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Abstract 
 
The aim of this paper is to price an option in a 
multiperiod binomial model, when there is uncertainty on 
the  states of the world at each node of the tree. As a 
consequence, also the stock price at each state takes 
imprecise values. Possibility distributions are used to 
handle this type of problems. The pricing methodology is 
still based on a risk neutral valuation approach, but, as a 
consequence of the uncertainty on the two jumps of the 
stock, we obtain weighted intervals for risk-neutral 
probabilities. The distinctive feature of our model is that 
it tracks back the arising of these probability intervals to 
the imprecision of the value of the stock price in the up 
and down states. This paper provides a generalization of 
the standard binomial option pricing model. We obtain 
an expected value interval for the option price within 
which it is possible to find a crisp representative value 
and an index of the uncertainty present in the model. 
 
Keywords. Evidence theory, Fuzzy sets, Options, 
Pricing. 
 
1   Introduction 
 
The aim of this paper is to price an option in a 
multiperiod binomial model, when there is uncertainty on 
the states of the world at each node of the tree. The 
starting point is the one period model, where the two 
states of the world, namely state up, where the market is 
“bullish” and state down, where the market is “bearish”, 
are vague. As a consequence, also the stock price at each 
state takes imprecise values.  
 
In a standard one period binomial model, we are required 
to give two crisp values, one for each state, for the stock 
price movement in the next time period. This problem 
boils down to the estimation of the volatility of the 
underlying asset, that is an unobservable parameter. 
Sometimes it is hard to give precise estimates for the 
volatility and in turn for the stock price movements in the 
future. Possibility distributions are used to handle this 
type of problems. 

The pricing methodology is still based on a risk neutral 
valuation approach, but, as a consequence of the 
vagueness in the two jumps of the stock, we obtain 
weighted intervals of risk-neutral probabilities that 
closely resemble the belief and plausibility measures of 
Evidence theory [5]. These measures are obtained by 
replacing the additivity requirement by superadditivity or 
subadditivity respectively. The dual relationship between 
the two types of measures ensures that given a measure 
of either of the two types, it induces a unique measure of 
the other type. Since belief measures are always smaller 
than or equal to the corresponding plausibility measures, 
they may be seen as lower and upper probabilities 
respectively.  
 
Expected values can be computed under these measures 
resulting in an expected value interval. For applications 
to the pricing problem, this feature represents a drawback 
given that one needs some additional criterion in order to 
get a single price. Cherubini and Della Lunga  [2] applied 
a particular class of fuzzy measures [13], the g-lambda 
measures, to the asset pricing problem and found 
intervals for the derivative price. In this paper, by 
modelling the stock price in each state of the world as a 
fuzzy number we obtain a possibility distribution on the 
risk neutral probability, i.e. a weighted interval of 
probability. This, by contrast with the theory of evidence, 
implies a main advantage for pricing problems. In fact, 
by computing the option price under this measure we get 
a weighted expected value interval for the price and thus 
we are able to determine a “most likely” value of the 
option within the interval.  
 
Moreover, it may be convenient to synthesise the option 
price interval in one crisp constant that summarises all 
the information contained. This process is called 
defuzzification procedure. We can also get an index of 
the fuzziness present in the option price, that tells us the 
degree of  imprecision intrinsic in the model.  
 
The plan of the paper is the following. In section 2 we 
describe the opacity in the possible jumps in stock prices 
by means of fuzzy triangular numbers. In section 3 we 
present the one period model set up, we derive the risk-



  

neutral probabilities and analyse their main 
characteristics. In section 4 we describe the payoff of  
options and discuss their pricing in this framework. In 
section 5 and  6 we extend our result to a multiperiod 
setting. In section 7 we propose a method for finding the 
scalar that best approximate the call price and an index 
for the fuzziness present in the model. The last section 
concludes. Appendix 1 and 2 report the properties of the 
risk-neutral probabilities and of the call price 
respectively.   

 
2   The fuzzy binomial tree 
 
In order to introduce our pricing methodology we first set 
up a one period model, with t∈[0,1], characterised as 
follows. We assume that the two states of the world at 
t=1 are uncertain: say that in state up the market is 
“bullish” and in state down the market is “bearish”. As a 
consequence the price of the underlying at t=1 takes only 
two possible values: given the current value P0 it may 
either jump up or down with an exogenously given 
probability p and (1-p) p∈[0,1].  
 
In a standard one period binomial model, we are required 
to give two precise values for the increase or decrease in 
the stock price in the next time period. Let u and d be the 
up and down crisp jump factors respectively, the standard 

methodology [4] leads to set tt edeu ∆−∆ == σσ , , 

where σ is the volatility of the underlying asset and ∆t is 
lenght of the time period. 
 
There are different methods for estimating volatility 
either from historical data, or from option prices [9]. 
Sometimes it is hard to give a precise estimate of the 
volatility of the underlying asset and it may be 
convenient to let it take interval values. Moreover, it may 
be the case that not all the members of the interval have 
the same reliability, as central members are more 
possible then the ones near the borders. This is exactly 
the idea behind our model, but instead of modelling 
volatility as a fuzzy quantity, we directly model the up 
and down jumps of the stock price.  
 
The fuzziness present in the model is due to the fact that 
there is uncertainty about the exact increase or decrease 
in the stock price. We thus have two possibility 
distributions: one for the increase and one for the 
decrease of the stock price, as illustrated in Figure 1. The 
up and down jump factors, u and d respectively, are 
represented by two triangular fuzzy numbers. More 
simply, for each state, we can write: I=(i1,i2,i3), i={d,u}, 
where i1 is the minimum possible value, i3 the maximum, 
and i2 the most possible. The possibility distribution is 
induced by the characteristic function of the fuzzy set. 
Alternatively, we can write a triangular fuzzy number in 

terms of its α-cuts (or confidence intervals) by the 
following formula: 
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where α is the level of confidence, α ∈[0,1], i={d,u}. 
This representation will be useful to do some algebra 
with fuzzy numbers. We can estimate from market data 
the parameters that are input to our model. Alternatively, 
we can use the standard methodology and set  
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where σ1 and σ3 are the lower and upper bounds for 
volatility respectively and σ2 is the most possible value. 
 
Triangular fuzzy numbers are used to model the two 
possibility distributions. Among all the different types of 
numbers, the choice of using triangular numbers is made 
for the sake of simplicity, since assuming more 
complicated shapes may increase the computational 
complexity without substantially affecting the 
significance of the results. Even if the price of the stock 
is constrained to move up or down in discrete ticks, there 
is still uncertainty about the number of ticks it will 
increase or decrease. For most stocks, daily price 
movement limits are specified by the exchange, these 
limits may be used as lower or upper bounds for the 
support of the decrease or increase in the stock price 
respectively.  
 
This way of modelling the imprecision has an intuitive 
appeal. In the standard binomial model we say that the 
stock price at time one may jump up or down to two 
exactly given values, for example being 100 the stock 
price at time zero, it may jump to exactly 110 or  exactly 
90 at time one. In our model we just say that if the 
market is bullish the stock price increases and if the 
market is bearish it will decrease, whereby the amount of 
the change is imprecisely given. Following this example 
the stock price in our model is allowed to jump to 
“approximately 110” or to “more or less 90”. In other 
words, we fix the peak value of the fuzzy number equal 
to the crisp value in the standard binomial case and we 
allow the nearby prices to have some degree of 
possibility. 
 
3 The risk-neutral probabilities interval 

 
The aim of this section is to derive the risk-neutral 
probabilities in order to price a call written on a stock. 
Let us consider a one-period model where  t∈[0,1] is 
time, the two basic securities are: the money market 
account, and the risky stock. The money market account, 
is worth one at t=0 and its value at t=1 is 1+r, where r is 
the risk-free interest rate. 
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Figure 1: The two possible jump factors of the underlying at t=1.

The stock price at time zero, P0, is observable, while its 
price at time one, is obtained multiplying P0 by the jump 
factors introduced in the previous section. 
 
The following assumptions are made: 
A1) All investors have homogeneous beliefs, they all 
agree on the shape of the triangular numbers used to 
represent the up and down jump factors. 
A2) Markets are frictionless i.e. markets have no 
transaction costs, no taxes, no restrictions on short sales 
and asset are infinitely divisible. 
A3) Every investor acts as a price taker. 
A4) Interest rates are positive. The interest rate is equal 
to r>0 percent per unit time. 
A5) No arbitrage opportunities are allowed. This 
condition is expressed by the following formula: 

13 )1( urd <+<       (1) 

A6) The market is complete. A market is complete if 
there are as many independent (not replicable) 
instruments as states. In our case we have two 
instruments (the fuzzy stock and the money market 
account) and two states of the world (bullish and 
bearish). 
 
Under this set of assumptions, we can apply the risk 
neutral valuation principle. In a risk neutral world, all 
individuals are assumed to be indifferent to risk. It 
follows that the expected return on every security is the 
risk free rate. The real probabilities do not play any role 
in the determination of the risk neutral probabilities that 
depend only on the risk free rate, and on the magnitude 
of the up and down jumps of the stock [9]. The standard 
methodology for deriving the risk-neutral probabilities 
yields to the system: 
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By writing u and d in terms of  α-cut, we get: 
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where if A is a real number, then αα ∀= AA )( . 

 
This system may be split into the following two [1],[6]: 
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Solving system (2) yields:  
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solving system (3) yields: 
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The two solutions represent the bounds of the intervals of 
probabilities that are respectively: 
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It is easy to check that the following duality relations 
hold: 1=+

d
u pp  and 1=+

ud pp . To draw a comparison 

with Evidence Theory, we indeed have two measures, 

ip  and 
i

p , with i=d,u, where ip  is the dual measure of 

i
p . 

 
It is interesting to observe that, differently from the 
standard binomial option pricing model, we obtain risk 
neutral probability intervals instead of point estimates. 
This is clearly a consequence of our assumption on the 
stock price. The risk neutral probability intervals arise 
from the opacity of the stock price at t=1, even if the real 
probabilities of the stock price jumps are crisp and 
known in advance. This is a consequence of the risk 
neutral valuation paradigm, that states that if the market 
is complete and there are no arbitrage opportunities, then 
the real probabilities involved do not play any role in the 
pricing problem. The risk neutral probability measure 
depends only on the amount of decrease or increase in 
the stock price. If the jump factors are crisp numbers, 
then we are back to the standard binomial model, with 
crisp risk neutral probabilities. In this setting, the 
intervals of risk-neutral probabilities are weighted. This 
is a very important feature of our pricing model, since it 
allows us to find a weighted expected value interval for 
the call price as is shown in the following sections. 
 
In order to determine the shape of the two probabilities, 
we compute their value at α=0 and α=1 and then we 
analyse their behaviour as α varies (proofs are in 
Appendix 1). 
If α=0 then: 
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If α=1 then: 

 

22

2

22

2

)1(

)1(

du

ru
p

du

dr
p

d

u

−
+−

=

−
−+

=
    (6) 

 
It is easy to show that the derivative with respect to α is 
positive for both the left bounds and is negative for both 
the right bounds of the probabilities. This means that the 
bounds are getting narrower as α increases. In particular, 
if α=1, these bounds collapse in only one point. If α=1, 
the stock price in each state assume only one value and 
as a consequence we find a unique risk neutral 
probability measure. Thus our model can be seen as a 
generalisation of the standard binomial option pricing 
model as the latter is a special case (if α=1) of the 
former. 
 
By inspection of 

u
p , it is easy to prove that its first 

derivative is positive and that the second derivative is 
positive if 2323 dduu −>− ; in the opposite case it is 

negative. Note that if 2323 dduu −=− then 
u

p is linear in 

α. Analogously it is easy to prove that the first derivative 

of up is negative and that the second derivative is 

positive if 1212 dduu −>− ; in the opposite case it is 

negative. Not that if 1212 dduu −=− then up is linear in 

α. As for 
d

p , we can prove that its first derivative is 

positive and that the second derivative is negative if 

1212 dduu −>− ; in the opposite case it is positive. Note 

that if 2323 dduu −=− then 
d

p is linear in α. 

Analogously for dp , we can prove that its first 

derivative is negative and that the second derivative is 
negative if 2323 dduu −>− ; in the opposite case it is 

positive. Note that if 2323 dduu −=− then dp  is linear 

in α. 
 
In sum, depending on the relative positions of 

321321 ,,,,, ddduuu we can have different shapes for pu and 

pd as illustrated in Tables 1 and 2 . The graphs, that are 
just possible outcomes, show how the probability 
intervals shrink with α. In fact for α=1 each of the risk-
neutral probabilities assumes a single value. Note that the 
two bounds and the most possible value are determined 
by equations (5) and (6). Note that in Tables 1and 2 are 
not reported, for reasons of space, the cases in which we 
have u2-d2=u1-d1 or u3-d3=u2-d2. It is easy to verify that if 

u2-d2=u1-d1 then both up  and 
d

p  are linear in α; if u3-

d3=u2-d2 then both 
u

p  dp  are linear in α. 



  

As a special case we examine what happens if both the 
triangular fuzzy numbers that represent the up and down 
jump factors are symmetric and equally widespread, i.e. 
if u3-u2=u2-u1=d3-d2=d2-d1=k,   (7) 
k being the left or right spread. Note that this implies 
also: u3-d3=u2-d2=u1-d1=h. In this case both pu and pd are 
linear in α, i.e. they are triangular fuzzy numbers: 
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As we can see from Tables 1 and 2, the shape of the 
artificial probabilities depends on the shape of the up and 
down jump factors. In particular, let us examine what 
happens if we hold fixed the two peaks, d2 and u2 of the 
two jump factors. In Table 1 we can see that if  the 
distribution of the mass of the up factor is closer to the 
down jump factor and viceversa, i.e. the up and down 
jump factors are less distinct, then both pu and pd are 
closer to a crisp number. The opposite holds if  the up 
and down jump factors are more distinct, i.e. both pu and  
pd  are more vague. In Table 2 we have two intermediate 
situations: if the up factor is wider than the down factor, 
then the left part of pu is more vague than the right part 
and the opposite holds for pd. If the down jump factor is 
wider than the up factor then the left part of pu is more 
vague than the right part and the opposite holds for pd.  
 
4 The pricing of an option  

 
In this section, we use the risk-neutral probabilities 
obtained in the previous section in order to price an 
option. As we are in a one period model, it makes no 
sense to distinguish between American and European 
options. At the maturity date, a call option has a positive 
value if the price of the underlying is greater than the 
exercise price; in the opposite case it remains 
unexercised and has zero value. The payoff of a call 
option depends on the price of the underlying asset. 
The stock price at t=1 is given by either P0d or P0u. Since 
u and d are triangular fuzzy numbers, it follows that the 
stock price at t=1 in each state is represented by a 
triangular fuzzy number. 
 
To make an option an interesting contract we assume that 
the strike price is between the highest value of the stock 
in state down and the lowest value of the stock in state 
up: 1030 uPXdP ≤≤ . We denote the call payoff in state 

“up” with C(u) and in state down with C(d). It follows 
that C(d)= 0  and C(u)=(P0u-X). 
Applying the algebra of fuzzy numbers we obtain the call 
payoff, which is still a triangular fuzzy number equal to: 
C(u)= (P0 u1 -X, P0 u2 -X, P0 u3 -X). 
We now determine the call price C0 by means of the risk 
neutral valuation approach, as follows: 

[ ])(*)(*
1

1
][ˆ

1

1
10 uCpdCp

r
CE

r
C ud +

+
=

+
=  

where Ê  stands for expectation under the risk-neutral 
probabilities and C1 is the payoff of the call at t=1.  
Since the call has zero payoff in the down state, the 
option pricing formula simplifies to: 
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Using α-cuts in the multiplication between fuzzy 
numbers, as we have an interval for pu: 



















+−−+−
−−−+

+−−−−
−+−+

==

)(

)()1(

,
)(

)()1(

],[

121211

121

232333

233

dduudu

dddr

dduudu

dddr

ppp uuu

α
α

α
α

  

we also have an interval for the call prices. 
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It is easy to prove that as α increases the call option 
interval of prices shrinks (for the proof see Appendix 2). 
It follows that if α=0 the price interval is the largest: 
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If α=1, the interval collapses into one single value: 
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which is the same result as in the standard binomial 
option pricing model. 
 
By contrast with models, where the case of non additive 
measures implies simple price intervals, we get a 
weighted expected value interval for the call price. This 
is clearly a very important feature for financial 
applications since it enables us to determine the most 
possible outcome of the call price. It is also interesting to 
observe that the “most likely value” of the call is the one 
that we would have obtained in a standard binomial 
option pricing model.  
 
Analysing the shape of the call option price we note that 
the left part:  
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is increasing in α and is concave or convex depending on 
the sign of the quantity 

))(())(( 10222033 XuPduXuPdu −−−−−  as illustrated 

in Table 2 (for the proofs see Appendix 2). Note that if 
))(())(( 10222033 XuPduXuPdu −−=−− , then is linear 

in α
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Table 1. Possible shapes of the artificial probabilities. 

 
The right part: 
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is increasing in α and is concave or convex depending on 
the sign of the quantity 

))(())(( 20113022 XuPduXuPdu −−−−−  (for the proofs 

see Appendix 2). Note that if 
))(())(( 20113022 XuPduXuPdu −−=−− , then is linear 

in α. 
 
5 A multiperiod binomial tree 
 
The  aim   of   this    section    is   to   extend  the  pricing   

methodology proposed in the previous section first to a 
two period and then to a multiperiod binomial model. We 
will restrict our attention to the case in which the up and 
down factors are the same at every stage, so that the tree 
recombines. The up and down jump factors, u=(u1 ,u2 ,u3) 
and d=(d1 ,d2 ,d3) respectively, are still represented by the 
two triangular fuzzy numbers identified by the 
characteristic function in equation (1).  
 
 The stock price at t=1 is given by either P0d or P0u. 
Since u and d are triangular fuzzy numbers, it follows 
that the stock price at t=1 in each state is represented by a 
triangular fuzzy number, in particular P0d =( P0d1 , P0d2 , 
P0d3 ), and P0u=( P0u1 , P0u2 , P0u3 ). At time t=2 each of 
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P0d and P0u may jump again up or down. Applying the 
rules of multiplication among triangular fuzzy numbers 
we do not have as a result a triangular fuzzy number [7]. 
To simplify the algebra, we use the approximate fuzzy 
numbers, that have the same support and the same peak 
of the fuzzy number resulting from the multiplication, 
but they are still triangular: P0d u = P0u d =( P0d1 u1 , P0d2 

u2 , P0d3 u3 ), P0d d=( 2
10dP  ,

2
20dP  ,

2
30dP ), P0u u=( 2

10uP  ,
2
20uP  

,
2
30uP ).  

 
With the same approximation, at time t>2, the stock 
price, will be at each node equal to the following 
triangular fuzzy number: P0d iuj, =( jiudP 110  , ji udP 220  , 

jiudP 330 ),  with i,j=0,…t, i=t-j. We can observe that the 

binomial tree is very similar to the standard case in 
which the jump factors are not fuzzy, the main difference 
being the stock price that, starting from a crisp level at 
t=0, becomes fuzzy at the next stages. We have triangular 
fuzzy numbers in each state for  t>0.  
 
6   The pricing of an European call option 
 
In this section we show how to price a European call 
option, with strike price X, written on the fuzzy stock. 
Analogously to the one period model, we assume that the 
strike price satisfies the following condition:  

1 1 0,..., 10 03 3 1 1
j n j j n jP d u X P d u j n+ − − −≤ ≤ = − . 

 
 

 
Table 2. Possible shapes of the artificial probabilities.
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For simplicity, we propose the pricing of a call in a two 
periods model, the extension to n periods is 
straightforward. We denote the call payoff in state “up- 
up” with C(uu),in state “up-down” and “down-up” with 
C(du) in state “down-down” with C(dd). Suppose that 

2
10330 uPXudP ≤≤ , then the option has a positive payoff 

only in state up-up, it has zero payoff in the other two 
states: C(dd)= 0  C(du)=0 and C(uu)=(P0uu-X). 
Applying the algebra of fuzzy numbers we obtain the call 
payoff at time 2, in state “up-up” which is still a 
triangular fuzzy number equal to: 
C(uu)= ( 2

10uP -X ,
2

20uP  -X,
2

30uP -X).  

As in the standard approach, we can price the call by 
backward induction, starting from the payoff of the call 
at the expiration date t=2. To determine the call price at 
time 1, we note that C(d) should be equal to zero, since 
both C(dd) and C(du) are equal to zero.  C(u) is given by 
means of the risk neutral valuation approach, as follows: 
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where Ê  stands for expectation under the risk-neutral 
probabilities and C2 is the payoff of the call at t=2.  Since 
the call has zero payoff in the “up-down” state, the 
option price formula simplifies to: 
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We now determine the call price C0 as follows: 
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where Ê  stands for expectation under the risk-neutral 
probabilities and C1 is the payoff of the call at t=1.  Since 
the call has zero payoff in the down state, the option 

price formula simplifies to: [ ])(*
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If α=0 the price interval is the largest: 
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If α=1 the interval collapses into only one value: 
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As expected, this is the same result of a standard two 
period binomial option pricing model with u2 and d2 as 
crisp up and down jump factors respectively.  
  
7   The defuzzification procedure  

 
Once we have computed the call option price it may be 
convenient for operative purposes to find a crisp number 
that synthesises the call option weighted interval. This 
type of problem is known in the literature as 
“defuzzification procedure”. There are many methods 
that, depending on the kind of fuzzy number that we 
want to defuzzify,  provide a scalar that best represents 
the information contained [3] , [7]. In this paper we use a 
method that is based on the intuitive idea that the best 
defuzzifier  is the scalar that is “closest” to the fuzzy 
number. We choose this method in particular, for its 
simplicity and intuitiveness. High on the research agenda 
is the development of alternative methods for 
defuzzification.  
 
Define a metric D as the distance between a fuzzy 
number C and a crisp number x0, as follows: 
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where C  and C  are the left and right part of the Call 

price respectively.  
 
Since we look for the scalar x that minimises the distance 
with the Call price, we solve the following problem: 
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From the first order condition: 
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x0 is the scalar that is closer to the left and right part of 
the Call price. 
 
For example, if the Call price is a triangular fuzzy 
number C=(c1,c2,c3), we easily get 
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Once the value of the scalar x0, is determined, we 
compute the numerical value of the distance D: 
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that after some algebra is: 
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thus, we actually have an index of the dispersion of the 
call price around the crisp defuzzifier, that may be 
interpreted as an index of fuzziness present in the model.   
 
Using the standard binomial option pricing model, we 
would have obtained a price equal to the peak of the 
fuzzy call option price, (since for α=1 our model 
collapses to the standard binomial model). It follows that 
when the defuzzifier is equal to the peak value of the call 
price the standard binomial model and our model lead to 
the same result. This happens for example if the call 
price is represented by a symmetric triangular fuzzy 
number. In this case the amount of evidence that the call 
price is less then the peak value is equal to the amount of 
evidence that the call price is more then it. As a 
consequence the peak value is the best representative of 
the distribution.  
 
The defuzzifier is in general different from the standard 
binomial price and it is a more reliable price because it 
takes into account all the information present in the 
market, regarding the possible amount of increase or 
decrease of the sock price. Taking into account only a 
crisp estimate of the parameters, as in a standard 
binomial model, may result in a loss of information and 
in a wrong estimate of the call price. This is the reason 
why this model can help traders in detecting arbitrage 
opportunities in the real markets.  
 
8   Conclusions 

 
In this paper we have proposed a new framework for 
option pricing, in a multi-period binomial model which is 
appropriate when there is uncertainty on the states of the 
world. Our approach hinges on a characterisation of 
imprecision by means of possibility distributions. 
Specifically, we assume that the underlying stock price at 
each node of the binomial tree is opaque to the investors 
and is modelled by the use of triangular fuzzy numbers. 
Real options, for the imprecise nature of their underlying 
might be a valid setting for using this model. 
The pricing methodology is still based on a risk neutral 
valuation approach, whereby weighted intervals of risk-
neutral probabilities are used. These intervals of 
probabilities arise because of the uncertainty on the 
magnitude of the two possible states up and down of the 
binomial tree, even if the real probabilities of the stock 
price jumps are crisp and known in advance. The 
possibility distribution given on each of the two possible 
jump of the asset induces in turn a possibility distribution 
on each of the risk-neutral probabilities. As a 
consequence, we get a weighted expected value interval 
for the call price. With a defuzzification procedure, we 
are able to determine both a scalar that best represents 

the distribution of the call price and an index of the 
fuzziness present in the model. Our methodology offers 
some advantages. First, it provides an intuitive way to 
look at the uncertainty in the stock price jumps. Second, 
it includes the results of the Standard Binomial Option 
Pricing Model. Third, it traces back the need of using 
intervals of risk-neutral probabilities, to the opacity in the 
two possible jumps of the stock. Finally, using weighted 
intervals of probabilities, i.e. possibility distributions on 
the risk-neutral probabilities, it provides a weighted 
expected value interval for the call price and thus we are 
able to determine a “most likely” value of the call within 
the interval. High on the research agenda are the 
development of alternative defuzzification procedures, 
the implementation of the model with market data, and 
the extension to a continuous time model.  
 
Appendix 1 Properties of the risk-neutral 
probabilities. 
 
Recall that the following inequalities hold: 
d1 <d2 <d3 < (1+r) < u1 <u2 <u3   (A3.1) 
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The first derivative with respect to α is clearly positive, 
given (A3.1) and (A3.2): 
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and is clearly negative given (A3.1) and (A3.2). 
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in particular, if  2323 dduu −>−  the second derivative is 

negative; in the opposite case it is positive. 
 

Appendix 2. Properties of the call price. 
 
Recall that the following inequalities hold: 
d1 <d2 <d3 < (1+r) < u1 <u2 <u3  (A4.1) 
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Analysing the left bound of the call price in equation (9) 
the first derivative with respect to α is: 
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Since the fraction is always positive, the sign depends on 
the quantity in brackets: if [ ] 0))(())(( 10222033 >−−−−− XuPduXuPdu  

then the sign is positive, in the opposite case it is  
negative.  Note that if ))(())(( 10222033 XuPduXuPdu −−=−−  

then 0C is linear in α. 

Analysing the shape of the right part we have that the 
first derivative with respect to α is:  
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and is negative given A4.1, A4.2 and A4.3 and since up'  

is negative (see Appendix 1). The second derivative is: 
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Since the fraction is always positive, the sign depends on 
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then the sign is positive, in the opposite case it is 
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then 0C is linear in α. 
 
REFERENCES  
 
[1] Buckley J.J., Qu Y., (1991) “Solving systems of 
linear fuzzy equations” Fuzzy sets and systems 43, 
pag.33-43 
 
[2] Cherubini, U., (1997) "Fuzzy Measures and Asset 
Prices", Applied Mathematical Finance, 4, pag.135-149. 
 
[3] Cox E., (1994) “The fuzzy systems handbook” 
Academic Press, New York. 
 
[4] Cox J., Ross S. and Rubinstein M., (1979), “Option 
pricing, a simplified approach”, Journal of Financial 
Economics, n.7, 229-263. 
 
[5] Dempster A.P., (1967), “Upper and Lower 
probabilities induced by a multivalued mapping”, Annals 
of Mathematical Statistics, n.38, pag.325-339. 
 
[6] Dubois, D., Prade, H. (1978), “Operations on fuzzy 
numbers”,  Internat.  J. Systems Sci., 9. 
 
[7] Friedman M., Ming M., Kandel A., (1998) “Fuzzy 
linear systems”, Fuzzy sets and systems, 96 pag.201-209. 
 
[8] Kaufman A. Gupta M.M. (1985), “Introdution to 
fuzzy arithmentic, theory and applications”, Van 
Nostrand Reinhold Company, New York. 
 
[9] Hull J.C., (2000) “Options, futures and other 
derivatives”, Prentice Hall International.  
 
[10] Ma M., Kandel A., Friedman M., (2000) “A new 
approach for defuzzification”, Fuzzy Sets and Systems, 
111, pag..351-356. 
 
[11] S.Muzzioli, C. Torricelli, (2000) “A model for 
pricing an option with a fuzzy payoff”, Fuzzy Economic 
Review, forthcoming. 
 
[12] S.Muzzioli, C. Torricelli, (1999) “Combining the 
theory of Evidence with Fuzzy Sets for Binomial Option 
Pricing”, Materiale di Discussione n.312, Dipartimento 
di Economia Politica, Università degli Studi di Modena e 
Reggio Emilia, May 2000. 
  
[13] Wang Z., Klir G.J., (1992) “Fuzzy measure theory”, 
Plenum Press, New York. 
 


