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Abstract

Aversion to uncertainty is commonly attributed to non-
additivity of subjective probabilities for ambiguous
events, as in the Choquet expected utility model.   This
paper shows that uncertainty aversion can be
parsimoniously explained by a simple model of
“partially separable” non-expected utility preferences
in which the decision maker satisfies the independence
axiom selectively within partitions of the state space
whose elements have similar degrees of uncertainty.
As such, she may behave like an expected-utility
maximizer with additive probabilities for assets in the
same uncertainty class, while exhibiting higher degrees
of risk aversion toward assets that are more uncertain.
An alternative interpretation of the same model is that
the decision maker may be uncertain about her credal
state (represented by second-order probabilities for her
first-order probabilities and utilities), and she may be
averse to that uncertainty (represented by a second-
order utility function).  The Ellsberg and Allais
paradoxes are explained by way of illustration.

Keywords.   Risk aversion, uncertainty aversion, non-
additive probabilities, Choquet expected utility.

1   Introduction

The axiomatization of expected utility  by von
Neumman-Morgenstern and Savage hinges on the
axiom of independence, which requires preferences to
be separable across mutually exclusive events and
leads to representations by utility functions that are
additively separable across states of the world.  A
strong implication of the independence axiom is that
preferences are not permitted to depend on qualitative
properties of events but rather only on the sum total of
the values attached to their constituent states, which in
turn depend only on the probabilities of the states and
the consequences to which they lead.    If the set of
states of nature can be partitioned in two or more ways,
the decision maker is not permitted to display
uniformly different risk attitudes toward acts that are
measurable with respect to different partitions, because

the events in one partition are, at bottom, composed of
the same states as those in any other.  There is
considerable empirical evidence that individuals
violate this requirement in certain kinds of choice
situations.    A classic example is provided by
Ellsberg’s 2-color paradox, in which subjects
consistently prefer to bet on unambiguous events rather
than ambiguous events, even when they are otherwise
equivalent by virtue of symmetry, a phenomenon that
has come to be known as uncertainty aversion.  Other
violations of independence are provided by Ellsberg’s
3-color paradox and Allais’ paradox, in which
subjects’ preferences between two acts that agree in
some events depend on how they agree there, as though
there were complementarities among events.

A variety of models of non-expected utility have been
proposed to accommodate violations of the
independence axiom, and most of them do so by
positing that the decision maker has non-probabilistic
beliefs or that her preferences depend nonlinearly on
probabilities.  The Choquet expected utility model, in
particular, assumes that the decision maker tends to
overweight events leading to inferior payoffs by
applying non-additive subjective probabilities derived
from a Choquet capacity.  (Schmeidler 1989, Epstein
1999)  The ranking of states according to the payoffs to
which they lead thus plays a key role in the
representation of uncertainty aversion:  the decision
maker violates the axioms of expected utility theory
only when faced with choices among acts whose
payoffs induce different rankings of states.  Within sets
of acts whose payoffs are comonotonic, the decision
maker’s preferences have an ordinary expected-utility
representation.  Another way to view the Choquet
model is to note that it implies that the decision maker
has indifference curves in state-payoff space that are
kinked at the boundaries between comonotonic sets of
acts.  If the decision maker’s status quo wealth happens
to fall on such a kink—which is a set of measure zero
in state-payoff space—her local preferences (i.e., her
preferences for “neighboring” acts) will display
uncertainty aversion, otherwise they will not.

Other explanations of uncertainty aversion are
possible:  one approach would be to drop the axiom of



completeness and allow the decision maker to have
partially ordered preferences represented by convex
sets of probabilities. (Walley 1991)  Such a person
would always act as if she were sitting on a kink in an
indifference curve, regardless of her status quo wealth,
although her preferences among some pairs of acts
would be indeterminate.  Another approach would be
to relax the independence axiom in a different manner
so as to permit the decision maker to display different
risk attitudes toward different classes of events—or
more generally, to allow preferences among acts to
depend on how states are “bundled” with other states—
without necessarily ruling out the representation of
beliefs by additive probabilities.  The latter approach is
explored in this paper.  We will show that a simple
model of “partially separable” preferences can explain
both Ellsberg’s and Allais paradoxes and provide a
representation of  local aversion to uncertainty.

The organization of the paper is as follows:  section 2
introduces the basic mathematical framework and
concepts of risk aversion.  Section 3 gives a simple
example of a utility function defined on a 4-element
state space that explains Ellsberg’s 2-color and 3-color
paradoxes and Allais’ paradox.  Section 4 presents a
more detailed and general version of the same model
and the axioms on which it rests.  Section 5 discusses
how the model differs from Choquet expected utility,
and Section 6 presents some concluding comments.

2   Preliminaries
The modeling framework used throughout this paper
will be that of state-preference theory (Arrow
1953/1964, Debreu 1959, Hirshleifer 1965), which
encompasses both expected-utility and non-expected-
utility models of choice under uncertainty.   Suppose
that there are n mutually exclusive, collectively
exhaustive, states of nature and a single divisible
commodity (money) in terms of which payoffs are
measured.  The wealth distribution of an individual can
then be represented by an n-vector w, whose jth element
wj denotes the quantity of money received in state j, in
addition to (unobserved) status quo wealth.   If the
individual’s preferences among wealth distributions
satisfy the standard axioms of consumer theory
(reflexivity, completeness, transitivity, and continuity)
then they are represented by an ordinal utility function
U(w).  If no additional restrictions are placed on
preferences, the individual is rational according to the
usual standards of consumer theory, but she may have
“non-expected utility preferences” in the sense that her
valuation of a risky asset may not be decomposable
into a product of probabilities for states and utilities for
consequences.   For example, she may behave as if
amounts of money received in different states  are
substitutes or complements for each other, which is
forbidden under expected utility theory.

If state-preferences are additionally assumed to satisfy
the independence axiom (Savage’s P2), then U(w) has
an additively separable representation:

U(w) = v1(w1) + v2(w2) + … + vn(wn).

If preferences are further assumed to be conditionally
state-independent (Savage’s P3), then U(w) has a state-
independent expected-utility representation:

U(w) = p1u(w1) + p2u(w2) + … + pnu(wn),

where p is a unique probability distribution and u(x) is
a state-independent utility function that is unique up to
positive affine scaling, as in Savage’s model.
Although the probabilities in the latter representation
are unique, it does not yet follow that they are the
decision maker’s “true” subjective probabilities,
because there are many other equivalent
representations in which different probabilities are
combined with state-dependent utilities.  In order for
the decision maker to be “probabilistically
sophisticated”—i.e., in order for her preferences to
determine a unique ordering of events by probability—
an additional qualitative probability axiom (Savage’s
P4 or Machina and Schmeidler’s P4*, 1992) is needed,
together with an a priori definition of consequences
whose utility is “constant” across states of nature.
(Schervish et al. 1990)

If the decision maker’s preferences are sufficiently
smooth, her utility function U is differentiable and its
gradient is a non-negative vector that can be
normalized to yield a probability distribution � , whose
jth element is
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where Uj(w) denotes the partial derivative ∂U/∂wj

evaluated at w.    (Implicitly �  is a function of w, but
its wealth argument will be suppressed for notational
convenience.)  �  is invariant to monotonic
transformations of U and is observable, regardless of
whether the decision maker is probabilistically
sophisticated.   It is commonly known as a risk neutral
probability distribution because the decision maker
prices very small assets in a seemingly risk-neutral
manner with respect to it.  For a decision maker who is
a state-independent expected-utility maximizer, risk
neutral probabilities are proportional to the product of
true subjective probabilities and relative marginal
utilities for money at the current wealth position, i.e.,

πj ∝  pju′(wj).

If an attempt is made to elicit the decision maker’s
subjective probabilities by de Finetti’s method—i.e.,
by asking which gambles she is willing to accept—the
probabilities that are observed will be her risk neutral
probabilities rather than her true probabilities.  The two
distributions will differ if the decision maker has
sufficiently large prior stakes in the outcomes of events
to affect her marginal utilities for money.

In order to characterize aversion to uncertainty, it is
necessary to begin with a characterization of aversion
to risk.   Following Yaari (1969) the decision maker is
defined to be risk averse if her state-preferences are
convex, which means—as in consumer theory—that



her ordinal utility function U must be quasi-concave.
Thus, the definition of risk aversion does not require
prior definitions of expected value or absence of risk.
Following Nau (2001), the decision maker’s local risk
aversion will be measured by the difference between
her risk-neutral valuation of an asset and the price at
which she is willing to buy it.  Let z denote the payoff
vector of a risky asset.  The decision maker’s buying
price for z, denoted Pb(z), is determined by

U(w+z–Pb(z)) − U(w) = 0.

The buying risk premium associated with z at wealth w,
here denoted ρb(z), is the difference between the asset’s
risk neutral expected value and its buying price:

ρb(z) =  Eπ[z]  – Pb(z).

It follows as a theorem that the decision maker is risk
averse if and only if her buying risk premium is non-
negative for every asset z at every wealth distribution
w.   The buying risk premium has the convenient
property that ρb(z+c)=ρb(z) for any constant c.

The Pratt-Arrow measure of local risk aversion can be
readily generalized to the present context if the ordinal
utility function U is assumed to be twice differentiable.
Let Ujk(w) denote the second partial derivative
∂2U/∂wjwk, evaluated at w, and define the local risk
aversion matrix as the matrix R whose jkth element is
the negative of the ratio of second to first derivatives:

rjk = −Ujk(w)/Uj(w).

(Like �  and ρb(z), R implicitly depends on w, but its
wealth argument will be suppressed for notational
convenience.)   If z is a neutral asset (Eπ[z] = 0), its risk
premium has the following second-order
approximation which generalizes the Pratt-Arrow
formula:

ρb(z)   ≈      ½ zT ΠR z,

where Π = diag(� ).   (Nau 2001)   In the special case
where U has a state-independent expected-utility
representation, R  is a diagonal matrix and the risk
premium formula reduces to

ρb(z)   ≈    ½ Eπ[r z2],

where r is a vector-valued risk aversion measure whose
jth element is

rj =   − Ujj(w)/Uj(w) = − u′′ (wj)/u′(wj).

3  A simple model of smooth preferences
explaining the Ellsberg and Allais
paradoxes

In the 2-color Ellsberg paradox, a subject is presented
with two urns, one that is known to contain exactly 50
red and 50 black balls and another that contains red
and black balls in unknown proportions, and for a
given color she is asked whether she would rather
receive a fixed prize (say, $100) conditional on
drawing a ball of that color from the “known” urn or

from the “unknown” urn.  The familiar pattern of
results is that, regardless of which color is specified,
most subjects prefer to receive the prize conditional on
a ball drawn from the known urn.  This pattern is
inconsistent with any possible assignment of
probabilities to events and utilities to prizes, and the
subject is now “in trouble with the Savage axioms.”
The usual interpretation is that subjects are averse to
the ambiguity or lack of information associated with
the unknown urn and therefore behave as though their
probabilities were not additive, providing the
motivation for the Choquet expected utility model in
which the probability measure is replaced by a non-
additive capacity   This section introduces a simple
preference model that explains both Ellsberg’s and
Allais’s paradoxes in terms of uncertainty aversion “in
the small” even with additive probabilities.

Let a1 [a2] denote the event that the ball drawn from
the unknown urn is red [black], and let b1 [b2] denote
the event that the ball drawn from the known urn is red
[black].   The relevant state space is then {a1b1, a1b2,
a2b1, a2b2}.   Unless the subject has a strict color
preference and/or prior stakes in the outcomes of the
events (which we assume she does not), the four states
are completely symmetric when considered one-at-a-
time:  each is the conjunction of an ambiguous event
(a1 or a2) and an unambiguous event (b1 or b2) differing
only in their color associations.  If the subject had to
choose one of the four states on which to stake a prize,
she would have no basis for a strict preference.  The
paradox lies in the fact that the states are not
symmetric when considered two-at-a-time:  the pair of
states{a1b1, a2b1} has an objectively known probability
while the pair of states {a1b1, a1b2} does not.

Let w = (w11, w12, w21, w22) denote a hypothetical wealth
distribution, where wij is wealth in state aibj, and
suppose that the subject evaluates wealth distributions
according to the following non-separable utility
function:

(1) U(w) = –p1 exp(–α(q11 w11 + q12 w12))

– p2 exp(–α(q21 w21 + q22 w22))

where α is a positive constant and p1 = p2 = q11 = q12 =
q21 = q22 = ½.  It is natural to interpret  pi as a marginal
probability for ai and qij as a conditional probability of
bj given ai, with independence between A and B.
Suppose that the prior wealth distribution is an
arbitrary constant—i.e., the subject has no prior stakes
in the draws from either urn.  Then the states are
symmetric with respect to changes in wealth one-state-
at-a-time, from which it follows that �  = (¼, ¼, ¼, ¼).
Hence, for infinitely small bets, the subject does not
distinguish among the states, exactly as if she were a
state-independent expected utility maximizer with
uniform prior probabilities and no prior stakes.
However, she does distinguish among the states when
considering bets in which states are grouped together
and in which the stakes are large enough for risk
aversion to come into play.  For example, the subject
would prefer to pair a finite gain in state a1b1 with an
equal loss in state a1b2 (yielding no change in U) rather



than with an equal loss in state a2b1 or state a2b2

(yielding a decrease in U).  The risk aversion matrix in
this case is R = ½ α C, where C has a block structure
with 1’s in its upper left and lower right 2×2
submatrices.

Now consider the following three neutral bets.  In bet
#1, the subject wins x>0 if a red ball is drawn from the
known urn and loses x otherwise, so that the payoff
vector is (x, -x, x, -x).   In bet #2, the subject wins x if a
red ball is drawn from the unknown urn and loses x
otherwise, so that the payoff vector is (x, x, -x, -x).  In
bet #3, the subject wins x if the balls drawn from urns 1
and 2 are the same color, and loses x otherwise, so that
the payoff vector is (x, -x, -x, x).  Applying the formula
ρb(z) = ½ zTΠRz, the risk premium for bet #1 is zero,
and the same is true if the payoffs are reversed so that
black is the winning color.  Hence, the subject is risk
neutral with respect to bets on the known urn.
Whereas, the risk premium for bet #2 is ½αx2, and the
same risk premium is obtained if the winning color is
changed to black.  Hence, the subject is risk averse
with respect to bets on the unknown urn:  she behaves
toward it as if she believes red and black are equally
likely but her Pratt-Arrow risk aversion coefficient is
equal to α. This pattern of risk neutral behavior toward
unambiguous events and risk averse behavior toward
ambiguous events is clearly inconsistent with
subjective expected utility theory, but it does not
expose the subject to arbitrage because U is an
increasing function of wealth in every state.
Interestingly, the risk premium for bet #3 is the same
as for bet #1, namely zero, and the same is true if the
payoffs are reversed so that the subject wins if the balls
are of different colors.   Hence, the subject behaves
risk neutrally with respect to the unknown urn when
the winning color is determined by “objective”
randomization using the known urn, which is a well-
known trick for eliminating the ambiguity.

In the 3-color Ellsberg problem, the subject chooses
among bets on the color of a ball drawn from a single
urn containing 30 red balls and a total of 60 black and
yellow balls in unknown proportions.  The uncertainty
about the color of the ball can be modeled by a 2×2
partition of states with the color mapping b1 → Red,  a1

∩ b2 → Yellow, and a2 ∩ b2 →  Black, as shown in the
following schematic diagram:

a1

a2

  b1           b2

Let the subject’s preferences be represented by (1) with
p1 = p2 = 1/2,  q11 = q21 =  1/3, q12  = q22  = 2/3, and
α > 0.  Red and Yellow ∪  Black are measurable with
respect to B, so the subject will bet on them as if she
were risk neutral and assigned them probabilities 1/3

and 2/3, respectively.   Because Yellow and Black are
not measurable with respect to B, they will be regarded
as more uncertain than Red, and the subject will be risk
averse with respect to bets on them.    Similarly Red ∪
Black and Red ∪  Yellow will regarded as more
uncertain, and hence more risky to bet on, than Yellow
∪  Black.

With different parameters, the same utility function (1)
can also be used to explain the Allais paradox.   Let E,
F, and G be mutually exclusive events whose
probabilities are estimated to be 0.01, 0.10, and 0.89,
respectively, and consider the familiar pair of choices
among monetary acts:

E F G

f $1M $1M $1M

g $0 $5M $1M

f′ $1M $1M $0

g′ $0 $5M $0

Let the events be decomposed into a 2×2 partition of
states with the mapping a1 → E, a2 ∩ b1 → F, and a2 ∩
b2 → G,  as shown in the following schematic diagram:

b1 b2

Thus, E (the “sucker” event in acts g and g′ ) is
modeled as being more uncertain than F or G.1   In the
preference function (1), let p1 = 1 – p2 = 1/100 and q1 =
1 – q2  =  10/99.  With these “probability” assignments,
which agree with the previously given estimates, the
subject will prefer f over g if α-1 < $226,040 but will
nevertheless prefer g′ over f′ as long as α-1 > $21,982.
Hence, for a plausible range of risk tolerances with
respect to A-measurable acts, the subject will display
the typical preference reversal of the Allais paradox.

4  A model of partially separable
preferences

The examples in the preceding section suggest a novel
hypothesis about the character of non-expected-utility
preferences, namely that the decision maker may
satisfy the independence axiom selectively within

                                               
1 Actually, the key to this example is that the event G is
neither A-measurable nor B-measurable, hence it
cannot be modeled by a decision tree in which the first
chance node resolves G or ~G.
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partitions of the state space whose elements have
similar degrees of uncertainty.  As such, she may
behave like an expected-utility maximizer with respect
to assets in the same “uncertainty class,” while
exhibiting higher degrees of risk aversion toward assets
that are “more uncertain.”  For example, she might be
risk neutral—or even risk seeking—toward casino
gambles, moderately risk averse toward investments in
the stock market, and highly risk averse when insuring
against health or property risks.

To formalize this idea, let the state space consist of mn
states with two logically independent partitions A ={a1,
…, am} and B ={b1, …, bn}.   For concreteness,
suppose that the partition A represents the set of
“natural” states of the world while B represents the set
of outputs of an objective randomization device used to
construct a horse lottery or to elicit a utility function
for money.   Thus, A-measurable events are potentially
ambiguous while B-measurable events are
unambiguous.  Let w, w*, z, z*, denote wealth
distributions over states, i.e., monetary acts.  For any
event E and acts w and z, let Ew + (1−E)z denote the
act that agrees with w on E and agrees with z on Ec.
Suppose that  preferences among acts satisfy the
following partition-specific independence axioms:

A-independence:  Ew + (1−E)z ≥ Ew* + (1−E)z ⇔ Ew
+ (1−E)z* ≥ Ew* + (1−E)z*  for all acts w, w*, z, z*
and every A-measurable event E, and conditional
preference w ≥E w* is accordingly defined for such
events.

B-independence:  Fw + (1−F)z ≥i Fw* + (1−F)z ⇔
Fw + (1−F)z* ≥i Fw* + (1−F)z*  for all B-measurable
acts w, w*, z, z*  and every B-measurable event F,
where ≥i  denotes conditional preference given element
ai of A.

In other words, the decision maker satisfies the
independence axiom unconditionally with respect to A-
measurable events and conditionally with respect to B-
measurable acts and events within each element of A.
Such a person will be said to have partially separable
preferences.  A-independence and B-independence are
similar to the time-0 and time-1 substitution axioms of
Kreps and Porteus (1979), adapted to a framework of
choice under uncertainty rather than risk and stripped
of their temporal interpretation.

Preferences that are partially separable (as well as
weakly ordered, monotonic, and smooth) are
represented by a function U  having the nested-additive
form:

(2) U(w) =  ))((
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where wij denotes wealth in state aibj, and {ui} and {vij}
are twice-differentiable state-dependent utility
functions.    The corresponding risk neutral
probabilities satisfy
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The risk aversion matrix R is the sum of a diagonal
matrix and a block-diagonal matrix, with rij,kl = 0 if i≠k
and
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marginal and conditional probabilities, and let z  be
defined as the m-vector whose ith element is
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expectation of z given event ai.  In these terms, we
have

PROPOSITION:

For a decision maker with partially separable
preferences, the risk premium for a neutral asset z is

ρb(z)   ≈    2
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 =   ½ Eπ[s z 2]  +  ½ Eπ[t z 
2].

By comparison with the risk premium formula for
separable preferences, it is suggestive to think of the
second term on the RHS as a pure risk premium and
the first term as an additional premium for the
uncertainty surrounding A-measurable events, with s
and t serving as vector-valued measures of aversion to
uncertainty and risk, respectively.   If z is neutral and
A-measurable, then zij ≡ iz  and the total risk premium is

½ Eπ[(s + t)z 2] .   (Here s + t is understood to be the
vector whose ijth element is si + tij.)  If z is neutral and
B-measurable while A and B are independent under � ,

then iz  = Eπ[z] = 0 for every i and the total risk

premium is ½ Eπ[t z
2].

As a special case of (2), suppose that the component
utility functions are state-independent expected utilities
of the form ui(v) = piu(v) and vij(x) = qijv(x), where p is



a marginal probability distribution on A and qi is a
conditional probability distribution on B given ai,
yielding:

(3) U(w) = ))((
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Then the decision maker behaves as though she assigns
probability piqij  to state aibj  and she bets on events
measurable with respect to A as though her utility
function were u(v(x)).  If A and B are also independent,
i.e., if qij is the same for all i, she meanwhile bets on
events measurable with respect to B as though her
utility function for money were v(x).   If u is concave,
she is uniformly more risk averse with respect to A-
measurable bets than to B-measurable bets, suggesting
that she regards A as more uncertain than B and is
averse to uncertainty.   Thus, concavity of v encodes
the decision maker’s aversion to risk while concavity
of u encodes her aversion to the additional uncertainty
surrounding the A-measurable events.

The preference model (3) will henceforth be called
partially separable utility (PSU).  For a decision maker
with PSU preferences, a utility function for money
elicited via choices among objectively-randomized
lotteries cannot be used to predict or prescribe choices
among natural lotteries, contrary to usual decision-
analytic practice.  Nevertheless, such a decision maker
is perfectly rational in the sense that her behavior does
not create opportunities for arbitrage, and she can still
solve a decision tree by dynamic programming
provided that all-but-the-last chance node on every
path is A-measurable.  Whether she is able to use
dynamic programming in practice will depend on
whether she frames a dynamic decision problem in
such a way that the A-measurable events are resolved
first.

If the PSU decision maker is further assumed to have
constant (i.e., nonstochastic) prior wealth x, then her
risk neutral distribution is the product πij = pi qij and
her local attitude toward risk and uncertainty can be
summarized by a scalar risk aversion measure t(x) =
−v″(x)/v′(x) and a scalar uncertainty aversion measure
s(x) = −u″(v(x))/u′(v(x))v′(x).   Under these conditions,

z  is the vector whose ith element is ∑
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conditional expectation of z given ai under the
distribution qi.    The total risk premium for a neutral
asset z is then

ρb(z)   ≈    ½ s(x)Ep[
2z ] +  ½ t(x)Eπ[z

2].

The measures s(x) and t(x) are convenient hyperbolic
functions if u and v are utilities from the HARA
(generalized log/power/exponential) family, as shown
in the following table:

Table 1:  risk and uncertainty aversion measures
for HARA partially separable utilities

u(x) v(x)

(i) -exp(-αx) (sgn(β)/β)(x+γ)β

(ii) -sgn(α)exp(-αx) log(x+γ)

(iii) (sgn(α)/α)xα (1/β)(x+γ)β

(iv) log(x) (1/β)(x+γ)β

s(x) t(x) restrictions

(i) α(x+γ)β-1 (1-β)/(x+γ) α > 0, β ≤ 1

(ii) α/(x+γ) 1/(x+γ) α > -1

(iii) (1-α)β/(x+γ) (1-β)/(x+γ) 0<β≤1,
α<1/β

(iv) β/(x+γ) (1-β)/(x+γ) β > 0

Here, (ii) and (iv) are limiting cases of (i) and (iii) in
which β→0 and α→0, respectively, and wealth is
assumed to be bounded below by -γ.   The conditions
in the last column imply t(x) ≥ 0 and  s(x) + t(x) ≥ 0,
ensuring convexity of preferences.  Note that if α<0 in
(ii) or α>1 in (iii), s(x) is negative and the decision
maker is less risk averse toward A-measurable events
than B-measurable events.  This could represent a
situation in which the decision maker is uncertainty-
loving (despite having convex preferences overall) or
regards A as the less uncertain partition.

The preference model (1) introduced earlier is the
special case of HARA partially separable utility in
which m = n = 2, u(x) = −exp(−αx), v(x) = x, q11 = q21,
and  q12 = q22.   The same general construction can, of
course, be extended to 3-way partitions, 4-way
partitions, etc., all having different degrees of
uncertainty, although the 2-way partition suffices to
model the basic dichotomy between risk and
uncertainty.

5  Second-order probabilities and utilities

In the discussion of partially separable preferences in
the preceding section, the partitions A and B were
interpreted to represent sets of observable, payoff-
relevant events that were, respectively, ambiguous or
unambiguous.  In this section, a different interpretation
of the same model will be suggested, namely that the
partition B represents the observable, payoff-relevant
events while the partition A represents possible credal
states for the decision maker in which she may have
different probabilities and/or utilities.  The set of credal
states could have various interpretations in practice.
For example, it could be interpreted to represent
uncertainty about the decision maker’s state of mind
after further introspection and/or learning has taken
place, or it could be interpreted to represent model



risk—i..e., uncertainty about the model which ought to
be used for purposes of decision analysis.

Henceforth, let the wealth vector w be singly-
subscripted, with wj representing wealth in state bj ∈  B,
and consider the following specialization of (2):

(4) U(w) =  )))(((
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where p is a probability distribution on A and, for each
i, qi is a probability distribution on B.  (The former ui(.)
has been rewritten as pi ui(vi

-1(.)), and the former vij(.)
has been assumed to have the form qijvi(.), which is
conditionally state-independent.)  The argument of ui is
now the certainty equivalent of w obtained from an
expected-utility calculation with probability
distribution qi and utility function vi:
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in terms of which the utility function (4) becomes:

(5) U(w) =  ))((
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A utility function of essentially this same form was
used by Segal (1989) to model behavior violating the
reduction of compound lotteries axiom in two-stage
lotteries under risk.  Here the “first stage” lottery is the
selection of an element ai from partition A, which can
be interpreted as a credal state within which the
decision maker behaves like an expected-utility
maximizer with probability distribution qi and utility
function vi.  The implication of (5) is that, prior to the
resolution of the  first-stage lottery, the decision maker
is uncertain about her credal state (as represented by a
second-order probability distribution p) and is
potentially averse to that uncertainty (as represented by
a second-order utility function u which is applied to the
certainty equivalents realized in different credal states).
If ui = vi  for every i, then the second-order uncertainty
about probabilities and utilities can be integrated out
and the decision maker has (possibly state-dependent)
expected-utility preferences and is uncertainty-neutral,
but otherwise she has non-expected utility preferences
and may be uncertainty averse.

The specific utility function (1), which was previously
used to explain the Ellsberg and Allais paradoxes with
partition A interpreted as a set of ambiguous (but
observable) events, can now be re-interpreted as a
special case of (4)-(5) in which the decision maker is
an expected-value maximizer (i.e., risk neutral) within
each credal state, but she is uncertain about her
probability distribution and is averse to that uncertainty
with a constant degree of uncertainty aversion
quantified by α.  In particular, the model of the 2-color
Ellsberg paradox is a special case of (4) in which the
decision maker thinks it is equally likely that the
unknown urn contains all red balls or all black balls,
while she is certain that the known urn contains equal
numbers of red and black balls.  There are four payoff-
relevant events: b1 = RR, b2 = RB, b3 = BR, b4 = BB;

the decision maker’s two possible credal states are
represented by first-order probability distributions q1 =
(½, ½, 0, 0) and q2 = (0, 0, ½ , ½); her first-order utility
is linear, vi(x) ≡ x; and her second-order probabilities
and utilities are p = (½, ½) and ui(x) ≡ −exp(−αx).
With these parameter assignments, the decision maker
is risk neutral with respect to bets on the known urn
and risk averse with respect to bets on the unknown
urn, exactly as before.  A two-stage lottery
interpretation of the Ellsberg paradox was also given
by Segal (1987), although there the underlying utility
model was that of anticipated (rank-dependent) utility
rather than expected utility.

Similarly, the model of the 3-color Ellsberg paradox is
a special case of (4) in which the decision maker thinks
it is equally likely that the urn contains 60 yellow balls
and zero black balls or vice versa, while she is certain
that it also contains 30 red balls.  There are now three
observable events,  namely b1 = Red, b2 = Yellow, and
b3 = Black, and two credal states represented by the
probability distributions q1 = (1/3, 2/3, 0) and q2 = (1/3,
0, 2/3) over those events; and the credal states are
considered equally likely, i.e., p = (½, ½). When these
values are substituted into (4), together with vi(x) ≡ x
and  ui(x) ≡ −exp(−αx), the result is the same as (1)
with the values previously used for the 3-color
paradox.  As noted earlier, the model for the 3-color
Ellsberg paradox can also be adapted to explain the
Allais paradox, which exhibits a similar direct
violation of the independence axiom.  In the Allais
example, the three observable events are  b1 = E, b2 =
F, and b3 = G, and the preference model given earlier is
equivalent to (4) with two credal states represented by
probability distributions q1 = (1, 0, 0) and q2 = (0,
10/99, and 89/99), having second-order probabilities p
= (1/100, 99/100).  The latter model implies the
following interpretation of the Allais paradox:  the
subject thinks that the game is rigged so that one
alternative is dominant over the other in both pairs, she
just doesn’t know which one.  In particular, she thinks
there is a 1% chance that E is sure to happen, in which
case f and f′ are strictly dominant, and conversely there
is a 99% chance that E is sure not to happen, in which
case g and g′ are weakly dominant.

Levi (1986 and elsewhere) has suggested a
fundamentally different interpretation of the Allais
paradox, namely that it is due to indeterminacy of
utilities rather than probabilities.   That interpretation
can also be accomodated by the present model,
although here a second-order probability distribution is
assessed over the set of credal states (possible utility
functions), whereas in Levi’s model alternatives are
compared on the basis of admissibility criteria referring
to extremal utilities.   In the Allais example, suppose
that the decision maker is certain that events E, F, and
G have the given probabilities of 0.01, 0.10, and 0.89,
respectively, but meanwhile she is uncertain about her
utility function.  In particular, suppose that she has an
exponential utility function whose risk aversion
parameter is equally likely to be 1 or 10, when payoffs
are measured in $M.  In other words, her risk tolerance



(the reciprocal of her risk aversion coefficient) is
equally likely to be $100,000 or $1,000,000.
Furthermore, assume ui(x) ≡ x in (4), so that the
decision maker evaluates alternatives on the basis of
the second-order expectations of their first-order
certainty equivalents.  For such a decision maker, the
certainty equivalent of f is $1M, while the certainty
equivalent of g is equally likely to be $0.46M or
$1.08M, whose expected value is $0.77M.  Hence f is
preferred to g.  Meanwhile, the certainty equivalent of
f′ is equally likely to be $0.012M or $0.072M, yielding
an expected value of $0.042M, while the certainty
equivalent of g′ is equally likely to be $0.011M or
$0.105M, yielding an expected value of $0.058M,
hence g′ is preferred to f′.

Seidenfeld (1986) has shown that violations of
independence in sequential decisions under risk can
lead to sequential incoherence.  The preference model
presented in this paper refers to static decisions under
uncertainty and cannot, per se, lead to sequential
incoherence.   When faced with a sequential decision
problem, a decision maker with partially separable
preferences could either solve the problem in normal
form and proceed as though “risks borne but not
realized” were relevant (Machina 1989), or, more
interestingly, she might regard her future decisions as
stochastic due to her uncertain credal state.

6  Comparison with other preference
models

This section compares the partially-separable
preference model against other well-known preference
models.  First, as already noted, two-stage utility
functions have previously been used by Kreps and
Porteus (1979) and Segal (1989) to model preferences
for temporal or compound lotteries under conditions of
risk (known probabilities).    Here, the setting is that of
uncertainty—i.e., states of nature with subjectively
determined probabilities—and it is not necessary to
think of the decision problem as having a temporal or
compound structure, though the uncertain-credal-state
interpretation could perhaps be viewed in temporal
terms.

Second-order probabilities have often been used in
Bayesian statistical models to represent imprecise prior
distributions, although in those models the second-
order uncertainty has no behavioral implications:  it
can always be integrated out to yield an equivalent
representation of preferences in terms of first-order
expected utility.   In constrast, the partially-separable-
preference model admits the possibility of a second-
order utility function which captures aversion to
uncertainty and/or it admits uncertainty in the first-
order utility, thereby rationalizing behavior that is
inconsistent with standard Bayesian theory.  In  “quasi-
Bayesian” models, incomplete preferences are
represented by sets of probabilities and/or utilities.
Here, the preference ordering is “completed” through
the use of second-order probabilities and utilities.

Epstein (1999) has defined uncertainty aversion in
relative terms by reference to sets of ambiguous and
unambiguous acts, with probabilistic sophistication
(Machina and Schmeider 1992) serving as a
benchmark for uncertainty neutrality.  (A decision
maker is probabilistically sophisticated if there is a
probability distribution on states such that her
preferences among acts depend only on the probability
distributions they induce on consequences, regardless
of whether she is an expected-utility maximizer.)
Epstein’s definition of uncertainty aversion, like that of
probabilistic sophistication, applies to a Savage-act
framework in which the primitive rewards are abstract
consequences whose utilities are effectively state-
independent, providing a basis for extracting personal
probabilities from preferences among acts.   The
analysis in this paper, in constrast, applies to a state-
preference framework in which the primitive rewards
are quantities of money whose utilities may be state-
dependent and hence inseparable from subjective
probabilities, rendering it impossible to apply the
Machina-Schmeidler definition of probabilistic
sophistication in a completely general manner.
Nevertheless, a sufficient condition for probabilistic
sophistication in the state-preference framework is that
the decision maker’s preferences should be fully
additively separable, because such preferences have a
state-dependent expected-utility representation, even if
the probabilities are not unique.   Using the latter
benchmark, a decision maker whose preferences are
represented by (4) is uncertainty averse by Epstein’s
definition if ui(vi

-1(.)) is concave for every i.  To show
this, suppose that there is a decision maker whose
preferences are represented by (3) with {qi} distinct
and ui(vi

-1(.)) concave for every i. For such a person, an
act w is unambiguous if the first-order expected utility
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is the same in every credal state i, and it is ambiguous
otherwise.   (Note that the definition of an ambiguous
act is subjective and particular to the decision maker.
For example, the contents of Ellsberg’s urn might be
known to the experimenter but not to the subject.)
Now consider a second decision maker whose
preferences have the same representation except that,
for the second decision maker, ui = vi and hence
ui(vi

-1(.)) is linear for every i.  Then the second decision
maker is uncertainty neutral—i.e., she has fully
additively separable utility and is therefore
probabilistically sophisticated.   The two decision
makers then assign the same first-order expected utility
to every act, and the second decision maker evaluates
the first-order expected utilities in a risk-neutral
manner (by taking expectations with respect to the
second-order distribution), while the first decision
maker evaluates them in a risk-averse manner (using
the same second-order probabilities together with a
concave second-order utility function).  Hence, the two
decision makers will assign the same overall certainty
equivalents to every unambiguous act but the first



decision maker will assign lower certainty equivalents
to ambiguous acts.

The characterization of risk and uncertainty aversion in
this paper applies to general locally-smooth
preferences, which differ from the Choquet expected
utility preferences that are currently the most popular
alternative to subjective expected utility  (Schmeidler
1989; see also Epstein 1999).  The differences between
the two types of preferences are transparent and have
testable implications.  Choquet expected utility
preferences are the same as subjective expected utility
preferences within each comonotonic set, which is a
convex cone in state-payoff space.  For example, in
two dimensions, the comonotonic sets are the half-
planes above and below the line x = y.  In three
dimensions, the comonotonic sets are six wedges
whose cutting edges meet along the line x = y = z.
Within each such cone, the decision maker’s
indifference curves and risk neutral probabilities are
determined by a fixed subjective probability
distribution and a state-independent utility function.
At the boundaries between cones, the indifference
curves are kinked:  the subjective probabilities jump to
new (usually more pessimistic) values while the
marginal utilities remain the same, so the risk neutral
probabilities also change discontinuously.

Several details are important.  First, the Choquet model
requires knowledge of prior wealth in order to
determine the comonotonic sets, and constant acts play
an even more critical role than they do in the standard
theory.  All of the usual caveats about the difficulties
of observing prior wealth and defining constant acts
under naturalistic conditions therefore apply.  Second,
a Choquet expected utility maximizer displays true
uncertainty aversion only when comparing prospects
that lie in different comonotonic sets.  She is “locally
risk averse but uncertainty neutral” and uses a state-
independent local Pratt-Arrow measure to compute risk
premia for small gambles, ambiguous or otherwise,
except when her prior wealth happens to lie on the
boundary between two comonotonic sets (e.g., in an
idealized state of constant prior wealth).  Whereas,
under a general smooth preference model such as the
partially separable model introduced here, a decision
maker may be locally uncertainty averse everywhere in
state-payoff space.  Third, when a Choquet expected
utility maximizer finds herself on the boundary
between two comonotonic sets, she exhibits first-order
risk aversion.  In other words, she is risk averse even
for infinitesimal gambles.  The Choquet model offers
one way to model behavior that is first-order risk
averse, but not the only way.  For example, a subject
who has incomplete (partially ordered) preferences will
exhibit first-order risk aversion everywhere.

The empirical questions, then, are: (i) whether
uncertainty aversion is a first-order or second-order
phenomenon, and (ii) whether it affects all choices that
involve uncertain events or only choices between
alternatives that induce different rankings of states.
More specifically, is uncertainty aversion revealed by
valuations of small assets only when prior wealth is

constant across states?   The CEU model localizes
uncertainty-averse behavior on the boundaries of
comonotonic sets, which just happens to be where the
empirical light shines the brightest.  It is easiest to
demonstrate violations of Savage’s axioms in choices
among simple acts that lead to only two or three
distinct consequences with state-independent
valuations—e.g., a status quo and one or two prizes—
which do not turn on subtle issues of cardinal utility
measurement.  Practically the only non-trivial choices
under such conditions are those in which the acts lie in
different comonotonic sets.   By comparison, it is
rather hard to elicit violations of SEU in choices
among acts in the relative interior of the same
comonotonic set, because such choices depend
sensitively on many cardinal utilities.   Nevertheless, it
is intuitively plausible that in the Ellsberg urn problem,
a subject might “feel” differently toward the two urns
regardless of the complexity of the acts pegged to
them.

The following hypothetical experiment illustrates the
possibility—as well as the difficulty—of eliciting
violations of the independence axiom in choices among
comonotonic acts.  Consider again a two-urn problem
in which urn 1 contains equal numbers of red and black
balls and urn 2 contains red and black in unknown
proportions.  Suppose the subject’s preferences are
assessed for the following two pairs of bets:  (i) win
$100 if the ball drawn from urn 1 is Red (“R1”) vs. win
$100 if the ball drawn from urn 2 is Red, (“R2”),  and
(ii) win $100 if the ball drawn from urn 1 is Black
(“B1”) vs. win $100 if the ball drawn from urn 2 is
Black, (“B2”).  Furthermore, suppose that the subject is
endowed with the following distribution of prior
wealth:

Urn 2

Red (??) Black (??)

Urn 1 Red (1/2) $0 $200

Black (1/2) $300 $100

Thus, the decision maker’s prior expected wealth is
$150 regardless of the proportions of balls in urn 2.
Against this background, the four bets are
comonotonic.  If the subject nevertheless prefers to bet
on the ball drawn from the known urn regardless of the
winning color—i.e., if R1>R2 and B1>B2—then she
violates CEU but still could conform to the PSU
model.2

7  Discussion

The resurrection of cardinal utility theory by von
Neumann–Morgenstern and Savage was predicated on
the argument that, under conditions of risk and
uncertainty, preferences should be separable across

                                               
2 In a pilot experiment with students at Duke
University, involving $10’s rather than $100’s, a slight
majority of subjects exhibited this pattern.



mutually exclusive events.  Although separability of
risk preferences does seem reasonable in many
situations, at least as a simplifying assumption, it is no
longer accepted as a universal normative or descriptive
principle.  The currently-most-popular alternative
theory, Choquet expected utility, admits a special kind
of inseparability by positing that indifference curves
are kinked at the boundaries of comonotonic sets—the
so-called “45-degree certainty line” in state-payoff
space—while conforming to subjective expected utility
theory everywhere else.    In giving a central role to the
45-degree uncertainty line, the CEU model depends
heavily on some other assumptions of subjective
expected utility theory that are equally questionable
(Shafer 1986), namely the assumptions that subjective
probabilities (additive or otherwise) are uniquely
determined by preferences and that it is always
possible to identify a set of riskless acts which have
constant consequences for the decision maker.

This paper has presented a simpler alternative model of
non-expected-utility preferences that does not require
kinked indifference curves nor the unique
determination of subjective probabilities nor the
identification of riskless acts.  The decision maker is
permitted to display different degrees of risk aversion
toward different partitions of states of nature, which
leads to a simple characterization of aversion to
uncertainty, viz., the decision maker is uncertainty
averse if she is more risk averse toward ambiguous
events than unambiguous ones.   Equivalently, she may
behave as though her credal state is uncertain and she
is averse to the credal uncertainty.  A decision maker
may be uncertainty averse by this definition and yet
have additive hierarchical probabilities for all events
and conform to subjective expected utility theory
within a subalgebra of events having the same degree
of ambiguity or within a given credal state.  This
preference model does not necessarily invalidate
conventional methods of decision analysis—rather, it
suggests a simple way that decision analysis could be
extended to account for model risk—but it does cast
doubt on the common practice of assessing utility
functions for naturalistic decisions by contemplating
bets on objective randomization devices.
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