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Random correspondences as bundles of random variables
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Abstract

We prove results that relate random correspondences
with their measurable selections, thus providing a
foundation for viewing random correspondences as
“bundles” of random variables.

Keywords. Random correspondences, random sets,
Choquet capacities.

1 Introduction

Since the seminal works of Dempster (1967, 1968),
Kendall (1974), and Matheron (1975), random cor-
respondences have been widely used as a generaliza-
tion of standard random variables. Given two mea-
surable spaces (S, Σ) and (X,B), while random vari-
ables associate to elements of S single elements of X,
random correspondences relax this assumption by as-
sociating nonempty subsets of X to elements of S.
This added flexibility turned out to be useful in sev-
eral areas and we refer the interested reader to the
original works, as well as to the recent surveys in
Stoyan, Kendall, and Mecke (1995) and Barndorff-
Nielsen, Kendall, and van Lieshout (1999). For ex-
ample, building on Dempster’s works, random corre-
spondences have been recently used in Bayesian de-
cision theory to model unforeseen contingencies (see
Mukerji (1997) and Ghirardato (2000)).

Given a probability P : Σ → [0, 1], a suitably mea-
surable random correspondence F : S → 2X induces
a lower distribution ν and upper distribution ν on X
as follows:

ν (A) = P ({s : F (s) ⊆ A}) and

ν (A) = P ({s : F (s) ∩A 6= ∅})

for all subsets A ∈ B. In the special case of a ran-
dom variable f : S → X, we have ν (A) = ν (A) for
all A ∈ B and ν reduces to the standard probability
distribution Pf induced by f .

The distributions ν and ν therefore generalize the
usual probability distributions induced by random
variables. The purpose of our work is to study these
distributions and in particular their relationships with
the standard probability distributions induced by the
measurable selections of the random correspondence
F .

Specifically, let S (F ) be the set of all measurable
selections of the random correspondence F , that is,
the set of all random variables h : S → X such that
h (s) ∈ F (s) for all s ∈ S. Each selection h ∈ S (F )
induces a probability distribution Ph on X defined by
Ph (A) = P ({s : h (s) ∈ A}) for all A ∈ B. Our pur-
pose is to relate the distributions ν and ν with the set
{Ph : h ∈ S (F )} of the standard probability distribu-
tions induced by the selections of F . In this we follow
Aumann (1965)’s lead, who showed that a fruitful way
to look at correspondences is as “bundles” of their se-
lections, a standpoint that makes it possible to relate
correspondences with the more familiar single-valued
functions. In a probabilistic setting, we adopt a simi-
lar view and we provide a connection between the gen-
eralized distributions ν and ν and the standard prob-
ability distributions {Ph : h ∈ S (F )} that are natu-
rally associated with a random correspondence F .

We have two main results. Consider a real-valued
function u : X → R defined on the space X, that in
applications will be in general the space of interest
– e.g., a space of consequences. Since ν and ν are
non-additive set functions, we have to consider their
Choquet integrals

∫

udν and
∫

udν, that we define in
the next section. Our first result, Theorem 1, shows
that

∫

udν and
∫

udν are, respectively, the lower and
upper envelopes of the sets of the standard integrals
{∫

udPh : h ∈ S (F )
}

. That is, we prove that

∫

udν = inf
{∫

udPh : h ∈ S (F )
}

,
∫

udν = sup
{∫

udPh : h ∈ S (F )
}

,



provided X is Polish and F compact-valued, condi-
tions often satisfied in applications.

Our second main result, Corollary 1, considers
core (ν), the set of all countably additive probability
measures that setwise dominate ν. This set is often
associated with the distribution ν, and Corollary 1
shows that it is nothing but the weak∗-closed convex
hull of the set {Ph : h ∈ S (F )} of induced probability
distributions. That is,

core (ν) = cow∗ ({Ph : h ∈ S (F )}) .

These two results (as well as Corollary 2) show that
there exists a tight connection between the general-
ized distributions ν and ν and the standard probabil-
ity distributions {Ph : h ∈ S (F )} that are naturally
associated with them. In this way, we can relate these
generalized notions with more familiar standard no-
tions and offer a novel perspective on random corre-
spondences as “bundles” of random variables.

We close by mentioning that in our derivation we
obtain two results of some independent interest: a
change of variable formula for the Aumann integral
and a lemma that generalizes the classic Lusin Theo-
rem to Choquet capacities.

2 Preliminaries

Let Σ be an event σ-algebra of a state space S, and
X a metric space with Borel σ-algebra B. As usual
in Probability Theory, we will often assume that X is
a Polish space, i.e., a separable and complete metric
space.

We denote by ca (B) the set of all countably addi-
tive measures on B that are bounded with respect to
the variation norm. Probabilities are the positive and
normalized elements of ca (B) that take on value 1 on
X. On ca (B) we use the weak∗-topology induced by
Cb (X), the set of all continuous and bounded func-
tions f : X → R. In particular, a net of probabilities
{pα}α ⊆ ca (B) weak∗-converges to a p ∈ ca (B) if
limα

∫

fdpα =
∫

fdp for all f ∈ Cb (X).

A capacity ν : B → [0, 1] is a set function such that:

1. ν (∅) = 0 and ν (X) = 1;

2. ν (A) ≤ ν (B) for all A, B ∈ B such that A ⊆ B.

The capacity ν is convex if ν (A ∪B) + ν (A ∩B) ≥
ν (A) + ν (B) for all A,B ∈ B. We denote by
core (ν) the core of a capacity ν, i.e., the set
{p ∈ ca (B) : p (X) = 1 and p (A) ≥ ν (A)∀A ∈ B} of
all probabilities that setwise dominate the capacity.

The notion of integral associated with capacities is
the Choquet integral. Given a measurable real-valued
function u : X → R, the Choquet integral

∫

udν is
defined by
∫

udν =
∫ +∞

0
ν (u ≥ t) dt +

∫ 0

−∞
[ν (u ≥ t)− 1] dt,

where the right hand side is a Riemann integral, which
is well defined since ν (u ≥ t) is a monotone function
in t.

A correspondence F : S → 2X associates nonempty
subsets of X to states of S. The strong inverse F−1

of F is defined by F−1 (A) = {s : F (s) ⊆ A} for all
sets A ⊆ X, while the weak inverse Fw is defined
by Fw (A) = {s : F (s) ∩A 6= ∅}. Since Fw (A) =
S − F−1 (Ac) for all A ⊆ X, in general it will be
enough to focus on F−1.

Using a standard notion of measurability, we now in-
troduce random correspondences.

Definition 1 A correspondence F : S → 2X is B-
measurable if F−1 (A) ∈ Σ for all Borel sets A ∈ B.
A correspondence F : S → 2X which is B-measurable
is called a random correspondence.

If the values of F are singletons, random correspon-
dences reduce to standard random variables. Ran-
dom correspondences are closely related to random
sets, the only difference being in the notion of mea-
surability used. The main reason why we use random
correspondences is to have the distribution ν defined
on the entire σ-algebra B. In any event, in Section 4
we show that our main result holds for random sets
as well.

Given a probability measure P : Σ → [0, 1] on the
state space, a random variable f : S → X induces
a distribution Pf : B → [0, 1] defined by Pf (A) =
P ({s : f (s) ∈ A}) for all A ∈ B. In a similar way,
random correspondences induce a lower distribution
ν : B → [0, 1] and an upper distribution ν : B → [0, 1]
defined by:

ν (A) = P
(

F−1 (A)
)

= P ({s : F (s) ⊆ A})
ν (A) = P (Fw (A)) = P ({s : F (s) ∩A 6= ∅})

for all A ∈ B. Since ν (A) = 1− ν (Ac) for all A ∈ B,
there is a simple duality between the two distribu-
tions, and in the sequel we will mostly focus on ν.

Unlike the distributions Pf , the set function ν is in
general non-additive. However, it is totally monotone,
i.e.,

ν

(

n
⋃

i=1

Ai

)

≥
∑

∅6=I⊆{1,...,n}

(−1)|I|+1 ν

(

⋂

i∈I

Ai

)



for all {Ai}i∈{1,...,n} ⊆ B and for all n ∈ N. In fact,
it is easy to check that the probability distribution
induced by F when viewed as an usual function from
S to 2X is the Moebius transform of ν. Besides to-
tal monotonicity, the distributions ν have other im-
portant properties. Following Kuratowski (1966) we
say that a monotone increasing sequence {An}n≥1 of
Borel sets is strictly monotone if An ⊆ int (An+1) for
all n ≥ 1 (e.g., all sets An are open).

Proposition 1 Let ν : B → [0, 1] be the distribution
induced by a random correspondence. Then:

(i) limn→∞ ν (An) = ν
(

⋂

n≥1 An

)

for all non-
increasing sequences of Borel sets.

If, in addition, the correspondence has compact
values, then:

(ii) limn→∞ ν (An) = ν
(

⋃

n≥1 An

)

for all non-
decreasing strictly monotone sequences of Borel
sets.

Point (i) is easy to check (see, e.g., Nguyen (1978)).
Point (ii) is in general false if the sequence is not
strictly monotone, as the following example shows.

Example. Let X = [0, 1] and K = [1/2, 1]. Consider
the multifunction F : S → 2X defined by F (s) = K
for all s ∈ S. Then ν is {0, 1}-valued and ν (A) = 1
if and only if K ⊆ A.1 Set An = [0, 1− 1/n] ∪ {1}.
The sequence {An}n≥1 is not strictly monotone and
so Proposition 1 does not apply. We have An ↑ X,
but limn ν (An) 6= ν (X). In fact, limn ν (An) = 0.

The next result shows some regularity properties of
the distribution ν. Parts of this result are more or
less known, though we did not find a reference for the
result in this generality.2 For this reason we provide
a proof.

Proposition 2 The distribution ν induced by a
compact-valued random correspondence is regular,
i.e.,

ν (A) = sup {ν (C) : C ⊆ A and C closed}
= inf {ν (G) : A ⊆ G and G open}

for all Borel sets A. If, in addition, X
is Polish, then ν is tight, i.e., ν (A) =
sup {ν (K) : K ⊆ A and K compact} for all Borel
sets A.

1In other words, ν is the unanimity game uK .
2For example, the Polish space part is an immediate con-

sequence of an unproved observation on p. 253 of Huber and
Strassen (1973).

3 Main results

In this section we characterize the random correspon-
dence F : S → 2X via the probability distributions
induced by its measurable selections. The first result,
which is our main result, shows that the Choquet in-
tegral relative to ν can be expressed in terms of the
standard integrals associated with the probability dis-
tributions induced by the measurable selections of F .

Before stating the result we introduce a class of func-
tions.

Definition 2 A real-valued function u : X → R is
lower (upper, resp.) Weierstrass if it attains its infi-
mum (supremum, resp.) on all compact sets of X.

The class of lower Weierstrass functions is broad and
it includes:

(i) all lower semicontinuous functions u : X → R;

(ii) all finite-valued functions u : X → R.

On the other hand, continuous functions and finite-
valued functions are examples of functions that are
both lower and upper Weierstrass.

We can now state our main result. Recall that S (F )
is the set of measurable selections of F .

Theorem 1 Let ν be the distribution induced by a
compact-valued random correspondence F : S → 2X .
If X is a Polish space, then

∫

udν = inf
h∈S(F )

∫

udPh (1)

for all bounded and measurable functions u : X → R.
If, in addition, u is lower Weierstrass, then in (1) we
have a min instead of an inf.

Remark. A dual version of Theorem 1 holds, where
ν, inf, and lower Weierstrass are replaced respectively
with ν, sup, and upper Weierstrass.

From a probabilistic standpoint, the set of induced
probability distributions {Ph : h ∈ S (F )} is a very
important subset of core (ν) since it has a direct con-
nection with the random correspondence F . It would
be therefore desirable that {Ph : h ∈ S (F )} were also
a mathematically important subset of core (ν). In
general, {Ph : h ∈ S (F )} is not a convex set and so in
general core (ν) 6= {Ph : h ∈ S (F )}. For example, let
S = X = [0, 1] and let F (s) = {0, s} for all s ∈ S. It
can be checked that {Ph : h ∈ S (F )} is not convex.



However, the next result – based on Theorem 1 –
shows that {Ph : h ∈ S (F )} is still an important sub-
set of core (ν). As a matter of fact, core (ν) is
nothing but the weak∗-closed convex hull cow∗ (·) of
{Ph : h ∈ S (F )}.

Corollary 1 Let ν be the distribution induced by a
compact-valued random correspondence F : S → 2X .
If X is a Polish space, then

core (ν) = cow∗ ({Ph : h ∈ S (F )}) ,

and ext (core (ν)) ⊆ {Ph : h ∈ S (F )}
w∗

, i.e., all ex-
treme points of core (ν) belong to the weak∗-closure of
{Ph : h ∈ S (F )}.

We close with a simple but useful consequence of The-
orem 1, that further shows the importance of the set
{Ph : h ∈ S (F )} for ν.

Corollary 2 Let ν be the distribution induced by a
compact-valued random correspondence F : S → 2X .
If X is a Polish space, then:

(i) for each finite chain {Ai}n
i=1 of Borel sets there

exists h ∈ S (F ) such that ν (Ai) = Ph (Ai) for
each i = 1, ..., n.

(ii) for each infinite chain {Gi}i∈[0,1] of open sets
with

(a) Gi ⊇ Gj if i ≥ j and G0 = ∅,

(b)
⋃

j<i Gj = Gi,

there exists h ∈ S (F ) such that Ph (Gi) = ν (Gi)
for all i ∈ [0, 1].

(iii) for each infinite chain {Ci}i∈[0,1] of closed sets
with

(a) Ci ⊆ int (Cj) if i ≥ j,

(b)
⋂

j<i Cj = Ci,

there exists h ∈ S (F ) such that Ph (Ci) = ν (Ci)
for all i ∈ [0, 1].

4 Additional results

4.1 A change of variable formula for the
Aumann integral

Given a correspondence G : S → 2R, let ˜S (G) be the
set of all P -a.e. measurable selections, i.e., h ∈ ˜S (G)
if it is measurable and P -a.e. h (s) ∈ G (s). The
Aumann integral

∫

GdP is then defined as the set
{∫

hdP : h integrable and h ∈ ˜S (G)
}

.

Consider the correspondence u ◦ F : S → 2R, the
composition of the function u : X → R with the cor-
respondence F : S → 2X . For all s ∈ S, (u ◦ F ) (s) =
{u (x) : x ∈ F (s)}.

Lemma 1 Let F : S → 2X be a compact-valued ran-
dom correspondence. If X is a Polish space, then

∫

(u ◦ F ) dP =
{∫

udPh : h ∈ S (F )
}

(2)

for all bounded and measurable functions u : X → R.

Along with Theorem 1, this lemma delivers a change
of variable formula for the Aumann integral. Our re-
sult complements Theorem 5 of Hildenbrand (1974),
that considers the composition of a correspondence
with a function; in contrast, we consider the compo-
sition of function with a correspondence.

Theorem 2 Let ν be the distribution induced by a
compact-valued random correspondence F : S → 2X .
If X is a Polish space, then

∫

udν = inf
∫

(u ◦ F ) dP (3)

for all bounded and measurable functions u : X → R.
If, in addition, u is lower Weierstrass, then in (3) we
have a min instead of an inf.

Using Lemma 1 we can get some further in-
formation about the set of induced distributions
{Ph : h ∈ S (F )} by using some well-known properties
of the Aumann integral. First of all, if u is continu-
ous and bounded or finite-valued, the correspondence
u ◦ F is closed-valued and integrably bounded pro-
vided F is compact-valued. Hence,

∫

(u ◦ F ) dP is a
compact subset of R (see, e.g., Proposition 7 p. 73
of Hildenbrand (1974)), and we conclude that the set
{∫

udPh : h ∈ S (F )
}

is a compact subset of R pro-
vided F is compact-valued and u is continuous and
bounded or finite-valued.

Another interesting property of the Aumann integral
is that it is convex when P is non-atomic. Along with
Theorem 1 and Lemma 1, this immediately implies
the following useful result.

Proposition 3 Let ν be the distribution induced by a
compact-valued random correspondence F : S → 2X .
If X is a Polish space and P is non-atomic, then

(∫

udν,
∫

udν
)

⊆
{∫

udPh : h ∈ S (F )
}

⊆
[∫

udν,
∫

udν
]



for all measurable functions u : X → R. If, in addi-
tion, u is lower Weierstrass, then

[∫

udν,
∫

udν
)

⊆
{∫

udPh : h ∈ S (F )
}

while, if u is upper Weierstrass, then
(∫

udν,
∫

udν
]

⊆
{∫

udPh : h ∈ S (F )
}

.

4.2 The results for random sets

As mentioned before, the difference between random
sets and random correspondences lies in the notion of
measurability used.

Definition 3 A correspondence F : S → 2X is G-
measurable if F−1 (G) ∈ Σ for all open sets G ⊆ X.
A correspondence F : S → 2X which is G-measurable
is called a random set.

Remark. In σ-compact Hausdorff spaces, a closed-
valued correspondence is a random set if and only if
{s : F (s) ∩K 6= ∅} ∈ Σ for all compact sets K (cf.
Himmelberg (1975) Theorem 3.5). In particular, this
is true in separable locally compact Hausdorff spaces.

Clearly, all random correspondences are random sets.
Though the converse is in general false, the next re-
sult, due to Debreu (1967), provides an important
case where it holds (cf. Himmelberg (1975) pp. 57-
58). Σ∗ denotes the completion of Σ under P , i.e., the
collection of all sets of the form A ∪N , where A ∈ Σ
and N is P -null.

Theorem 3 Let F : S → 2X be a closed-valued
random set and suppose X is a Polish space. Then
F−1 (A) ∈ Σ∗ for all A ∈ B, and so F is a ran-
dom correspondence provided Σ = Σ∗, i.e., provided
(S, Σ, P ) is a complete measure space.

Theorem 3 suggests a simple way to extend our results
to random sets even when (S, Σ, P ) is not a complete
measure space. For, let F : S → 2X be a closed-valued
random set. Its distribution ν is defined only on open
sets and we have ν (G) = P

(

F−1 (G)
)

for all open
sets G ⊆ X. However, let P∗ be the unique extension
of P to Σ∗ and define a set function ν∗ : B → [0, 1] as
follows:

ν∗ (A) = P∗
(

F−1 (A)
)

for all A ∈ B. If X is Polish, the set function ν∗
is well defined by Theorem 3 and it coincides with
ν on the open sets. Actually, more is true. When
the metric space X is separable and F is a closed-
valued random set, F−1 (C) ∈ Σ for all closed sets

C ⊆ X (see Theorem 3.5 of Himmelberg (1975)).
Hence, ν∗ (C) = ν (C) also for all closed sets C ⊆ X.

We call ν∗ the extended distribution of F . It satis-
fies the same properties as the standard distributions
induced by random correspondences.

Proposition 4 Suppose X is Polish, and let ν∗ :
B → [0, 1] the extended distribution induced by a
compact-valued random set. Then:

(i) limn→∞ ν∗ (An) = ν∗
(

⋂

n≥1 An

)

for all non-
increasing sequences of Borel sets.

(ii) limn→∞ ν∗ (An) = ν∗
(

⋃

n≥1 An

)

for all non-
decreasing strictly monotone sequences of Borel
sets.

(iii) ν∗ is regular and tight.

We can now extend Theorem 1 to random sets.

Proposition 5 Let X be a Polish space and let ν∗ be
the extended distribution induced by a compact-valued
random set F : S → 2X . Then

∫

udν∗ = inf
h∈S(F )

∫

udPh (4)

for all bounded and measurable functions u : X → R.
If, in addition, u is lower Weierstrass, then in (4) we
have a min instead of an inf.

Remark. Since ν and ν∗ coincide on all open sets
and on all closed sets,

∫

udν∗ =
∫

udν for all up-
per semicontinuous and all lower semicontinuous func-
tions u : X → R.
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