relate to the strength
of the system, are based on imprecise measurements of
parameters that notionally have an exact value at any
given cross-section of dike. To distinguish between these
two types of uncertainty Hs and sop can be described by
their probability distributions, whilst tanα, M, ∆ and D
are allocated the interval values given in Table 1. The
bounds on M have been obtained from the bounds on
experimental measurements, whilst the bounds on tanα,
∆ and D can be obtained from knowledge of construction
tolerances or (imprecise) measurements. The situation
therefore corresponds to the case described in Section
3.1(i) and the bounds on the probability of failure can be
calculated according to Equation (13) to generate an
imprecise value of the probability of failure pf ∈  [1×10-7,
2×10-3]. The width of this bound is dominated by the
bounds on M.

3.3.2 Interval measurement and fuzzy sets of
imprecisely known parameters and probability
distribution of random loading parameters

The parameter M was subsequently modelled as the
fuzzy set illustrated in Figure 1, while the hydraulic
loading parameters Hs and sop were represented as
probability distributions and the imprecisely known
parameters relevant to the dike, tanα, ∆ and D, were
represented as intervals, as previously. This combination
induces a non-consonant random set on the parameter
space. The bounds of the probability of failure can then
calculated using Equation (13) by considering M as a



weighted set of α-cuts, generating a probability of be
failure of pf ∈  [5×10-7, 6×10-4]. The rather narrower
bounds on the probability of failure reflect the increased
information content in the fuzzy set relative to the
interval bounds. The result no longer bounds the precise
probability of failure generated by the conventional
reliability method, because of differing assumptions
about the probability/possibility of the lower tail of M.
These assumptions are scrutinised and improved upon in
Section 4.2.

4 Model uncertainty
In the preceding section it has been demonstrated how
conventional reliability analysis with random variables
can be generalised to random set-valued variables in
order to generate bounds on the probability of system
failure that reflect the uncertainty in the system variables.
The analysis has assumed the existence of some limit
state function z = g(x), however, the nature of this
function has not been examined.

In conventional reliability analysis the function is
assumed to be a precise mapping, even though
knowledge of the engineering system behaviour is often
too scarce for the mapping to be substantiated by
experimental evidence. Indeed in some circumstances,
particularly the more challenging engineering fields
mentioned in the Introduction, all that may be available
is some vague relationship based on the judgement of a
few experts and perhaps a handful of experimental
measurements. In any case, there will always be a range
of dependability of limit state functions, with some being
highly dependable and others being much less
dependable. Indeed most real engineering systems can
fail by several different mechanisms, each of which will
have a corresponding limit state function, so even within
the analysis of a single system there will be a range of
levels of uncertainty associated with the different limit
state functions. To represent each of these functions as
the same precise mapping misrepresents the engineer’s
variable state of knowledge about the system.

The conventional probabilistic approach to handling
uncertainty in the limit state function (usually referred to
as ‘model uncertainty’) is to introduce another random
variable in the limit state equation to represent model
uncertainty. In the example introduced in Section 3.2, the
parameter M (Equation (28)) was modelled as a normally
distributed random variable in order to represent the
model uncertainty. There are, however, a number of
criticisms of this approach:
(i) Parameterisation of uncertainty in the limit state

function involves an implicit assumption of the
form of the relationship between the basic variables
(linearity, in the example introduced above). This
assumption may not be justified on the basis of the
scarce available knowledge.

(ii) There may not be sufficient information to identify
the form of the distribution of the uncertainty
parameter. Often a normal distribution is assumed
without empirical justification.

(iii) If model uncertainty is represented by a precise
random variable in all cases then it is not possible to
represent varying states of knowledge about the
limit state function.

Moreover, Blockley [3] argues that reducing model
uncertainty to a single parameter is inadequate because
the level of sophistication of handling such a difficult and
important part of the total uncertainty is very much less
than for the relatively straightforward issue of
uncertainty in the system variables.

In this section, two approaches to generalising the
conventional formulation of the limit state function are
presented. The first deals with the imprecision in the
definition of the states ‘failed’ and ‘not failed’. A new
approach is then introduced that uses a fuzzy set
classification of the system behaviour to develop a limit
state function on the basis of scarce experimental data.
The approach is demonstrated by application to the
example introduced above.

4.1 Fuzzy failure surface

It has been recognised that the distinction between
‘failed’ and ‘not failed’ states is seldom as crisp as the
formulation of the limit state function suggests. This has
led to the development of multi-state structure function
[5]. It is natural therefore to fuzzify the boundary by
adding a failure level index α, such that α = 1 represents
‘complete failure’ and α = 0 represents ‘complete
survival’[16]. A given failure level α therefore
corresponds to a system response g(x) = zα, so the
probability of this failure level can be calculated as

p[α] = p[g(x) ≤ zα] = �
≤ αzg

X df
)(

)(
x

xx . (30)

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6

M

M
em

be
rs

hi
p

µM

M
Figure 1: Fuzzy set for M



The approach, however, has not gained general
acceptance because of the difficulty in defining fuzzy
failure levels. In practice crisp failure levels are defined
through a process of collective judgement and
negotiation in code committees. The imprecise nature of
these criteria is well recognised but from the point of
view of the designer who has to make a decision, the
benefit of explicitly fuzzifying the condition has not been
widely accepted.

4.2 Imprecise knowledge of the limit state
function

A more practical problem is the situation in which the
engineer has only limited information on which to base
the limit state function. As was explained above, the
conventional probabilistic approach is to introduce
another random variable to represent the model
uncertainty. An alternative approach is introduced here,
which involves constructing random sets over the
parameter space, which, for any given point in that space,
represent the available evidence that the system has
failed or has not failed. At any given point a probability
mass of unity is distributed between three focal sets:
{failed}, {not failed} and {failed, not failed}. The
approach proceeds as follows.

For each variable a finite set of labels LA is defined that
form a linguistic covering of the state space [17].

Definition 1. Linguistic covering. A set of fuzzy sets
F1,…, Fn forms a linguistic covering of X if and only if ∀
x∈ X max ),...,(

1 nFF µµ = 1.

For any x∈ X, a unit mass can be distributed over the set
of labels covering that point, according to the fuzzy
memberships of the labels. Suppose that {l1,…, lk} = {li
∈  LA | )(x
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If Li = {l1,..., li} | 1 ≤ i ≤ k then the mass distribution at x
can be written as a random set (ℱx, mx), where

ℱx = {Li | i = 1,…, k} (32)
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This is referred to as the label description of x. For
example if the set of labels {small}, {medium} and
{large} provides a linguistic covering of the space of x ∈
[0,100] as shown Figure 2, then ℱ30 = {small, medium}:
0.5, {small}: 0.5.

Figure 2: Linguistic covering of x∈ [0,100]

Notice that in order for ℱx to be a normalised random
set, in the sense that zero mass is allocated to the empty
set for every x, then the set of labels LA must form a
linguistic covering as given in Definition 1. Normalised
random sets are desirable in this context since otherwise
mass is associated with the possibility that none of the
‘words’ in LA are appropriate as labels for some x and
this makes prediction more problematic.

The idea of a label description of a point can be extended
to obtain a label description of a database of
measurements, so that each element in the database will
be described by a random set signifying a mass value for
each subset of LA.

Definition 2. Joint density estimate on labels. Suppose
that each of the n elements in the database has two
attributes that can be classified against label sets LA1
and LA2 respectively, then 2121 ),( LALASS ×⊆∀ the
label description of the database D

D = {(x(i), y(i)) | i = 1,…, n} (33)

on 21 22 LALA × is defined by
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This approach can be applied to the classification of the
variable space in a reliability problem based on
incomplete information. Suppose knowledge about the
system behaviour comprises a database of n tests of
system response and in each test the response has been
categorised as belonging to one of three classes, C1 =
{failed}, C2 = {not failed}, C3 = {failed, not failed} i.e.
‘unknown’. Now consider the sub-database of instances
with class Cj,

Dj = {(x(i), y(i)) | C(i) = Cj} (35)

mDj can be evaluated according to Equation (34) to find
the mass assignment on LA1×LA2 describing class Cj.

1.0
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25 50 75 100 x
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For reliability analysis, the distribution on X1×X2, rather
than on LA1×LA2, is required. By Bayes theorem
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Definition 3. The Posterior density from labels is defined
as

�
∈

=

Xx
ix

ix
i

dxxpLm
xpLmLxp
)()(
)()(

)|( (37)

Clearly p(x) is an unknown prior distribution and we
must model this uncertainty in some way. One approach
would be to identify a family of distributions that must
contain p(x) [25] and then obtain interval probabilities by
taking the upper and lower bounds. Unfortunately in this
context we have no information that would allow us to
restrict this family of distributions. Taking upper and
lower bounds across all distributions gives p(I|Li) ∈  [0,1]
for any I, a measurable subset of X, for which

� >
I
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Instead we adopt a more traditional approach and assume
that p(x) is the uniform distribution. This has the
advantage of being the maximum entropy distribution
and hence introduces minimum prior information into the
model. Such a property in itself would seem to lend some
justification to this choice as we are giving maximum
possible weighting to the information contained in the
data. Assuming a uniform prior distribution on X gives
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This can be used to obtain a density on X conditional on
the data described by mD,
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which can be used to develop a distribution at x over the
different system states. By Bayes theorem
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Therefore, if p(x, y | mDj) is used as an estimate of p(x, y |
Cj) the distribution at point (x, y) over the states Cj is
given by

�
=

= 3

1

,

)()|,(

)()|,(
)(

j
jD

jD
jyx

Cpmyxp

Cpmyxp
Cm

j

j ,  �
=

=
3

1
, 1)(

j
jyx Cm (42)

Each point (x, y) then has an imprecise conditional
probability of failure

pf(x, y) ∈  [mx,y(C1), mx,y(C1) + mx,y(C3)] (43)

The conventional reliability problem in Equation (3)
becomes
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which will yield bounds on the probability of failure even
if the basic variables are precise probability distributions.
The expression can be further extended to include
random-set valued variables as explained in Section 3
above.

4.3 Numerical example of reliability analysis
including imprecise failure surface

In Section 3.2 the uncertainty in Equation (28) was
addressed by using the conventional approach of
representing it with a model parameter (M in this case),
though the approach was then extended to represent M as
a fuzzy set. In the following analysis the uncertainty
parameter M is removed and the limit state function
described in terms of a mass assignment to the space of
system variables.

From Equation (28) we have that when g(x) = 0

op

s M
D

H
ξ

αcos=
∆

(45)

Now Hs ≥ 0 so, if the limit state function is described by
Equation (28), in a plot of Hs/∆D against cosα/ξop the
limit state function will be a line passing through the
origin with a slope M. There are physical arguments
constraining the limit state function to pass through the
origin. There are no physical reasons for it to be linear,
though the assumption of linearity is explicit in Equation
(28). Data on failure of specific dike revetments is scarce
and very expensive to obtain. At the site in question there
were only ten relevant measurements (Figure 3), from
which it is clear that assumptions of a linear relationship
and normal distribution of residuals around that linear
relationship are rather difficult to justify.

Each experimental point can be seen as dividing the
parameter space into ‘failed’, ‘not failed’ and ‘unknown’
regions. A minimum assumption about the limit state
function (which is much weaker than the linear
assumption) is that it is monotonic for each of the
variables groups Hs/∆D and cosα/ξop. Thus an increase in
Hs/∆D for constant or reducing value of cosα/ξop will
make the structure more prone to failure. Similarly an
increase in cosα/ξop for constant or reducing Hs/∆D will
make the structure less prone to failure. Each
experimental point therefore divides the space into a
‘failed’ quadrant, a ‘not failed’ quadrant and two
‘unknown’ quadrants. This is illustrated for one point in
Figure 3. Even with this minimal assumption of
monotonically, the data still shows some conflict.



Figure 3: Experimental measurements of Hs/∆D and
cosα/ξop at failure (g(x) = 0)

 very small  small   large    medium  very large

To implement the method introduced in Section 4.2 the
variable space was covered with regular grid of 100
points (x, y) on [0,1]×[0,4], where x = cosα/ξop and y =
Hs/∆D. Each point on the grid was then classified as
belonging to C1, C2, or C3 on the basis of each
experimental point in turn. There were ten experimental
points, so the database D = {(x(i), y(i)) | i = 1,…, n}
contained 1000 points, i.e. n = 1000. The label sets LA1
and LA2 for each of the two groups of variables
corresponded to five uniform trapezoidal fuzzy sets on
the respective universes. These could be thought of as
corresponding to the labels very small, small, medium,
large, very large, which formed a linguistic covering,
according to Definition 1, on each of the axes. Figure 4
illustrates the label set on x. The mass assigned to the
label set was calculated according to Equation (32) for
each point on the grid of 100 points. The database of
1000 points could then be used to calculate the joint mass
assignment on the label set for the three classes, C1, C2,
and C3, according to Equations (34) and (35). Using
Equations (39), (40) and (42) the posterior density
mx,y(Cj) was calculated for j = 1 to 3. In Figure 5 each
point in the grid has been given classification Cc where

mx,y(Cc) = 
j

max (mx,y(Cj)). (46)

Note how the extent of the ‘unknown’ region reflects the
distribution of data points. The distribution of mx,y(C1) is
illustrated in Figure 6.

Figure 5: Imprecise limit state function

Figure 6: Distribution of mx,y(C1)

Further insight into the information carried 
set can be obtained by considering alternati
for reallocating the points classified as ‘unk
strategies were tested:
(i) The points classified as ‘unknown’ w

from the database and the mass 
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Smets’ pignistic probability distributi
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The classification between C1 and C2 is the s
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Figure 7: Precise limit state function after reallocation of
uncertain probability

conventional probabilistic approach to parameterising the
uncertainty with M, which corresponds to a straight
classification boundary passing through the origin with
gradient 4.06. The fuzzy classification mechanism has
learnt a rather more subtle classification. Whilst the
classification of the space with the two reallocation
methods is the same, the probability distribution is
significantly different. Figure 8 shows the normalised
distribution and Figure 9 shows the least prejudiced
distribution.

The limit state function that has been learnt from the data
is combined with the distributions of the system state
variables to generate probability of system failure. Each
of the variables x = (Hs, ∆, D, tanα, sop) has been
modelled probabilistically, for comparison with the
conventional reliability analysis, using the distributions
and parameters detailed in Table 1 and Equation (29).
Integrating this distribution joint distribution of the basic
variables x over the imprecise limit state function
(Equation (44)) yields a probability of system failure of
[2×10-5, 0.87]. These rather wide bounds reflect that
relative weakness of the monotonicity assumption about
the limit state function when compared with the linear
assumption implicit in the conventional probabilistic
method (which yielded a point probability of failure of
2×10-4). Nonetheless, as was argued previously, there are
scant grounds to substantiate the assumptions of linearity
and normality. The implications of plausibly weakening
these assumptions are dramatic.

Integrating over the precise limit state functions derived
from normalisation and from the least prejudiced
distribution yields system probabilities of failure of
2×10-4 and 0.43 respectively. The normalisation
assumption is analogous to the conventional probabilistic
approach of insisting upon a precise limit state function,

Figure 8 Normalised distribution of

Figure 9 Least prejudiced distribution 

and yield a rather similar probability of fa
prejudiced assumption yields a probability
way between the bounds obtained from
limit state function.

5 Conclusions
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reliability calculations result in rather wid
probability of system failure. Conventi
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However, reliability calculations can be
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the random set extension principle introdu
and Prade [11].

Conventionally, the system state variable
through a crisp limit state function. A n
constructing an imprecise limit state funct
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case study of reliability analysis of a floo
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state function reflects the scarce knowledge about system
behaviour. The approach has provided new insights into
the sources of uncertainty and the assumptions implicit in
the conventional probabilistic approach.
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