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Abstract

This paper studies graphoid properties for epistemic
irrelevance in sets of desirable gambles. For that aim,
the basic operations of conditioning and marginaliza-
tion are expressed in terms of variables. Then, it
is shown that epistemic irrelevance is an asymmet-
ric graphoid. The intersection property is verified in
probability theory when the global probability distri-
bution is positive in all the values. Here it is always
verified due to the handling of zero probabilities in
sets of gambles. It is also presented an asymmetrical
D-separation principle, by which this type of inde-
pendence relationships can be represented in directed
acyclic graphs.

Keywords. Desirables gambles, imprecise probabili-
ties, conditioning, epistemic independence, epistemic
irrelevance.

1 Introduction

Coherent sets of desirable gambles [13, 14] are a very

general model for imprecise probability. They are
more informative than convex sets of probability mea-
sures as they can provide the behavior conditioned to
events of probability zero. Though its generality, this
model has a simple mathematical formulation, allow-
ing to express concepts as conditioning, combination
and marginalization in a very simple way. Perhaps,
its main drawback may be the difficulty of elicitation
from an expert due to the implications of considering
as desirable or not the gambles in the frontier.

Independence is one of the key concepts for every the-
ory of uncertainty. In imprecise probability this con-
cepts is richer than in the classical theory of proba-
bility allowing a number of different interpretations
[1, 3]. In the model of desirable sets of gambles
the most natural definition is epistemic irrelevance:
adding information about one event, then the infor-
mation about the other does not change. Asin credal

sets [12, 3], this concept is not symmetrical. If we
impose irrelevance in both directions we obtain epis-
temic independence.

This paper tries to investigate the graphoid proper-
ties for epistemic irrelevance in sets of desirable gam-
bles, extending the work by Cozman and Walley [3] in
which this concept was studied for credal sets of prob-
abilities. As in that setting, the symmetry and redun-
dancy properties are not verified. However, if we con-
sider the symmetrical version of independence, then
contraction is not verified, and this is a much more
important property from our point of view. We also
investigate how these models of independence can be
represented by directed acyclic graphs, by introducing
the AD-criterion (Asymmetrical D-separation). This
representation will allow in some cases to discrimi-
nate between the two possible orientations of the arcs
in cases that are indistinguishable when probabilistic
independences are considered.

The paper is organized as follows. Section 2 considers
the basics concepts of desirable sets of gambles, but
expressed in the language of variables instead of the
language of events. This is more usual for the study
of graphoid axioms. Section 3 presents the graphoid
axioms proving all of them except symmetry and re-
dundancy, and including intersection, a property that
can be proved only with strictly positive distributions
in the probabilistic case. Section 4 presents the AD-
separation principle and Section 5 is devoted to the
conclusions.

2 Sets of Desirable Gambles

This section introduces the notation and the funda-
mental concepts of sets of desirable gambles.

We shall consider variables X,Y, Z, W, ... taking val-
ues on finite sets Ux, Uy, Uz, Uw, ..., respectively. If
X,Y are variables, (X,Y) will be the joint variable
taking values on Ux x Uy.



A gamble about X is a real function, f, defined on Uy.
Each value f(z) represents the gain associated to the
result X = z. Let £(X) be the set of all the possible
gambles about X. A piece of information about X is a
set of gambles, D(X) C L(X), satisfying the following
properties (a coherent set of gambles) [14]:

D1. 0 ¢ D(X).

D2. if f >0, f #0, then f € D(X)

D3. if f € D(X) and A > 0, then \.f € D(X)
D4. if f,g € D(X), then f + g € D(X)

D(X) represents the set of strictly desirable gambles,
and it is different to the desirable gambles considered
in [15, 6] where the 0 gamble was considered as desir-
able. Considering only strict desirability has some ad-
vantages as allowing to express how to calculate con-
ditional probabilities to events of probability 0 [14].

If D1(X) and D5(X) are coherent sets then, D (X) is
said to be less informative than Ds(X) if and only if
Dy(X) C Dy(X).

If R(X) is a set of gambles, then the set of gambles
generated by application of properties D2, D3, and D4
(the intersection of all the sets verifying these proper-
ties and containing R(X)) will be called the natural
extension of R(X) and denoted by R(X). If the nat-
ural extension verifies D1, then it will a coherent set
of gambles, more precisely it will be the least infor-
mative coherent set of gambles containing R(X).

This idea will be used to extend the concept of natural
extension to other situations in which we do not have
an initial set R(X), but an specific condition that
should be verified by D(X). Natural extension will
determine the least informative coherent set verifying
that condition. For this to make sense it is necessary
to prove that there is at least a coherent set verifying
the property.

Sets of desirable gambles are a more general approach
to represent uncertainty than convex credal sets in
the following sense. A set of desirable gambles D(X)
defines a convex credal set by,

M(X)={P : Ep[f] >0,Vf e D(X)} (1)

However, the same convex set can be defined by dif-
ferent sets of desirable gambles [14], as shown by the
following example [5].

Example 1 Assume Ux = {x1,Z2,23,24} and a
credal set given by a convex set with two prob-
ability distributions as extreme points: p; =

(0,0,0.25,0.75),p2 = (0,0,0.5,0.5). This credal set
can be defined by two sets of desirable gambles,
Di(X) =Ri(X),i = 1,2, where

Ri(X) =A{f : f(@3) +3f(z4) >0, f(x3) + f(z4) >0}

Ry (X) =
Ru(X)U{f : flas) = f(za) =0, f(z1) + f(22) > 0}

It is immediate to show that R1(X) imposes some re-
strictions on the probabilities, which imply p(xz1) =
p(z2) = 0. So, the restrictions in Ra(X) are also triv-
ially verified. Where is the difference between both sets
of desirable gambles? As, we will see later they express
different ways of calculating conditional information
in the case of events of a lower prevision equal to 0.
Desirable gambles contain information about how to
calculate conditional information even for events of
upper prevision equal to zero.

Given a credal convex set M(X) we always can con-
sider the least informative set of accepted gambles for
which M (X)) is obtained by equation (1). This is the
set D(X) generated by gambles R(X), where

R(X)=A{f: Ep(f) >0,VP e M(X)}  (2)

A coherent set of desirable gambles, R(X), assigns a
lower and an upper prevision for each real function
f :Ux — IR defined by,

E[f] =sup {a : f—aeR(X)}
3)

E[fl]=inf {a : —f +a € R(X)}

If B C Uy, then the lower (upper) probability of B,
p(B)(p(B)), is the lower (upper) prevision of the in-
dicator function Ig of B.

2.1 Marginalization and Extension

If we have a coherent set of gambles D(X,Y) about
the values of two variables, we define the marginaliza-
tion of this set to one of its variables, for example X.
First, a gamble f in Ux is identified with the gamble
f'inUx xUy with f'(z,y) = f(z),Vy € Uy. In these
conditions, the marginal of a set of D(X,Y) on X are
the gambles D(X,Y)¥* = D(X,Y) N L(X) (ie. the
accepted gambles that only depends on the value of
variable X).

Example 2 Assume that Ux = {0,1},Uy = {a,b}
and that D(X,Y) = {f} where f(0,a) = 2, f(0,b) =
L f(1,a) = =2, f(1,b) = =3, then D(X, Y)¢X = {fl}
where f'(0) =2, f'(1) = —-2.




Extension is the reverse operator to marginalization.
It transforms a coherent set of gambles defined for
one variable D(X) into a coherent set relative to one
more variable (X,Y"). First, we are going to consider
the concept of weak extension. The definition is sim-
ple. After identifying a gamble f about X with the
gamble f' about (X,Y) as above, then its weak ex-
tension, D(X)TY is simply the natural extension on
(X,Y) of D(X): all gambles generated by application
of properties D2, D3, and D4 to gambles f’' where
f € D(X). In the following, we will make an exten-
sive use of this identification of a gamble defined for
a variable with the corresponding gamble in a higher
dimension. We even will denote both gambles with
the same symbol.

If D(X,Y) and D(Y, Z) are coherent sets, then the
natural extension of D(X,Y)1X.Y:Z y D(y, Z)1X.V:Z
will be denoted as D(X,Y) @ D(Y,Z). Gambles in
D(X,Y)®D(Y, Z) are defined on Ux x Uy xUz. This
operator first extend both coherent sets to a common
frame, and then it takes the natural extension of the
union. This natural extension is equal to D(X,Y) U
D(Y, Z) and all gambles f = g+ h where g € D(X,Y)
and h € D(Y, Z).

It is immediate to show that (D(X,Y) @
DY, Z)¥Y = DX,Y) @ DY, 2Z)". This
property is fundamental for local computation in
valuation based systems [9] and it will be used in the
proofs of the rest of the paper.

The strong extension of a set of gambles D(X) to
(X,Y) will be denoted as D(X)™X¥ and it is the nat-
ural extension of R = {fy, : f € Dx,yo € Uy} where
fyo is the gamble defined on Ux x Uy by fy,(z,y0) =
f(z), and fy,(x,y) = 0.0, when y # yo. This type of
extension will be used to add variables in conditional
sets. It verifies that (D(X)ﬂX*Y)J’X = D(X) and it is
more informative than weak extension D(X)™Y.

We will denote as D(X,Y) ® D(Y,Z) the natural
extension of D(X,Y)TXY:Z y D(Y, Z)1XY-Z This
operation is not symmetrical. The only difference
with above one is that now we use strong exten-
sion in the second element. It is also verified that
(DX, Y)D(Y, Z))Y5Y = D(X,Y)®D(Y, Z)*¥ and
(D(X,Y) @ D(Y, Z))*V'Z = D(X, Y)Y @ D(Y, Z).

We also have that D(X) ® D(X,Y) = DX) &
D(X,Y), as in this case we do not have an extension
operator in the second element.

2.2 Conditioning

Conditioning has a very simple definition in terms
of desirable gambles. The set of desirable condi-
tional gambles conditioned to set B is D(X|B) =

{f e L(X) : fIg €D(X)}, where Ig is the indica-
tor function of B.

Example 3 Assume the situation of Example 1.
Though, D1(X) and D2(X) have associated the same
set of probability distributions, they represent dif-
ferent behavior under conditioning: Di(X|{z1,z2})
is the set of gambles f, with f(x1) > 0, f(z2) >
0, and f(z1) > 0 or f(zas) > 0, which
has as associated conver set the set of all the
probabilities with P({z1,z2}) = 1.0; whereas
Da(X|{x1,2z2}) is the set of desirable gambles gener-
ated by {f : f(z1) + f(z2) > 0}, for which the asso-
ciated convez set has a single probability distribution:
P(.’L‘l) = P(Z‘Q) = 05,P(.’L’3) = P(."L'4) =0.0.

If we know a conditional set of gambles D(X|B), and
not the original set D(X), we can apply natural exten-
sion to D(X|B) to determine an unconditional set of
accepted gambles associated to this conditional set:
the least informative set D(X) such that its condi-
tional set is D(X|B). It is not difficult to show that
if R ={feDX|B): f(zx) =0if z ¢ B}, then this
natural extension is D(X) = R.

If B is a finite partition of Ux, and we have a coher-
ent set of gambles D(X|B;) for every B; € B, then the
natural extension of this partition is the least infor-
mative coherent set D (X) such that for every B; € B
we have that Dp(X|B;) = D(X|B;). It is not difficult
to show that if all D(X|B;) are coherent, then this
natural extension is given by the gambles f € L(X)
such that f.Ig, € D(X|B;) U{0},VB; € B, f #0.

IR, ={feDX|B;) : f(x) =0if z &€ B;}, then we
have that DB(X) = UB,;eBRi-

2.3 Conditional Credal Sets

Now, we consider the specification of conditional in-
formation of one variable with respect to the values
of the other one. We have two variables, X and Y,
which are specified as marginal information about X
and conditional information about Y for each one of
the possible values of X.

A set of desirable gambles conditioned to the elements
of X, D,(Y|X), is a coherent set of gambles about Y,
Dy(Y|X = z), for each possible value, z, of X. It
represents our current attitude to accept gambles as-
suming that the value of X is equal to z. We make an
assumption, X = z, and D,(Y|X = z) contains the
desired gambles for Y under it. A global D(X,Y") and
a conditional D,(Y|X) are compatible if and only if
for all z, D, (Y| X = z) is the conditioning of D(X,Y)
given X = z and marginalized to Y afterward; i.e.
D,(Y|X =z) =D(X,Y|X = z)¥.



If we have a family of coherent sets conditioned to
the elements of X, D,(Y|X), its natural extension
Dy(X,Y) is the least informative coherent set com-
patible with this family of conditional sets. D,(X,Y)
is very easy to obtain: it is the set of gambles f €
L(X,Y) such that f # 0 and for every zy € Uy,
the gamble f;, in Uy, given by fu,(y) = f(zo0,v), is
in Dy(Y|X = z9) UO0. The proof is based in show-
ing that this set D,(X,Y") gives rise to these condi-
tional sets and that every other set D'(X,Y) with
these conditional sets contains D,(X,Y). The first
part is based in applying the definitions. For the sec-
ond part, assume f such that for every xo € Ux, fz, €
D'(X,Y|X = zo)*Y U {0} = D,(Y|X = m) U {0}.
This means that r,, € D'(X,Y|X = z) U {0} where
Tz, 18 defined on Ux x Uy by ry (2,y) = foo(y) =
f(zo,y). If rpp € D'(X,Y|X = x¢) and r,, # 0,
then ry given by r (z,y) = reo(2,y) = f(zo,y) if
x = xo and 0.0, otherwise is in D'(X,Y). The result
is obtained by applying property D4 and taking into
account that f = E
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If we have a ma,rginal information D,,(X) about X
and a conditional family of sets D, (Y |X) of ¥ given
X, then their natural extension will be the natural ex-
tension of Dy (X) and Dy(X,Y), D (X) Dy (X, Y),
and it will be also denoted as D,,(X) @ D,(Y|X).
This natural extension is also equal to D,,(X) ®
D,(X,Y) and will be denoted as D,,(X) ® D,(Y|X)
too. As these sets are closed for properties D2,
D3 and D4, then D, (X) & D,(Y|X) will contain
Dm(X)U Dy(X,Y) and all the gambles f + g where
f € Dm(X), g € Dy(X,Y). I Dpp(X) and Dy (Y|X)
are coherent (they verify D1) then D, (X)® D, (Y|X)
is always coherent.

Theorem 1 If D, (X) and D,(Y|X) are coherent,
then (D (X) ® D, (Y| X))*X = D,,(X) and the con-
ditional information (Dp,(X) @ D,(Y|X))(Y|X =
7o) = (Dm(X) ® Dy(Y|X))|X = mo)*Y is equal to
D, (Y|X = xo).

Proof.- First we have to prove that (D,,(X) &
Dy(Y X)X = Dy (X). Assume f € Dy, (X), then
f € (Dn(X) ® D,(Y|X)) and as f is constant on
Y (it is defined only for variable X) we have that

€ (D(X) @ D,(Y|X))*X. Reciprocally, assume
hat f € (Dn(X)®D,(Y|X))*X. Then f € D,y (X)®
Dy(YX) = Dp(X) ® Dy(X,Y) and it is constant

on the values of Y. We have three possibilities:
f€DLX),f € Dy(X,)Y),or f =h+r withh €
Dy, (X),r € Dy(X,Y). In all of them we have to prove
that f € D, (X). In the first case is trivial. Assume
that f € D,(X,Y). We have that for every z, the
gamble f,, defined as above is in D, (Y |X = ), but
fzo 1s constant on Y and D, (Y|X = xg) is coherent.

Therefore fi,(y) = f(zo,y) > 0. As f is constant on
Y, then f € £(X) and as f > 0, by property D2,
it belongs to coherent set D,,(X). Assume now that
f=h+r, where h € D, (X), and r € D,(X,Y). As
h and f are constant on Y, r will be constant on Y
too. We can repeat the argument that we used for f
in the case of f € D,(X,Y), but now applied to r,
showing that r € D,,(X). As h,r € D,,,(X), we have
that f = h+ 71 € Dp(X).

Now, we prove ((Dm(X) ® Du(X,Y))|X = zo)¥Y is
equal to Dy(Y|X = zo). If f € D,(Y|X = =),
then it is defined on the values of Y. The function
Joo(m,y) = f(y), if x = zo, and 0.0 otherwise, is
in Dy(X,Y). Therefore f € D,(X,Y|X = xo), and
as conditioning is monotonic (if we add more gam-
bles to a coherent set, then all conditional sets will
be at least as informative as before adding them) we
have that f € (D (X) @ Dy(X,Y))|X = z0). As
f is constant on X, we have that f € (D, (X) @
Dy(X,Y))|X = m)*Y. Reciprocally, assume f €
(Dim(X) ® Dy(X,Y))|X = mo)*Y, then f is con-
stant on Y and f.Ix—z;, € Dm(X) ® Dy(X,Y). We
are going to prove that f.Ix—,, € Dy(X,Y). We
have three options f.Ix—p, € Dp(X),fIx=z, €
Dy(X,Y), or f.Ix—g, = h+r, with h € Dy (X),r €
Dy(X,Y). In the third case is trivial. In the first
case, if fIx—p, € Dp(X), then it is constant on
Y. As fx—y,(z,y) = 0.0, for z # zo, and D, (X)
is coherent, we have that f.Ix_,,(zo,y) > 0, and
therefore f.Ix—z,(20,y) € Dp(X). If flx—p, =
h+r, with h € Dp(X),r € Dy(X,Y). If we fix a
value z # x9, we have that f.Ix—,, and h are con-
stant on Y. Then r = f.Ix—;, — h, will be constant
too for x # x¢. By the definition of D, (X,Y), this im-
plies that r(x,y) > 0, for x # x¢. Therefore h(z) <0
for © # x¢ and h(zg) > 0 and r(zo,y) # 0,Vy. Let
us modify h and 7 to A’ and 7' which are equal to h
and r for X = xg and equal to 0.0 otherwise. We con-
tinue having f.Ix—,, = b'+7' with v’ € D,(X,Y). As
h' > 0and h' # 0, we have b’ € D,(X,Y), and as this
set is coherent we have f.Ix—,, = h'+r' € D,(X,Y).
By the definition of conditioning, this implies that
f €Dy(X,Y|X = x0) and as f is constant on Y, we
have that f € D,(X,Y|X = z¢)*Y = D,(Y|X = z0).
|

Given a global set D(X,Y), we can calculate the
marginal set D,,(X) = D(X,Y)** and the family
of conditional gambles D,(Y|X), but it we compute
Dim(X) ® Dy (Y|X) we will obtain a set of desirable
gambles, which in general is less informative (it con-
tains less gambles) than the original one D(X,Y):
Dn(X) ® Dy(Y|X) C D(X,Y). A completely analo-
gous situation occurs with credal sets [5].

Another important property of conditioning is that it



commutes with marginalization.

Theorem 2 If we have three variables X,Y,Z, and
a coherent set D(X,Y,Z), then we have that for all
y € Uy, (Dy(X,Y,Z)" VY =y) = (D(X, Z|Y =
y)X

Proof.-

Assume f € (D,(X,Y,Z)*%Y]Y = y). Then we
have that f € (D(X,Y, Z)Y*Y|Y = y)*X. This im-
plies that f is constant on Y and Z and f.Iy—, €
D(X,Y, Z)*%Y. As marginalization is an intersec-
tion, fIy—, € D(X,Y,Z). By definition, f €
D(X,Y,Z|Y = y). Now, as f is constant on Y, we
have that f € D(X,Y, Z|Y = y)¥Z = D,(X, Z|Y =
y). As f is constant on Z we have that f €
Du(X, 2| = y)*X.

Reciprocally, if f € (D (X,Z|Y = y))*X, then
this function is defined only for variable X (it is
constant for the other variables) and it belongs to
Dy(X,Z|Y = y). This implies that f.Iy_, €
D(X,Y,Z). As this function is constant on Z we
have that f.Iy—, € D(X,Y,Z)**Y. By definition,
we have that f € (D(X,Y,Z2)*%Y|Y =), and as f
is constant on Y f € (D(X,Y,Z)}XY|Y = y)¥¥ =
(Du(X,Y, Z) VY =y). L

As a consequence, if we have a global set D(X,Y, Z),
it makes sense to talk about D, (XY and it is equal
to the family of coherent sets gambles on X indexed
by the values of Y, and that is obtained either by
marginalizing D(X,Y, Z) on (X,Y) and then condi-
tioning on the values of Y or by conditioning first and
marginalizing afterward.

2.4 Epistemic Irrelevance

The definition given here of epistemic irrelevance is
a bit stronger than the one considered in [12, 3]. In
the case of unconditional independence it corresponds
to the irrelevant natural extension as was defined in
[1]. In the case of conditional independence to the
values of a variable, we add a requirement that the
global information is given as a marginal information
on this variable and a conditional information given
the values of this variable.

Given three variables, X,Y, and Z, we say that X is
irrelevant to Y given Z if and only if the global set of
gambles D(X,Y, Z) can be expressed as D, (X, Z) ®
D,(Y'|Z), where D,,,(X, Z) is the marginal set on vari-
ables (X, Z) and D, (Y| Z) is a family of gambles about
Y for each value of Z.

This definition implies that for every x € Ux, 2z € Uz,
the set D,(Y|Z = 2,X = z) is equal to the set
Dy(Y|Z = z). But it also implies that D(X,Y, Z) =

Dn(X,Z)®D,(Y|Z,X). This is easy to prove taking
into account that the equality D, (Y|Z = 2, X = z) =
Dy(Y|Z = z),VYz,z is equivalent to D,(X,Y,Z) =
D, (Y, Z)MY:Z where D,(X,Y, Z) is the natural ex-
tension of the family of coherent sets D, (Y |Z, X) and
D, (Y, Z) the natural extension of D, (Y |Z).

3 Semigraphoid Axioms

A relation of independence I(X,Y|Z) between vari-
ables verifies the semigraphoid axioms if and only if
it fulfills the following properties [7, 4, 10]

Symmetry.- (X,Y|Z) = I(Y, X|Z)
Redundancy.- I(X,Y|X)

Decomposition.- I(X, W,Y)|Z) = I(X,Y]|Z)
Weak Union.- I(X,(W,Y)|Z) = I(X,Y|(W, Z))

Contraction.- I(X,Y|Z) and I(X,W|(Y, Z2)) =
I(X,(W,Y)|Z)

The relation I(X,Y|Z) is to be read as X is indepen-
dent (or irrelevant) to Y given Z.

When the following axiom is verified:

Intersection.- I(X,Y|(Z,W)) and
IW,Y[(X,2)) = I(X,W),Y|Z)

then the set of independences is said to be a graphoid.

As some of the definitions of independence are non
symmetrical, we have to introduce the reverse versions
of these properties, following Cozman and Walley [3].
The axioms as they are written will be called the di-
rect versions. If the variables are in reverse order,
we call them the reverse versions. Then, the reverse
contraction is

Reverse  Contraction.- I(Y,X|Z) and
W, X|(Y, 2)) = I(W,Y), X|2)

Epistemic irrelevance does not verify the symmetry
property. The examples in [3] are also valid here.
They are given for credal sets. To translate them
to sets of gambles we can use the transformation in
equation (2). Though redundancy can look trivial,
it is not verified in the direct version. This property
implies that D(X,Y’) can be represented as D,,(X) ®
Dy(Y|X) = Dpp(X) @ Dy(Y|X), and, as it was said
in Section 2.3, this is not always possible. All the
graphoid properties except symmetry are verified (at
least in one of its versions, direct or reverse) as the



following theorem proves. The most unusual property
is the intersection axiom for general sets of desirable
gambles, without any additional condition. But this is
not surprising due to the handling of zero probabilities
in this theory.

Theorem 3 Epistemic conditional irrelevance veri-
fies reverse redundancy, reverse and direct decompo-
sition, reverse weak union, direct and reverse contrac-
tion and direct intersection.

Proof.- Reverse redundancy says that I(X,Y|Y) and
this is equivalent to represent the global D(X,Y) =
Dn(X,Y) ® D, (YY), and this is always possible if
Dn(X,Y) =D(X,Y) and D,(Y|Y) is the trivial set
of gambles (it only contains gambles f # 0, f > 0.

Direct decomposition says that I(X,(W,Y)|Z) =
I(X,Y|Z). I(X,(W,Y)|Z) is equivalent to
D(X,W,Y, Z) = Dpn(X, Z) ® Do(W,Y|Z). Then we
can prove that D(X,Y,Z) = D(X,W,Y, Z)*X:V:Z =
Don(X, Z) @D, (W,Y|2)¥7 = D,u(X, 2)&Dy(Y]2),
where D,(W,Y|Z)*¥Z is calculated by taking the
marginal on Y of each conditional set of gambles on
D,(W,Y|Z = z) for the different values z € Uy.

For reverse decomposition, we have to prove
I(W,Y),X|2) = I(Y,X|2). I I(W,Y),X|2),
then we have that D(X,W)Y,Z) = DW,Y,Z) ®
Dy(X|Z). From here, and marginalizing on (X,Y, Z)
we can obtain D(X,Y,Z) = D(X,W,Y,Z)*¥Z =
DW,Y, Z)Y'Z @ D,(X|Z) = D(Y,Z) ® D,(X|Z),
which is equivalent to the desired property I(Y, X |Z).

For reverse weak union, we have to prove
I(W,Y), X|2) = IV, X|(W, 2)). ¥ I(W,Y), X|2),
then we have that D(X,W)Y,Z) = D(W,Y,Z) ®
Dy(X|Z). Let us consider Dy(X|Z,W = w) =
Dy(X|Z),YVw € Uyw, then we have D(X,W,Y, Z) =
D(W,Y,Z) @ Dy(X|Z,W) and therefore, the desired
independence I(Y, X|(W, Z)).

For contraction we have to prove I(X,Y|Z) and
1(X,W|(Y, 2)) = I(X, (W,Y)|Z). It I(X,W|(Y, 2)),
then D(X,Y, W, Z) = D(X,Y, Z) ® Dy(W|Y, Z). As
I(X,Y|Z) we have that D(X,Y,Z) = D(X,Z) ®
D,(Y|Z). The desired independence is obtained if
we take into account that for every z D,(Y|Z =
2) @ Dy(W|Y,Z = z) is a set of desirable gambles
about (W,Y") which is equal to D,(W,Y|Z = z).

For reverse contraction we have to prove
I(Y,X|Z) and IW,X|(Y,2)) = I(W,Y),X|2).
I(W,X|(Y,Z)) implies that DX, Y,W,Z) =
DY, W,Z) ® Dy(X|Y,Z2). As I(Y,X|2),
Dy(X|Y,Z) does not depend of the value of
Y, with which we obtain the desired equality
D(X,Y, W, Z) = D(Y, W, Z) ® Dy(X|Z).

For intersection, we have to prove I(X,Y|(Z,W))
and IW,Y|(X,2)) = I(X,W),Y|Z). If we assume
I(X,Y|(2Z,W)) then D(X,Y,W, Z) = D(X,Z,W) &
D,Y|Z,W). As I(W,Y|(X,Z)), we also have
D(X,Y,W,Z) = D(X,Z,W) ® Dy(Y|Z,X). As
D(X, Z,W) does not depend on Y, we have that for
every z,z,w,D,(Y|Z = 2,W = w) = D,(Y|Z =
z,X = z). From here, we have that D,(Y|Z =
z,W = w) does not depend of w, and there-
fore, the desired decomposition: D(X,Y,W,Z) =
D(X,Z,W) ® D,(Y|2).

4 The Asymmetrical D-Separation
Criterion

Assume a set of variables (X;);cr and a directed
acyclic graph [7] G such that there is a node of the
graph associated to each variable X;.

Here we modify the classical D-separation criterion
to represent independences [8, 7]. As usual, we shall
consider paths between pair of variables in which arcs
can be used in any direction (direct or reverse). If
(Xk)kek is a vector of observed variables and we have
a path between variables X; and X, we say that this
path is blocked under this set of observations if and
only if at least one of the two following conditions
happens:

1. There is a variable in the path X; through
which the path passes with converging arrows
and this variable and none of its descendants is
in (Xg)rek-

2. There is a variable in the path X; with [ € K,
such that the path does not leave it with an in-
coming arc. This variable can be X; or Xj.

In the second condition, if observed variable X; is the
last variable in the path, i.e. Xj, then the path is
blocked, as the path does not leave variable X;. If
X, is the first variable or an intermediate variable,
then we have to consider the following variable in the
path, X,,. It there is a link from X; to X, the path is
blocked in X;. If the link is from X,, to X, then the
path is not blocked.

This criterion will be called AD-separation. In clas-
sical D-separation, the path can leave the blocking
variable through an arc which is used in the reverse
direction. Now, this case is not included and makes
the new criterion non-symmetrical.

and K,L,LM C I, we say
induces the independence

Given a graph,
that the graph



Io((Xk)ker, (X)ien|(Xm)mem) if and only if
every path from a variable X,k € K, to a variable
X;,l € L, is blocked by a variable under observations

(Xm)meM-

To simplify the notation we shall write
I ((Xk)ker, (Xi)ieL| Xmem), as Ig(K,L|M). All
the properties verified by epistemic irrelevance are
verified by the models of independence represented
by graphs and asymmetrical D-separation.

Theorem 4 If G is a directed acyclic graph, then Ig
verifies reverse redundancy, reverse and direct decom-
position, reverse weak union, direct and reverse con-
traction, and direct intersection.

Proof.-

Reverse redundancy says that Ig(J, K|K). This is
immediate, as every path to a variable X,k € K is
blocked in the node Xj.

Direct and reverse decomposition are immediate from
the definition of I.

For reverse weak union, we have to prove Ig((J U
K),L|IM) = Ig(J,L|K U M). Now consider a path
from a node X; to a node X;,l € L. The only way
that this path is blocked by (X;,)menm and not by
(X )mekunm is that it is blocked in a node X with
a descendant Xy with k' € K. As Ig((JUK), L|M)
the path going from Xy to X}, using reverse arcs till
Xk, and then using the path going from Xj to X;
should be blocked by (X;,)men- Then, there should
be another node blocking the original path different
from X} and closer to X;. As this argument can
not be repeated indefinitely, the path is blocked by
(Xm)merum- Now, the condition for Ig(J, L|KUM)
is proved.

For contraction we have to prove I(J,K|L) and
I(J,M|KUL)= I(J,KUM|L). Paths from a vari-
able X;,j € J, to a variable X,k € K, are blocked
by (Xi)icr.- We only have to prove the blocking for
paths from X;,j € J, to a variable X,,,,m € M. This
path is blocked by (X;)icruk. If it is blocked by a
variable X;,l € L, then there is no problem: the same
variable blocks the path under (Xj);cr. If it is vari-
able X,k € K. Then the part of the path going from
X; to X should be blocked by (X;);er. With which
the complete path is also blocked.

For reverse contraction we have to prove I(K,J|L)
and I(M,J|[KUL) = I(K U M,J|L). The proof is
completely analogous to the one for direct contrac-
tion.

For intersection, we have to prove Ig(J, K|LUM) and
Ig(L,K|JUM) = Ig(JU L, K|M). Assume a path

between a variable X; and a variable X,k € K. If it
was blocked by (Xm)merum or by (Xm)mesunm and
not by (X )menm, then it is blocked in a variable X,
with i € Lori € J. Assume without loss of generality
that i € L. As Ig(L,K|J U M), then the path from
X; to Xy, should be again blocked by (X,;)mesunr in
a node closer to X;. We can then repeat the same
reasoning. As this process should be finite, we can
conclude the path must be blocked by observations
(Xm)mem- And this finally proves Ig(J U L, K|M).

A minimal I-map of an epistemic irrelevance model is
a graph such that

1. It I6(J, K|L), then
Dy (X )rex|(Xj)jesur) = Do((Xi)rex [(X;)jer)

2. ND(X;) — II(X;) is epistemic irrelevant to X;
given II(X;), where ND(X;) is the set of non
descendant variables of Xj;.

3. If we remove an arc, then some of the above con-
ditions is not verified.

Observe as AD-separation only implies the weaker
version of epistemic irrelevance considered in [3]. If we
consider only the strong version of irrelevance, then
AD-separation should be made much weaker.

A first difference with probabilistic I-maps by using
the classical D-separation criterion is that, in that
case, any ordering of the variables gives rise to a
minimal I-map. Now, this is not always the case.
Given a total order in the set of variables, a directed
acyclic graph is compatible with that order when for
every pair of variables X; and X; such that Xj; is
a parent of X;, then X; comes before than X; in
the order (X; < X;). We can have two dependent
variables X and Y and a directed graph with a link
from X to Y which is a minimal I-map, but not the
graph with a link from Y to X, i.e. we can have
D(X,Y) =Dy (X) @ Dy(Y]X), but not the decompo-
sition D(X,Y) = D (Y) ® Dy(X]Y). If we consider
the order Y, X then there is not a minimal I-map in
which X is not an ascendant of Y. This can help to
determine the correct direction of arcs. With two vari-
ables and probabilistic independences, this is never
possible.

Another difference with probabilistic I-maps is that
due to the verification of intersection, if we have an
order of the variables and a minimal I-map compati-
ble with it, then this is the only minimal I-map com-
patible with the order. This was guaranteed in the
probabilistic case only with positive probabilities.



5 Conclusions

In this paper we have studied the main properties of
epistemic irrelevance for sets of desirable gambles and
the representation of a family of irrelevance relation-
ships by means of a directed graph.

In the future, we plan to study more powerful repre-
sentations of conditional independence relationships
as chain graphs [11]. In these graphs, we have directed
and undirected links. Undirected links could be used
to represent dependences that are not expressed in
a conditional way. If we have a situation with three
variables X,Y, Z and we are given the independence,
X is irrelevant to Z given Y, then there is no directed
graph representing this independence. However, we
could represent it with a chain graph with an undi-
rected link between X and Y and a directed link from
Y to Z.

Another topic of future study is the computational im-
plications of this definition, following Cozman [2]. In
particular, whether the introduction of decomposition
of global information in the definition of epistemic ir-
relevance and the new criterion for representing inde-
pendences can change some of the developments given
in [2].
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