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Abstract

We adopt the same mathematical model of a set M of probability measures
as is central to the theory of coherent imprecise probability. However, we
endow this model with an objective, frequentist interpretation in place of
a behavioral subjective one. We seek to use M to model stable physical
sources of time series data that have highly irregular behavior and not
to model states of belief or knowledge that are assuredly imprecise. The ap-
proach we present in this paper is to understand a set of measures model M
not as a traditional compound hypothesis, in which one of the measures in
M is a true description, but rather as one in which none of the individual
measures in M provides an adequate description of the potential behavior of
the physical source as actualized in the form of a long time series.

We provide an instrumental interpretation of random process measures
consistent with M and the highly irregular physical phenomena we intend to
model by M. This construction provides us with the basic tools for simulation
of our models.

We present a method to estimate M from data which studies any given
data sequence by analyzing it into subsequences selected by a set of com-
putable rules. We prove results that help us to choose an adequate set of rules
and evaluate the performance of the estimator.
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1 Introduction

1.1 Orientation
We adopt the same mathematical model of a set M = {ν} of probability measures
as is central to the theory of coherent imprecise probability (e.g., see Walley [18]).
However, we endow this model with an objective, frequentist interpretation in
place of a behavioral subjective one, and ask completely different questions of
this model. While the mathematical model M is the same in the two theories of
probability (as it is in a variety of interpretations that have been offered for con-
ventional probability), on our account there is no focus on imprecision as is ap-
propriate in the behavioral account. In order to signal the distinction between the
two theories sharing the same mathematical model, we do not use the descriptor
“imprecise” and instead use “chaotic”. Although we remain interested in alterna-
tives to this term, it does connote a highly irregular sequence of physical (typically
mechanical) origin. We seek to use M to model stable (although not stationary in
the traditional stochastic sense) physical sources of time series data that have
highly irregular behavior and not to model states of belief or knowledge that are
assuredly imprecise. Support for the existence of such chaotic sources is lent by
the following quotation from Kolmogorov [9]:

In everyday language we call random those phenomena where we cannot find a reg-

ularity allowing us to predict precisely their results. Generally speaking, there is no
ground to believe that random phenomena should possess any definite probability.

Therefore, we should distinguish between randomness proper (as absence of any reg-
ularity) and stochastic randomness (which is the subject of probability theory). There

emerges the problem of finding reasons for the applicability of the mathematical theory

of probability to the real world.

1.2 Previous Work
Previous work focused on asymptotics or laws of large numbers for interval-
valued probability models can be found in Fine et al. [10][12][7][15]. Cozman
and Chrisman [1] estimate credal sets by looking at the limiting relative frequen-
cies along several subsequences of a time series. Our current work focussed on
modelling finite length time series.

Our previous attempt at supplying an objective frequentist interpretation for a
set of measures M, reported at ISIPTA ’01 in Fierens and Fine [3], was based upon
the use of Kolmogorov complexity to enable us to simulate highly complex time
series data from the model and then to estimate the model from such data through
the sequence of alternating minima and maxima of relative frequencies calculated
along a given sequence. The underlying motivation was an attempt at an analog
of the i.i.d. standard probability model; the model M gave us the marginal or
univariate description and the high complexity was meant to ensure that there was
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no further exploitable structure in the time evolution. We subsequently judged this
approach to be inadequate, in part after considering the performance of martingale
betting systems on such time series as advocated by the then newly-published
Shafer and Vovk [16].

1.3 Overview
As in our previous work, we focus on a description of univariate or marginal
events and not on descriptions of k-tuples of outcomes. This restriction is intended
only to simplify our search for a meaningful interpretation and not because we
deny the importance of an extension to k-tuples. In Section 2.1, we provide an
instrumental interpretation of random process measures consistent with M and
the highly irregular physical phenomena we intend to model by M. Although we
do not offer this description as an explanation for real world data, we develop it
because it helps us to better understand chaotic probability models by reference to
well-known standard stochastic processes, and, at the same time, this description
provides us with the basic tools for simulation of our models (see Section 2.2).
Essentially, our instrumental interpretation consists of a decision mechanism that
at each time instant chooses a probability measure ν ∈ M from which the next
outcome of a sequence will be generated. This measure selection function has
both properties of being highly complex so that it is difficult to discover it from
any given data sequence, and having enough simple structure to allow for the
estimation of M (see Theorems 1-3). The approach we present in this paper is to
understand a set of measures model M not as a traditional compound hypothesis,
in which one of the measures in M is a true description, but rather as one in which
none of the individual measures in M provides an adequate description of the
potential behavior of the physical source as actualized in the form of a long time
series. Instead, it is the whole set M that describes the potential behavior, and
this distinction has operational significance in terms of the time series data that is
anticipated from the physical source.

As explained in Section 3, we estimate M from a data sequence by com-
puting the relative frequencies along some of its subsequences. Subsequence
selection is a well-entrenched method of exposing behavioral patterns in time
series. It formed the basis of Richard von Mises’ pioneering definition of ran-
domness ([17],[4],[11],[13]) for infinitely long sequences and the seminal work
of A.N. Kolmogorov on randomness of finite strings ([8]). Cozman and Chris-
man [1] estimate credal sets by looking at the relative frequencies along several
subsequences. In a similar way, we also study a given sequence by analyzing it
into subsequences selected by rules in some set Ψ. Technically, we use causal
subsequence selection rules, also known as Church place selection rules (see
Definition 1 and also Li and Vitányi [11]). For any given model M, we expect to
find some set of rules ΨV for which M becomes “visible”, that is, a set of rules
such that all measures in M can be estimated by the relative frequencies along the
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selected subsequences (see Definition 2 and Theorems 2 and 3). Although such
a set ΨV may exist, identifying it will not be easy. Furthermore, there are sets
of rules ΨT for which a chaotic source may appear to be “temporally homoge-
neous”, that is, for a certain set ΨT there may exist a chaotic source generating
sequences such that the relative frequencies along subsequences selected by rules
in ΨT cannot expose more than a small neighborhood of a single measure con-
tained in the convex hull of M (see Definition 3, Lemma 1 and Theorem 4).

Proofs have been omitted in what follows. However, they are available in the
appendices of Fierens [2].

2 From the Model to Data

2.1 An Instrumental Interpretation of the Model
Let X = {z1,z2, · · · ,zξ} be a finite sample space. We denote by X∗ the set of
all finite sequences of elements taken in X. A particular sequence of n samples
from X is denoted by xn = {x1,x2, · · · ,xn}. P denotes the set of all measures on
the power set of X. A chaotic probability model M is a subset of P and models
the “marginals” of some process generating sequences in X∗. In this section, we
present an instrumental (that is, without commitment to reality) interpretation of
such a process.

Consider the generation of a sequence xn by the following pseudo-algorithm:

FOR k = 1 TO k = n

1. Choose ν ∈ M.

2. Generate xk according to ν.

If the decision mechanism in 1 is very complex1, say, random, with decisions
made in an i.i.d. manner according to some distribution on M, we would not be
able to distinguish whether xn was produced by an i.i.d. process according to
some measure in ch(M), the convex hull of M, or by the algorithm in question.
On the other hand, if the decision rule were very simple and deterministic, we
would possibly be able to make such a distinction. For example, consider the
simple choice mechanism that alternates between two measures ν1,ν2 ∈ M. In
this case, for sufficiently large n, we expect to discover the alternating-measure
rule and to be able to estimate ν1 and ν2. However, if the choice mechanism in 1
were neither too complex (as in the first example) nor too simple (as in the second
example), we may still be able to estimate M (or part of it), but we would probably

1Although Kolmogorov complexity captures part of the complexity to which we make reference
here, it seems not to suffice. Thus, the discussion in this paragraph follows at a more intuitive level.
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find it difficult (if not impossible given our computational resources) to discover
the choice mechanism itself. It is in this case that we believe chaotic probability
models to be useful: when dealing with chaotic sources, the measure selection
function F has both properties of being highly complex so that it is difficult to
discover it from any given data sequence, and having enough simple structure to
allow for the estimation of M.

We formalize the decision in 1 of the previous algorithm by means of a func-
tion F : X∗ → M. Furthermore, we restrict ourselves to causally made decisions,
ones dependent only upon the past:

FOR k = 1 TO k = n

1. Choose ν = F(xk−1) ∈ M.

2. Generate xk according to ν.

Let νk = F(xk−1). For any k ≤ n, F determines the probability distribution of
the potential kth outcome Xk of the sequence,

(∀A ⊆ X) P(Xk ∈ A|X k−1 = xk−1) = νk(Xk ∈ A).

An actual data sequence xn is assessed by the graded potential of the realization
of a sequence of random variables X n described by

P(X1 = x1, . . . ,Xn = xn) =
n

∏
k=1

νk(Xk = xk).

We denote by M∗ the family of all such process measures P. From the analysis of
data, we do not expect in general to be able to pinpoint a single P ∈ M∗ or even
a small subset of M∗, what we call a fine-grained picture of the source. On the
contrary, we expect our knowable operational quantities to be (large) subsets
of M∗ which provide an appropriate coarse-grained description of the source.
These ideas are related to those of coarse grainedness and fine grainedness in
physics. For example, in classical physics we commonly have situations, say, ki-
netic theory, in which a coarse description suffices even though we have access
in principle to a more detailed quantum mechanical one. Unlike the case of clas-
sical physics, there need be no more than instrumental reality in the fine details
of our model M∗. A similar situation may be found in quantum mechanics where
there are fine-grained pictures that have no empirical reality (see Gell-Mann [6],
Chapter 11, especially pp. 143-147).

2.2 Simulation
Simulation of sequences coming from a source modelled by a set of measures
M can be achieved by simply choosing an appropriate function F and applying
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the algorithm presented above. Since we expect not to know F in general, the
choice of the measure selection functions used for simulation depends on our
judgment, based on our knowledge of the physical phenomenon being modelled,
the intended use of the simulated sequences, etc.

In the typical case where M has infinite cardinality, we need a notion of ap-
proximation to the measures in M by finitely many other measures in (or close
to) M. Given a distance or metric d on P, a particular form of approximation is
provided by an ε-covering of M, that is, by a covering of the set M by open balls
of radius ε (according to d) and centers in some set Mε ⊂ P (perhaps a subset of
M). Note that, if P is compact with respect to d, we can find a finite ε-covering
of M. Choose a minimal set Mε so that each ball has a non-empty intersection
with M and call B(ε,ν) the ball with center ν ∈ Mε and radius ε. Then, given an
appropriate measure selection function F : X∗ → Mε, the following algorithm can
be used for simulation.

FOR k = 1 TO k = n

1. Choose ν = F(xk−1) ∈ Mε.

2. Choose any ν′ ∈ B(ε,ν)∩M.

3. Use a pseudo-random number generator to
generate xk according to ν′.

Since we want to expose all of M in a single, but sufficiently long, simulated
sequence, we require F to visit, many times, each measure in Mε. Theorems 1-2
in Section 3 can help us choose the minimum number of times that each measure
should be visited. Examples of simulation algorithms based on the basic strategy
presented above are available in the appendices of Fierens [2] (see, e.g., the proof
of Theorem 4) and in Section 3.5

3 From Data to the Model

3.1 Subsequence Analysis
We begin the study of a sequence xn ∈ X∗ by analyzing it into several subse-
quences. These subsequences are selected by rules that satisfy the following

Definition 1 (Causal Subsequence Selection Rule)
An effectively computable function ψ is a causal subsequence selection rule

(also known as a Church place selection rule) if

ψ : X∗ → {0,1},



Fierens & Fine: Towards a Chaotic Prob. Model for Frequentist Prob. 251

and, for any xn ∈ X∗, xk is the j-th term in the generated subsequence xψ,n, of
length λψ,n, if

ψ(xk−1) = 1,
k

∑
i=1

ψ(xi−1) = j, λψ,n =
n

∑
k=1

ψ(xk−1).

Let Ψ = {ψα} be a set of causal subsequence selection rules. For each ψ ∈ Ψ,
we study the behavior of the relative frequency of (only) marginal events along the
chosen subsequence. That is, given xn and a selection rule ψ∈Ψ we determine the
frequentist empirical (relative frequency) measure µ̄ψ,n along the subsequence
xψ,n through

(∀A ⊂ X) µ̄ψ,n(A) =
1

λψ,n

n

∑
k=1

IA(xk)ψ(xk−1),

where IA(·) is the {0,1}-valued indicator function of the event A. In a similar
manner, for any such rule ψ, we may compute the time average conditional
measure ν̄ψ,n defined by

(∀A ⊂ X) ν̄ψ,n(A) =
1

λψ,n

n

∑
k=1

E
[
IA(Xk)

∣∣∣Xk−1 = xk−1
]

ψ(xk−1).

Rewritten in terms of our instrumental understanding of the measure selection
function F ,

ν̄ψ,n(A) =
1

λψ,n

n

∑
k=1

νk(A)ψ(xk−1),

where νk = F(xk−1).
Since we want to expose some of the structure of the chaotic probability model

M by means of the rules in Ψ, we are interested in how good an estimator of ν̄ψ,n
is µ̄ψ,n. Introduce the norm-based metric

(∀µ,µ′ ∈ P) d(µ,µ′) = max
z∈X

∣∣µ(z)−µ′(z)
∣∣ ,

which quantifies the “closeness” between two probability measures on X. We call
a rule ψ applied to xn causally faithful if the resulting subsequence yields a small
value of d(ν̄ψ,n, µ̄ψ,n). The existence of such rules is guaranteed by

Theorem 1 Let ξ be the cardinality of X and denote the cardinality of Ψ by ‖Ψ‖.
Let m ≤ n. If ‖Ψ‖ ≤ tn, then for any process measure P ∈ M∗

P
(

max
ψ∈Ψ

{
d(µ̄ψ,n, ν̄ψ,n) : λψ,n ≥ m

}
≥ ε
)
≤ 2ξtne−

ε2m2

2n .
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Hence, so long as we restrict to a family of causal selection rules of size tn and
examine discrepancies of size ε only over subsequences of length at least m, with
m large, we can with high probability avoid uncontrollably imposing our own
patterns through some of the selected subsequences and instead exhibit only the
patterns that have inductive validity. If, to the contrary, we allow the set of subse-
quence selection rules to be too large, we will observe with non-negligible proba-
bility measures that are outside the convex hull of M. For example, if we enlarge
the set of subsequence selection rules by including all possible subsequences, then
we will observe measures that concentrate all the mass on a single atom (outcome
in X).

3.2 Visibility and Estimation
The possibility of exposing all of M by means of the rules in Ψ is expressed in
the following

Definition 2 (Visibility)
(a) M is made visible (Ψ,θ,δ,m,n) by P ∈ M∗ if

P

(
\

µ∈M

[

ψ∈Ψ
{Xn : λψ,n(Xn) ≥ m,d(µ̄ψ,n,µ) ≤ θ}

)
≥ 1−δ.

(b) A subset of M∗ renders M uniformly visible (Ψ,θ,δ,m,n) if M is made
visible (Ψ,θ,δ,m,n) by each of its elements. The maximal such subset is denoted
MV (Ψ) and MV (Ψ) may be empty.

The non-triviality of Definition 2(a), and, hence, of Definition 2(b), is asserted
in

Theorem 2 Let 0 < 2ε < θ and Mε ⊆ M be the centers of a minimal covering of
M by Nε balls of radius ε (according to the metric d as defined above2). Then, for
large n, there exists a process measure P and a family Ψ of size Nε such that M is
made visible (Ψ,θ,δ,m,n) with

δ = 2(ξ+1)Nεe−
(θ−2ε)2m2

2n .

Theorem 2 asserts the existence of a set of rules Ψ such that MV (Ψ) is not empty.
The following theorem shows how it is possible to estimate M by means of an

appropriate set of rules Ψ.

2According to our choice of d, although M is not necessarily compact, P certainly is. Therefore,
as a subset of compact P, M will always have a finite open covering.
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Theorem 3 Let Mα be a subset of the non-empty maximal MV (Ψ) ⊆ M∗ that
renders M uniformly visible (Ψ,θ,δ,m,n). Let [A]ε denote the ε-enlargement of
a set A defined by

(∀A ⊆ P) (∀ε > 0) [A]ε = {µ : (∃µ
′ ∈ A)d(µ,µ

′
) < ε}.

Let M̂θ,Ψ be an estimator of M defined by

(∀xn ∈ X∗) M̂θ,Ψ(xn) =
[

{ψ:ψ∈Ψ, λψ,n(xn)≥m}
B(θ, µ̄ψ,n).

Then the estimator M̂θ,Ψ satisfies

(∀P ∈ Mα) P
(
[ch(M)]θ+ε ⊃ M̂θ,Ψ ⊃ M

)
≥ 1−δ− τn,

where ch(M) is the convex hull of M and

τn = 2ξ‖Ψ‖e−
ε2m2

2n .

3.3 Temporal Homogeneity
Not every set of rules Ψ can expose all of M. The following definition deals
with some sets of rules that can only expose a small neighborhood of a single
probability measure in ch(M).

Definition 3 (Temporal Homogeneity)
(a) P ∈ M∗ is temporally homogeneous (Ψ,θ,δ,m,n) if

P
(

max
ψ1,ψ2∈Ψ

{
d(µ̄ψ1,n, µ̄ψ2,n) : λψ1,n(Xn),λψ2,n(Xn) ≥ m

}
≤ θ
)
≥ 1−δ.

(b) A subset of M∗ is uniformly temporally homogeneous (Ψ,θ,δ,m,n) if
each of its elements is temporally homogeneous (Ψ,θ,δ,m,n). The maximal such
subset is denoted MT (Ψ).

The non-triviality of Definition 3(a), and, hence, of Definition 3(b), is estab-
lished by

Lemma 1 Choose µ0 ∈ P and 0 < 2ε < θ and constrain the measure selection
mechanism F so that

(∀x∗ ∈ X∗) F(x∗) ∈ B(ε,µ0),
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where B(ε,µ0) is a ball with center µ0 and radius ε; that is, every P induced
by F is approximately i.i.d. µ0. Then each such P is temporally homogeneous
(Ψ,θ,δ,m,n) provided that δ satisfies

δ = 2ξtne−
[(θ−2ε)m]2

8n ,

where tn = ‖Ψ‖.

3.4 Consistency between Visibility and Temporal Homogene-
ity

We can better appreciate the difficulty of choosing an appropriate set of rules for
estimation of M by means of the next theorem, which in some sense complements
Theorem 2 and Lemma 1.

Theorem 4 Let ε > 1
m . Assume that there is an ε-cover of M by Nε open balls with

centers in a set Mε = {µ1,µ2, · · · ,µNε} such that, for each µi, there is a recursive
probability measure ν ∈ B(ε,µi)∩M. Let Ψ0 be a set of (causal deterministic)
place selection rules. Then, there are a process measure P and a family Ψ1 such
that, for large enough n, P will both render M visible (Ψ1,3ε,δ,m,n) and ensure
temporal homogeneity (Ψ0,6ε,δ,m,n) with

δ = 2ξtne−
ε2m2

2n ,

where
tn = max{‖Ψ0‖,‖Ψ1‖} .

A more transparent version of Theorem 4, given in terms of an analyzing set
Ψ0 formed by finite history rules defined as follows

Definition 4 Finite History Rules
We say that ψ is a finite history rule if there is a positive integer L, called the

history length of ψ, and a function Γ : XL → {0,1} such that for all xn ∈ X we
have

ψ(xk−1) =

{
Γ(xk−L,xk−L+1, · · · ,xk−1) if k > L,
0 otherwise.

The next theorem is similar to Theorem 4:

Theorem 5 Assume that M makes all atoms possible, i.e., there is φ > 0 such that

inf
µ∈M

min
z∈X

µ({z}) ≥ φ.



Fierens & Fine: Towards a Chaotic Prob. Model for Frequentist Prob. 255

Let Ψ0 consist of finite history rules with length smaller than a given L. Then, for
ε > 0, there are a process measure P and a family Ψ1 such that P will both render
M visible (Ψ1,2ε,δ,m,n) and ensure temporal homogeneity (Ψ0,4ε,δ,m,n) with

δ = 4ξtne−
ε2m2

2n ,

where
tn = max{‖Ψ0‖,‖Ψ1‖} .

Although we do not present a complete proof here (it can be found in Fierens
[2]), we give the basic idea behind the construction of P in Section 3.5 because it
provides a simple example of several ideas in this paper.

Put picturesquely, the results in this section show that Ψ determines the re-
solving power of the analytical microscope with which we examine M. When
one prepares a sample to be put under the lenses of the microscope, little or noth-
ing is seen of the structure of the sample, e.g., it may just look like some watery
solution. Similarly, in the case of a chaotic probability model, the temporal homo-
geneity property tells us that M looks just like the traditional single measure. As
we explore M with a large numbers of more complex selection rules, say, under
the more powerful lenses of the microscope, we begin to see or isolate different
relative frequency measures and begin to see M as a set of measures. However,
we do not know in advance the final scale at which M exhibits all of its structure
and do not know in advance how to choose Ψ to render all of M visible. Our
abilities at progressive exploration are, of course, limited both by the increasing
computational burden, and by considerations of extracting faithful subsequences.
Preserving the faithful subsequence property requires a relation between ‖Ψ‖ and
the resulting confidence level 1− δ. As ‖Ψ‖ increases, maintaining confidence
levels requires longer subsequences (larger m) and in turn more data (larger n).
These considerations make good traditional statistical sense.

3.5 Simulation Example
Let Mε = {µ1,µ2, · · · ,µNε}⊆M be the centers of a finite ε-cover of M by Nε open
balls. Let γ be defined as

γ =
⌈

logξ Nε

⌉
.

Let B1, · · · , BNε be a partition of Xγ, the histories of length γ, into Nε subsets
and consider the memory-γ Markov process defined by the following transition
probabilities:

(∀A ⊆ X) P
(
Xk ∈ A|Xk−1 = xk−1, · · · ,Xk−γ = xk−γ

)
= µi (Xk ∈ A) , (1)

iff (xk−γ, · · · ,xk−1) ∈ Bi. It can be proved that this Markov process has a unique
stationary probability measure µS (see Fierens [2]).
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Let R be an integer greater than a given L and consider the construction of
a process measure P ∈ M∗ by an algorithm that: a) initializes R i.i.d. Markov
processes (as described by Eqn. 1) at the stationary measure; b) generates the
sequence xn by choosing outcomes from the R Markov processes in a round-robin
fashion. A more detailed description of this algorithm follows.

FOR l = 1 TO l = R

1. Generate (xl,1,xl,2, · · · ,xl,γ) according to µS.

2. FOR k = γ+1 TO k = dn/Re
(a) Find the set Bi such that (xk−γ, · · · ,xk−1) ∈ Bi.

(b) Generate xk according to µi.

Set R counters i1, i2, · · · , iR to 1.

FOR k = 1 TO k = n

1. Let l = [(k−1) mod R]+1.

2. Let xk = xl,il.

3. Let il = il +1.

We now sketch the proof that the previous algorithm succeeds in constructing
a process measure P ∈ M∗ satisfying the conditions stated in Theorem 5. By the
previous algorithm, for k > Rγ, the outcome Xk depends on Xk−Rγ, Xk−R(γ−1), · · · ,
Xk−R, but it does not depend on Xk−R+1, Xk−R+2, · · · , Xk−1. Let ψ be any rule in
Ψ0. Since ψ has a limited time horizon L which is strictly smaller than R, we have
for all A ⊂ X

E
n

∑
k=1

ψ(X k−1)
[
E
[
IA(Xk)

∣∣∣Xk−1
]
−µS(A)

]
=

=
n

∑
k=1

P
(

ψ(X k−1) = 1
)

E
[
IA(Xk)−µS(A)

∣∣∣ψ(X k−1) = 1
]

= (by memory L)

=
n

∑
k=1

P
(

ψ(X k−1) = 1
)

E
[
IA(Xk)−µS(A)

∣∣∣ψ(X k−L:k−1) = 1
]

= (by indep.)

=
n

∑
k=1

P
(

ψ(X k−1) = 1
)

E [IA(Xk)−µS(A)] = 0.

It can be shown, by means of the same techniques used in the proof of Theorem
1, that this fact implies that

P
(

max
ψ∈Ψ0

{
d(ν̄ψ,n,µS) : λψ,n ≥ m

}
≥ ε
)
≤ 2ξ‖Ψ0‖e−

ε2m2

2n .
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Finally, this statement together with Theorem 1 imply that M is Ψ0-temporal
homogeneous.

Let Ψ1 = {ψ1, · · · ,ψNε} be a set of rules such that

ψi(xk−1) =

{
1 if k > Rγ and (xk−Rγ,xk−R(γ−1), · · · ,xk−R) ∈ Bi,

0 otherwise.

Then, it is easy to see that

(∀A ⊆ X) ν̄ψi,n(A) =
1

λψi,n

n

∑
k=1

E
[
IA(Xk)

∣∣∣Xk−1 = xk−1
]

ψi(xk−1) = µi(A).

This fact together with Theorem 1 ensure Ψ1-visibility.

4 Conclusions and Future Work
As is well known in cognitive psychology (see, e.g., [5]), perception is intimately
related to expectation: in many cases, we see what we expect to see. In a similar
manner, our capacity to recognize new phenomena is conditioned by our exist-
ing mathematical constructs (see Fierens and Fine [3]). In the words of Meno to
Socrates3:

And how will you enquire, Socrates, into that which you do not know? What will you

put forth as the subject of enquiry? And if you find what you want, how will you ever

know that this is the thing which you did not know? (From [14]).

We have presented here a new way of “seeing” time series by introducing chaotic
probability models. Although we have not shown real-world data supporting our
models, we have provided the basic tools needed to recognize and study such
data. We have developed a basic understanding of chaotic sources by means of
the instrumental interpretation in Section 2 and we have presented methods to
estimate the model from data and to simulate it given the model in Section 3.

Bridge-building provides a metaphor for our approach to the development of
an objective theory based on sets of probability models M. The two piers of the
bridge are: the model M as a set of probability measures on all subsets of X (see
Section 2) representing potential; time series data in the form of a sequence xn of
finite length n with terms in the sequence all drawn from a finite sample space
X (see Section 3) representing the actualization of potential. Our models need
to show consistent descriptions of both piers and methods to traverse this bridge
in both directions. In estimation we have many ways to proceed from a unique
data sequence to an approximate model. In simulation we have many ways to
proceed from a model to multiple data sequences that are typical of the model.

3We owe this quote to an anonymous referee.
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Structural soundness of the bridge amounts to self-consistency of estimation and
simulation, in the sense that a model M̂ estimated from a simulated sequence x̂n

must be similar to the original model M being simulated:

M −−−−−−→
source gen.

xn −−−−−→
estimation

M̂(xn)(≈ M) −−−−−→
simulation

x̂n −−−−−→
estimation

M̂(x̂n) ≈ M.

More work remains to be done on estimation and simulation before being able to
evaluate fairly this kind of consistency in our chaotic probability models. Also,
we need to find a way of quantifying such consistency. Do the models obtained
from simulated sequences look similar to the models used for simulation? How
do we quantify these similarities? These questions need an answer if we want the
framework of chaotic probability models to be consistent.

In view of the instrumental interpretation in Section 2.1, it may be argued that
a set of probability measures M provides only an unfinished picture of a chaotic
source, the description of F being needed for a complete model. However, we
believe that M provides, not an incomplete picture of the source, but a coarse
grained one. As thermodynamics in physics provides good (complete) enough
models of gases for many practical purposes, we believe sets of measures M may
be good (complete) enough models of chaotic sources in many cases. Although
examples of the successful use of chaotic models in applied probability have yet
to be provided, the main elements needed for the application of our models have
been given in this paper.
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