
5th International Symposium on Imprecise Probability: Theories and Applications, Prague, Czech Republic, 2007

Climbing the Hills of Compiled Credal Networks

Rolf Haenni

Bern University of Applied Sciences, Switzerland
rolf.haenni@bfh.ch

University of Bern, Switzerland
haenni@iam.unibe.ch

Abstract

This paper introduces a new approximate inference al-
gorithm for credal networks. The algorithm consists
of two major steps. It starts by representing the credal
network as a compiled logical theory. The resulting
graphical structure is the basis on which the sub-
sequent steepest-ascent hill-climbing algorithm oper-
ates. The output of the algorithm is an inner ap-
proximation of the exact lower and upper posterior
probabilities.

Keywords. Credal Networks, Bayesian Networks,
Credal Sets, Approximate Inference, Logical Compi-
lation, Hill-Climbing, Local Search.

1 Introduction

Credal networks are like discrete Bayesian networks,
except that they specify closed convex sets of proba-
bility mass functions, so-called credal sets [36], instead
of single probability mass functions. They are usually
locally (or separately) specified [1, 16], i.e. every net-
work variable is associated with a collection of local
conditional credal sets, which do not interfere with
each other. It is possible to view a locally specified
credal network as a set of Bayesian networks with the
same directed acyclic graph [17].

In general, credal sets contain an infinite number of
probability mass functions, but they are normally
fully specified by a finite number of extreme points.
These are the vertices of a convex polytope in the
corresponding multi-dimensional space. In the case
of binary variables, the polytopes coincide with inter-
vals, which restricts the maximal number of necessary
extreme points to two. In a Bayesian network, each
polytope is restricted to a single (extreme) point.

Inference in a locally specified credal network usu-
ally means to derive lower and upper posterior prob-
abilities from the strong extension [16], i.e. from the
the largest joint credal set that satisfies strong inde-

pendence [15]. Except for the particular case of bi-
nary variables in polytree-shaped networks [30], this
is computationally extremely challenging, much more
than classical inference in Bayesian network. The case
of general categorical variables is NP–complete for
polytree-shaped networks and NPPP–complete for an
unbounded induced treewidth, thus making inference
in credal networks very inefficient [27].

In comparison with Bayesian networks, the additional
computational complexity results from the potentially
unbounded number of vertices needed to describe ar-
bitrary credal sets. This can quickly outperform the
benefits of applying local computation techniques to
graphical models such as Bayesian networks. Local
messages propagated through a credal network (resp.
through the join tree obtained from a credal network)
may thus possess the richness and complexity of the
(global) joint credal set [10]. In fact, inference in
credal networks is essentially a global multilinear opti-
mization problem on top of the given graphical struc-
ture [18].

Facing the inherent computational complexity of
credal networks, exact inference methods are only
exceptionally suitable. One exception is the above-
mentioned case of binary variables in polytree-shaped
networks, for which a polynomial-time algorithm ex-
ists [30]. All other exact methods (e.g. vertex enu-
meration, global optimization, and transformation al-
gorithms) are only applicable to very small problem
instances.

For large networks, approximate inference seems to
be the most natural solution. There is a general dis-
tinction between inner and outer approximations, de-
pending on whether the resulting interval is enclosed
in the exact solution or vice versa. The quest for such
approximate methods is currently one of the major re-
search topics in the imprecise probability community,
as the increasing number of corresponding publica-
tions in the last couple of years demonstrates, see e.g.
[2, 4, 5, 7, 8, 9, 19, 20, 31, 32].

1.1 General Ideas

In this paper, we present a new approximate method
for the inference problem in credal networks. The ap-
proach results from combining the following two basic
techniques:

Logical Compilation. This is an emerging infer-
ence technique for Bayesian networks [12, 13, 14,
23, 45]. The general idea is to represent the
graphical structure (topology) of the Bayesian
network by a propositional theory. Possible lo-
cal structures within the given CPTs can be ex-
ploited to simplify corresponding sentences of the
theory [12, 14]. The resulting logical encoding
is then compiled into an appropriate logical form
called d-DNNF [25, 46], which supports all neces-
sary operations to answer arbitrary queries (con-
ditional probabilities) in polynomial time. The
computational task is thus divided into an ex-
pensive (off-line) compilation phase and a fast
(on-line) query-answering phase.

Hill-Climbing. This is a generic combinatorial op-
timization technique, which is widely used in
many AI-related fields and applications [41]. The
goal is to maximize (or minimize) a function
f : X → R through local search, where X is
usually a discrete multi-dimensional state space.
Local search means to jump from one configura-
tion in the state space to a neighboring one, un-
til a local maximum or possibly the global max-
imum is reached. An obvious heuristic for the
selection of the neighboring configuration is to
jump to the configuration with the steepest as-
cent of the respective value of f (steepest-ascent
hill-climbing). The basic hill-climbing process is
usually iterated with randomly generated start-
ing points (random-restart hill-climbing), thus
making it an interruptible anytime algorithm.

The idea of compiling a credal network in the same
way as compiling a Bayesian network is quite obvi-
ous, but to our knowledge, this is still an unexplored
approach. Pointing out this possibility is one of the
goals of this paper.

Applying hill-climbing or other local search algo-
rithms to approximate inference in credal networks
is also quite obvious, as some of the existing approx-
imation algorithms have demonstrated [4, 5, 6, 20].
Most of them are oriented towards the local propa-
gation scheme in corresponding join trees [33, 43], in
which each hill-climbing step requires the updating of
the affected join tree messages. The hill-climbing pro-
cedure itself is guided by the current configuration of
so-called transparent variables, whose role consists in
selecting the actual vertices in the local credal sets.

1.2 Overview and Outline

In our method, we will also exploit the benefits of lo-
cal computation in join trees, but only to compile the
network structure into a d-DNNF during the inward
phase [13]. The necessary information for the hill-
climbing procedure is then available in a very simple
and compact logical structure. For the current selec-
tion of vertices, this structure can then be used to
efficiently compute or update the resulting posterior
probability. Moreover, without much computational
overhead, it is possible to determine the currently
unselected vertex (i.e. the neighboring configuration)
with the steepest ascent (resp. descent), which we can
use as a heuristic to improve the performance of the
local search.

After all, we get a simple but yet powerful steepest-
ascent, random-restart hill-climbing algorithm to ap-
proximate inference in credal networks. By running
the algorithm twice, once as a maximizing and once
as a minimizing procedure, it produces good inner ap-
proximations of the exact probability bounds.

With respect to existing hill-climbing techniques for
credal networks, our approach appears to be consid-
erably simpler, as no complicated management of a
bidirectional double message system is required, like
e.g. in [6]. The logical representation is also inherently
predestined to exploit existing local CPT regularities
in the form of context-specific independence [3], logical
relationships (pure or noisy), or determinism [12], for
which existing methods typically use so-called prob-
ability trees [6, 9]. Finally, from the possibility of
quickly finding the neighboring configuration with the
steepest ascent (respectively descent), our method is
likely to converge faster towards the exact results.

The rest of the paper is organized as follows. In
Section 2, we give a short introduction to the main
concepts of Bayesian and credal networks and the
terminology used in this paper. Section 3 summa-
rizes the compilation-based approach to inference in
Bayesian (and credal) networks. Section 4 introduces
hill-climbing and its application to compiled credal
networks. This is the main part of the paper. The
discussion and outlook in Section 5 concludes the pa-
per.

2 Bayesian and Credal Networks

A Bayesian network (BN) is an efficient representa-
tion of a joint probability mass function over a set
X = {X1, . . . , Xn} of variables [38]. We assume
throughout this paper that all variables X ∈ X are
categorical, i.e. their associated sets ΩX of possible
values are finite. The network itself consists of a
directed acyclic graph (DAG), which represents the

direct influences among the variables, each of them
attached to one node, and a set of conditional prob-
ability tables (CPT), which quantify the strengths of
these influences. The whole BN represents a joint
probability mass function p : ΩX → [0, 1] over its vari-
ables in a compact manner by

p(X) =
∏

X∈X

p(X|Π(X)), (1)

where Π(X) denotes the parents of node X in the
DAG. Figure 1 depicts the BN for the “Dog-Problem”
[11], which is often used in the literature for illustra-
tive purposes. It consists of five binary variables F , B,
L, D, and H, with corresponding CPTs p(F), p(B),
p(L|F), p(D|F,B), and p(H|D).

L

F B

D

H

p(D|F,B)
d1 d2

f1, b1 0.99 0.01
f1, b2 0.97 0.03
f2, b1 0.90 0.10
f2, b2 0.30 0.70

p(L|F)
l1 l2

f1 0.60 0.40
f2 0.05 0.95

p(H|D)
h1 h2

d1 0.70 0.30
d2 0.01 0.99

p(F)
f1 f2

0.15 0.85

p(B)
b1 b2

0.01 0.99

Figure 1: Example of a simple Bayesian network with
five binary variables.

Inference in Bayesian networks means to compute the
conditional probability P (H=h |E1=e1, . . . , Er=er),
or simply

P (h|e) =
P (h, e)
P (e)

, (2)

of a hypothesis h ∈ ΩH for some observed evidence
e = (e1, . . . , er) ∈ ΩE. We will call H ∈ X query
variable and the elements of E = {E1, . . . , Er} ⊆ X
evidence variables. To see how to solve the inference
problem, let Y = {Y1, . . . , Ys} ⊆ X be an arbitrary
subset of variables, y = (y1, . . . , ys) ∈ ΩY a configu-
ration of values yi ∈ Yi, and Z = X\Y. Then it is
sufficient to compute

P (y) =
∑
z∈ΩZ

p(yz) (3)

twice, once with Y = {H} ∪ E and y = (h, e) to get
the nominator and once with Y = E and y = e to
get the denominator of the above formula. Note that

the necessary sum-of-products involve exponentially
many terms, but if the computations are performed
locally in a join tree propagation or variable elimina-
tion process, it is almost always possible to replace it
by a compact factorization [28, 33, 43]. Join trees are
also useful to avoid redundant computations in the
case of multiple queries or updates.

Credal networks (CN) are similar to Bayesian net-
works, but they relax the uniqueness assumption for
the given probability values [16]. In a locally (or sep-
arately) specified CN, the CPT entries are replaced
by corresponding conditional credal sets, on which no
further restrictions are imposed [1]. A credal set for a
variable X ∈ X is a closed convex set K(X) of prob-
ability mass functions p(X) [36]. Similarly, a con-
ditional credal set K(X|π) is a closed convex set of
conditional probability mass functions p(X|π), where
π ∈ ΩΠ(X) is one particular assignment of values for
the direct influences Π(X) of X. With

K(X|Π(X)) = {K(X|π) : π ∈ ΩΠ(X)} (4)

we denote the collection of all such conditional credal
sets. This is what a CN needs to specify for all vari-
ables X ∈ X.

Normally, a single conditional credal set K(X|π) is
specified and represented by a finite set

Ext(K(X|π)) = {p1(X|π), . . . , pm(X|π)} (5)

of extreme points pi(X|π). Geometrically, these ex-
treme points are vertices of a polytope in the corre-
sponding additive subspace of [0, 1]|ΩX |. In the bi-
nary case, i.e. for |ΩX | = 2, the additive subspace
of [0, 1]2 is a simple straight line between (0, 1) and
(1, 0), on which credal sets degenerate into intervals
with at most two extreme points (the bounds of the
intervals).

If we generalize the BN of Fig. 1 to a CN, we need
to replace the rows in each CPT by corresponding
(conditional) credal sets. Since all involved variables
are binary, it is sufficient to specify two extreme
points for each credal set. As an example, consider
K(H|D), which consists of the credal sets K(H|d1)
and K(H|d2), and suppose that the precise values
p(H|di) from Fig. 1 are enlarged to sets of extreme
points Ext(K(H|di)) = {p1(H|di), p2(H|di)} with the
following values:

Ext(K(H|D))
p1(H|D) p2(H|D)
h1 h2 h1 h2

d1 0.70 0.30 0.80 0.20
d2 0.01 0.99 0.03 0.97

Note that the particularity of binary variables allows
us to specify the same information more compactly

by p(h1|d1) ∈ [0.7, 0.8] and p(h1|d2) ∈ [0.01, 0.03]
(and therefore by p(h2|d1) ∈ [0.2, 0.3] and p(h2|d2) ∈
[0.97, 0.99]), thus making the interval-shaped credal
sets more visible. This is an appealing view, in which
credal sets appear to be nothing but probability in-
tervals or interval-valued probabilities [35, 37, 44, 48],
but the simplicity of this view belies the fact that
credal sets are more general than probability intervals,
e.g. for variables with more than two values. Interval
representations are also problematical when it comes
to apply Bayes’ rule or to propagate them through a
network [6, 16].

For a given credal network, we use K(X) to denote
its joint credal set. Note that its actual definition de-
pends on how the concept of independence is adopted
for credal sets. In this paper, we follow the usual con-
vention of strong independence [15], which allows us to
define K(X) to be the strong extension of the credal
network, i.e. as the largest joint credal set such that
every variable X ∈ X is strongly independent [16].
This set contains all possible joint probability mass
functions, if we select corresponding elements p(X|π)
from each conditional credal set K(X|π). Formally,
we can write

K(X) =

{ ∏
X∈X

p(X|Π(X)) : p(X|π) ∈ K(X|π)

}
,

where π denotes respective configurations of Π(X).
Note that each element p(X) ∈ K(X) can be seen as
the joint probability mass function of a corresponding
Bayesian network (on the same DAG).

The convexity of K(X) guarantees its extreme points
to result only from combinations of extreme points
of each conditional credal set K(X|π) [17], and this
allows us to rewrite the above expression as

Ext(K(X)) =

CH

{ ∏
X∈X

p(X|Π(X)) : p(X|π) ∈ Ext(K(X|π))

}
,

where CH stands for an algorithm to compute the
convex hull of a set of points in a multi-dimensional
space [26]. This property reflects the fact that infer-
ence in credal networks is reducible to computations
of extreme points.

Inference for a given credal set K(X), a query h ∈
ΩH , and some observations e ∈ ΩE means to deter-
mine tight bounds over all possible probability values
P (h|e), i.e. to compute the lower posterior probabil-
ity

P (h|e) = min{P (h|e) : p(X) ∈ K(X)}, (6)

and the upper posterior probability

P (h|e) = max{P (h|e) : p(X) ∈ K(X)}. (7)

To compute these values under the assumption of
strong independence, we can again exploit the con-
vexity of K(X) to restrict the necessary search space
to the finite set Ext(K(X)) of extreme points [17].
Note that if N denotes the total number of involved
conditional credal sets, all of them described by k
extreme points, then Ext(K(X)) may possess up
to Nk elements, thus making the above minimiza-
tion/maximization problems very difficult tasks. Ex-
cept for polytree-shaped networks with binary vari-
ables, no algorithm can handle large credal networks
exactly [27, 30].

3 Compiling Bayesian Networks

The goal of compiling a Bayesian or credal network
is the construction of a logical representation ϕ, in
which all the topological and context-specific infor-
mation of the network is included in a compact and
easily manageable form. This construction is a one-
time preparatory step, which is intended to take place
off-line. The resulting logical representation ϕ con-
tains two types of propositional variables, the ones
linked to the CPT entries and the ones linked to the
individual values of the network variables. The cor-
responding sets of propositions are denoted by Θ and
∆, respectively.

To compute the probability P (y) of a configuration
y = (y1, . . . , ys) ∈ ΩY w.r.t. Y = {Y1, . . . , Ys} ⊆ X,
which is the basic computational task to answer ar-
bitrary probabilistic queries (see Equation 3 in Sec-
tion 2), ϕ is transformed into ϕy = (ϕ|y)−∆ by first
conditioning ϕ on y and then eliminating (or forget-
ting) from ϕ|y all ∆-variables. The remaining Θ-
variables in ϕy are all of the form θx|π, i.e. each of
them is linked to a CPT entry p(x|π).

To ensure that the above-mentioned computational
steps are always efficient, ϕ must be a so-called d-
DNNF [25, 46].1 A negation normal form (NNF) is
a rooted, directed acyclic graph, whose leaves are la-
beled with the literals of a propositional language.2

All other nodes denote either a logical AND or a logi-
cal OR. d-DNNFs are NNFs satisfying two important
properties called determinism (d) and decomposability
(D).3 Fig. 2 depicts the d-DNNF ϕh1 for the Bayesian

1The suggestion of using d-DNNFs as a target compilation
language for Bayesian networks goes back to [23]. The mathe-
matical explanation in [45] backups this choice.

2Note that NNFs are propositional directed acyclic graphs
(PDAG), for which the simple-negation property holds [46].

3NNFs, in which some propositional variables are implicitly
known to be exclusive and exhaustive, should be regarded as
corresponding multi-state directed acyclic graphs (MDAG), a
generalization of PDAGs (and NNFs) to arbitrary categorical
variables [47]. In the context of MDAGs, some properties (incl.
determinism and decomposability) and some operations (incl.
conditioning and variable elimination) are based on more gen-

network in Fig. 1 and the query y = h1. Note that the
network node L has no impact on P (h1), which is why
ϕh1 is not affected by variables of the form θli|fj

(they
disappear while l1 and l2 are eliminated from ϕ|h1).
Similarly, ϕh1 does not contain variables of the form
θh2|di

(they disappear while ϕ is conditioned on h1).

θd2|f2b2θd2|f2b1θd2|f1b2θd2|f1b1θd1|f1b1 θd1|f1b2 θd1|f2b2θd1|f2b1

θh1|d1 θh1|d2

θb1 θb2

θf2θf1

ϕh1

0.15 0.85

0.01 0.99

0.70 0.01

0.010.99 0.97 0.030.90 0.10 0.700.30

+ +

+ +++

+

∗ ∗

∗∗∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0.2899

Figure 2: The d-DNNF obtained for the Bayesian net-
work in Fig. 1 and the query y = h1. AND- and OR-
nodes are denoted by M and O, respectively.

For a given d-DNNF ϕy, it is easy to compute P (y) =
P (ϕy) by simply propagating the conditional proba-
bilities p(x|π) from the leaves θx|π upwards to the root
of the DAG. At each OR-node, determinism allows the
incoming values to be added, and at each AND-node,
decomposability allows the incoming values to be mul-
tiplied, as indicated in Fig. 2 by the symbols + and
∗, respectively. The result we obtain at the root is
P (h1) = P (ϕh1) = 0.2899.

Computing probabilities is thus another efficient op-
eration supported by d-DNNFs. In other words, any
given compiled Bayesian network ϕ allows us to ef-
ficiently compute all possible simple queries P (y) =
P (ϕy). This in turn enables the efficient computa-
tion of all possible general queries P (h|e), namely in
terms of two simple queries P (h, e) = P (ϕh,e) and
P (e) = P (ϕe). Note that ϕh,e is often simpler than
ϕe. Moreover, it is very likely that ϕh,e and ϕe (or any
pair of related d-DNNFs) share a substantial num-
ber of common subgraphs.4 In Fig. 2, for example, it
turns out that ϕf1,h1 corresponds to the left subgraph

eral definitions, but their basic functionalities and properties
remain the same.

4This is a consequence of the linear running time of condi-
tioning, which restrains the number of newly created nodes.

of the root node of ϕh1 , whereas only three additional
nodes are required to construct ϕb1,h1 , two of them
pointing to respective subgraphs of ϕh1 . The shar-
ing of common subgraphs is important, as it allows
the bottom-up computation of several probabilities in
one single pass. We will heavily exploit this when it
comes to realize the selection of the steepest ascent
in the random-restart hill-climbing algorithm of the
following section.

For the compilation itself, there are two distinct
classes of methods. The methods of the first class
start from encoding the Bayesian network as a CNF
ψ, which is then converted into a d-DNNF ϕ =
CNF2dDNNF(ψ), e.g. by using Darwiche’s compiler
[22, 24]. This is the classical compilation approach in
the literature [12, 14, 42, 45].

The more recent methods of the second class, called
tabular compilation methods [13], avoid the detour
over a CNF. The idea is to run a simple variable elim-
ination procedure over all network variables. More
generally spoken, it is the application of the fusion
(or bucket elimination) algorithm to a particular type
of semiring valuations [34], in which the semiring con-
sists of all Boolean functions w.r.t. the variables Θ∪∆
(respectively of all classes of equivalent logical repre-
sentations). For appropriate input valuations, it is
easy to show that the output of the algorithm is in-
deed a d-DNNF. The fact that any algebra of semir-
ing valuations satisfies the general valuation algebra
axioms (see Theorem 2 in [34]) allows this type of
compilation to fully exploit the principle of local com-
putation. The worst-case complexity (for both time
and space) is thus identical to standard join tree al-
gorithms for Bayesian networks, i.e. exponential in
the network’s induced treewidth (= size of the largest
node in the join node). In fact, one can look at tabu-
lar compilation as a standard inward propagation in
a join tree, where the evolving d-DNNF keeps trace
of the effected computations [13, 21].

4 Hill-Climbing in Compiled Credal
Networks

Let’s assume now that a given credal network is com-
piled in the same way as a corresponding Bayesian
network, i.e. as if the attached credal sets were pre-
cise values. We will now show how to use the re-
sulting d-DNNF ϕ as a starting position for the inner
approximation of lower and upper posterior probabili-
ties P (h|e) and P (h|e), respectively. If the hypothesis
h and the evidence e are given, the first step is clear,
namely to transform ϕ into corresponding d-DNNFs
ϕh,e and ϕe (see previous section). Note that the
same ϕe can be used for several hypotheses as long as
e remains unchanged.

4.1 The Hill-Climbing Algorithm

To realize the approximation of P (h|e) and P (h|e) as
a hill-climbing algorithms, the next thing to do is to
define an appropriate search space. For this, we make
use of the fact that both P (h|e) and P (h|e) result
from corresponding extreme points of the joint credal
set K(X), i.e. from elements of the set Ext(K(X)).
This set in turn is determined by the extreme points
Ext(K(X|π)) of the local credal sets K(X|π) at each
node of the network (see Section 2).

To access individual elements of Ext(K(X)), we em-
ploy a strategy that is similar to the use of transparent
variables in [4, 6], but here we will not integrate them
as explicit nodes into the network structure. The idea
is thus to consider discrete variables TX|π, one for
each local credal set K(X|π), where the role of each
TX|π is to select an extreme point of the credal set
K(X|π). If kX|π = |Ext(K(X|π))| denotes the num-
ber of extreme points of the credal set K(X|π), then
ΩTX|π = {1, . . . , kX|π} is the set of possible values of
TX|π. Furthermore, if T denotes the set of all such
variables TX|π, then

ΩT =
∏

TX|π∈T

ΩTX|π (8)

denotes the set of all configurations with respect to T.
For a specific configuration t = stu ∈ ΩT, in which
t denotes the value of the transparent variable TX|π
in t, we can write pt(X|π) ∈ Ext(K(X|π)) to se-
lect the corresponding extreme point of the credal set
K(X|π). Similarly, we write pt(X) for the selected
joint probability mass function, Pt(h|e) for induced
posterior probabilities, and Pt(ϕh,e) and Pt(ϕe) for
probabilities of a compiled network. This formal set-
ting allows us to rephrase the definitions of lower and
upper posterior probabilities in Equation 6 and 7 by

P (h|e) = min
t∈ΩT

Pt(h|e) = min
t∈ΩT

Pt(ϕh,e)
Pt(ϕe)

, (9)

P (h|e) = max
t∈ΩT

Pt(h|e) = max
t∈ΩT

Pt(ϕh,e)
Pt(ϕe)

, (10)

respectively, i.e. ΩT is the discrete search space, on
which the following steepest-ascent, random-restart
hill-climbing procedure operates. The details of the
procedure are shown in Algorithm 1, which deserves
some additional explanations:

• Lines 2–3 describe the preparation phase. Line 4
sets the current global maximum Pmax to 0.

• The outer loop (lines 5–12) describes the
“random-restart” part of the algorithm. It starts
by selecting a random configuration t ∈ ΩT in
Line 8 and ends by updating the current value for

Algorithm 1: ApproxUpperProb(ϕ, h, e,T)

begin1

ϕh,e ← (ϕ|h, e)−∆;2

ϕe ← (ϕ|e)−∆;3

Pmax ← 0;4

for i← 1 to maxRuns do5

t← RandomConfiguration(T);6

repeat7

Pt ← Pt(ϕh,e)
Pt(ϕe)

;8

t← BestNeighbor(t,T, Pt, ϕh,e, ϕe);9

until t = nil;10

Pmax ← max{Pmax, Pt};11

return Pmax;12

end13

the global maximum. We assume the existence
of a global variable maxRuns, which determines
the number of passes.

• The actual hill-climbing takes place in the inner
loop (lines 7–10). The crucial step for this is
the selection of t’s best neighbor in the search
space ΘT by calling the function BestNeighbor
(Line 9). This is the “steepest-ascent” part of
the algorithm, which will later be discussed in
further details. If no neighbor improves the cur-
rent local maximum Pt = Pt(h|e), we expect
BestNeighbor to return nil.5

• The current value of the local maximum is up-
dated in Line 8. This involves the bottom-up
computation of the probabilities Pt(ϕh,e) and
Pt(ϕe) based on the current selection of extreme
points pt(X|π), from which the actual values
pt(θx|π) of all variables θx|π ∈ Θ are extracted.
Note that only those parts of ϕh,e and ϕe need to
be processed, which are affected by the transition
from the old to the new configuration. Of course,
common subgraphs of ϕh,e and ϕe are processed
in one single pass.

The corresponding minimization algorithm, i.e. the
approximation of the lower posterior probability
P (h|e), is almost identical, except for the initializa-
tion of the global maximum (Line 4), the selection of
the best neighbor (Line 9), and the updating of the
global maximum (Line 11). In the rest of this paper,
we will therefore restrict our discussion to the maxi-
mization problem.

5To avoid getting stuck on a plateau (flat part of the search
space), the algorithm should allow so-called sideway moves to
states with equal values. This may cause infinite loops, but they
can be avoided by keeping track of previously visited plateau
states. For simplicity, we do not explicitly take care of these
details in the proposed algorithm.

4.2 Selecting the Best Neighbor Efficiently

Let us now take a closer look at the problem of select-
ing the best neighbor of the actual configuration t.
For this, suppose that t ∈ ΩTX|π is the current value
of a transparent variable TX|π ∈ T in the actual con-
figuration t = stu. Every configuration t′ = st′u with
t′ ∈ ΩTX|π and t′ 6= t is then a possible neighbor of t
in ΩT. Selecting the best neighbor, i.e. the neighbor
with the most significant improvement with respect to
the actual local maximum Pt = Pt(h|e), means thus
to compute Pt′ = Pt′(h|e) for all such configurations
t′ and all transparent variables TX|π ∈ T. The follow-
ing algorithm shows a näıve solution for this simple
idea.

Algorithm 2: BestNeighbor(t,T,Pt,ϕh,e,ϕe)

begin1

tmax ← t;2

foreach TX|π ∈ T do3

t← value of TX|π in t;4

foreach t′ ∈ ΩTX|π\{t} do5

t′ ← replace t by t′ in t;6

Pt′ ← Pt′ (ϕh,e)
Pt′ (ϕe)

;7

if Pt′ > Pt then8

tmax ← t′;9

Pt ← Pt′ ;10

if t = tmax then return nil;11

else return tmax;12

end13

The problem with this näıve solution is the repeti-
tive probability calculation in the inner loop (Line 7).
This can be avoided by pre-compiling ϕh,e and ϕe ac-
cording to the following Shannon decomposition, in
which ϕy denotes a general instantiation of ϕ to a
vector y and X ∈ X the network variable affected by
the current transparent variable TX|π:

Pt′(ϕy) =
∑

x∈ΩX

Pt′(θx|π)Pt′(ϕy|θx|π)

=
∑

x∈ΩX

pt′(x|π)Pt(ϕy|θx|π). (11)

Note that in the second line of Equation 11, it is no
longer necessary to explicitly generate the neighbor-
ing configurations t′. In other words, if we first derive
from ϕh,e and ϕe all possible instantiations ϕh,e|θx|π
and ϕe|θx|π, respectively, we can use Equation 11 to
directly obtain the probabilities Pt′(h|e) of all neigh-
boring configurations t′, i.e. without actually gener-
ating them. In Algorithm 2, this can be realized by
skipping Line 6 and by replacing the right hand side
of Line 7 by corresponding versions of Equation 11.

4.3 Recapitulation and Complexity Analysis

To conclude this section, let’s first recapitulate the in-
dividual steps of the proposed method and then dis-
cuss their respective running time complexities.

To make the above steepest-ascent scheme work for a
given hypothesis h and the evidence e, we first need
to transform the compiled network ϕ into ϕh,e and ϕe

and then into ϕh,e|θx|π and ϕe|θx|π for all θx|π ∈ Θ.
The result is a collection

Φh|e ={ϕh,e, ϕe} ∪ {ϕh,e|θx|π : θx|π ∈ Θ}
∪ {ϕe|θx|π : θx|π ∈ Θ} (12)

of d-DNNFs, which are likely to overlap heavily. This
is illustrated in Fig. 3 in the form of a d-DNNF with
multiple roots.

. . .

. . .

θx|π

. . .

ϕh,e ϕe

ϕe|θx|πϕh,e|θx|π

Multi-Rooted d-DNNF

. . .

bo
tt

om
-u

p
pr

ob
ab

ili
ty

co
m

pu
ta

ti
on

Θ

Φh|e

Figure 3: Probability computations in a multi-rooted
d-DNNF with overlapping subgraphs.

To always keep the involved probabilities at each root
up-to-date during the hill-climbing, we need to do
the bottom-up probability computation only once at
each hill-climbing step (i.e. at Line 8 of Algorithm 1),
namely for the entire multi-rooted d-DNNF. The deci-
sion about the steepest ascent with respect to the cur-
rent configuration t follows then from applying Equa-
tion 11 to all values t′ that are incompatible with t.

As discussed earlier, the worst-case running time and
space complexity of the compilation phase is O(2d),
where d denotes the network’s induced treewidth for
the given variable ordering. This is equivalent to
the complexity of standard join tree algorithms for
Bayesian networks. In other words, if s = |ϕ| denotes
the size (= number of edges) of the d-DNNF ϕ, then s
reflects roughly the number of basic arithmetic opera-
tions (additions and multiplications) to be performed
in the inward phase of a corresponding join tree propa-
gation algorithm. Note that in the presence of strong
local regularities in the form of context-specific in-
dependence, (pure or noisy) logical relationships, or

scarce CPTs, it is not untypical for the size s and
therefore for the problem-specific complexity of the
compilation phase to be much more favorable than
O(2d).

The second preparatory step for the actual hill-
climbing algorithm is the element-wise computation
of the set Φh|e. For a given d-DNNF ϕ of size s, com-
puting one such element requires O(s) steps, which is
a consequence of the fact that both conditioning and
the particular type of variable elimination run in O(s)
time for d-DNNFs [25, 46]. Thus the total running
time of the second step is O(s·|Φh|e|) and therewith
O(s·|Θ|), where |Θ| itself is proportional to both the
number of network variables n = |X| and the corre-
sponding maximal cardinality c = max{|ΩX | : X ∈
X}. This means that the worst-case running time of
the entire preparatory phase is O(c·n·2d). This shows
that the preparatory phase only depends on the net-
work parameters c, d, and n, but not on the concrete
local credal sets.

To analyze the running time of the actual hill-climbing
algorithm, let S denote the total size of the multi-
rooted d-DNNF on which the algorithm operates.
Note that probability computations are supported by
d-DNNFs in linear time, i.e. if K denotes the total
number of extreme points over all locally specified
credal sets (which correlates with the number of basic
steps in the selection of the steepest ascent), then each
individual hill-climbing step runs in O(S+K) time.
Since S is likely to be much larger than K, we can as-
sume that the running time of the entire hill-climbing
procedure is simply O(maxRuns·S). Due to the over-
lapping areas in the multi-rooted d-DNNF, S itself is
often of the same order of magnitude as s.

5 Discussion and Conclusion

The method presented in this paper is a new tech-
nique to approximate inference in credal networks.
The core of the approach is the idea of compiling the
network into an appropriate logical form ϕ, which al-
lows us to efficiently accomplish all necessary compu-
tational steps to answer probabilistic queries. Compi-
lation techniques are increasingly applied to Bayesian
networks, but the proposal to apply them to credal
networks and to combine them with local search tech-
niques is original.

With respect to existing approximation techniques for
credal networks, let’s point out some of the most im-
portant strengths of our approach.

• Simplicity. To make our approach work, only
few simple procedures need to be implemented.
The most important procedure is the compilation
itself. For this, e.g. by using Nenok [39, 40],

a generic framework for local computations in
(semiring) valuation algebras, only few lines of
code are necessary to handle the construction of
the d-DNNF ϕ. Further procedures to imple-
ment are the operation of conditioning ϕ|y and
the variable elimination ϕ−∆. Both of them can
be realized by simple recursions. The same holds
for computing (and updating) the involved prob-
abilities in the multi-rooted d-DNNF Φh|e, which
turns out to be a classical postorder (bottom-up)
traversal of a directed acyclic graph.

• Flexibility. The compiled logical form can be seen
as a general recipe with precise instructions for
the computation of all sorts of probabilities w.r.t.
a given network. This is a very flexible and pow-
erful starting position, which allows us to do all
sorts of different things very easily, e.g. the effi-
cient selection of the steepest ascent. The same
structure could thus be used to solve other prob-
lems such as MAP or MPE.

• Efficiency. For a given multi-rooted d-DNNF,
the updating of the probabilities during the hill-
climbing process and the selection of the steepest
ascent can be realized without any redundancy.
The avoidance of redundancy can be enforced by
exploiting local regularities already at the logical
level. In fact, this is one of the key arguments
for applying compilation techniques to Bayesian
networks [12].

A couple of key questions have not yet been addressed
in this paper. As corresponding implementations and
testbeds are currently under development, we are not
yet ready to say much about the empirical perfor-
mance of the proposed method compared to exist-
ing methods. Other open questions concern the im-
plementation of more sophisticated local search tech-
niques such as stochastic hill-climbing, simulated an-
nealing, or genetic algorithms [41]. These problems
will be attacked in our subsequent work.

Acknowledgements

This research supported by the Swiss National Sci-
ence Foundation, Project No. PP002-102652/1, and
The Leverhulme Trust. Thanks to Michael Wachter
for helpful discussions at the origin of this paper.

References

[1] A. Antonucci and M. Zaffalon. Locally spec-
ified credal networks. In PGM’06, 3rd Euro-
pean Workshop on Probabilistic Graphical Mod-
els, pages 25–34, Prague, Czech Republic, 2006.

[2] A. Antonucci, M. Zaffalon, J. S. Ide, and F. G.
Cozman. Binarization algorithms for approxi-
mate updating in credal nets. In STAIRS’06,
3rd European Starting AI Researcher Sympo-
sium, pages 120–131, Riva del Garda, Italy, 2006.

[3] C. Boutilier, N. Friedman, M. Goldszmidt, and
D. Koller. Context-specific independence in
Bayesian networks. In UAI’96, 12th Conference
on Uncertainty in Artificial Inteligence, pages
115–123, Portland, USA, 1996.

[4] A. Cano, J. Cano, and S. Moral. Convex sets of
probabilities propagation by simulated annealing
on a tree of cliques. IPMU’94, 5th International
Conference on Information Processing and Man-
agement of Uncertainty in Knowledge-Based Sys-
tems, LNCS 945, pages 978–983, Paris, France,
1994. Springer.

[5] A. Cano, J. M. Fernández-Luna, and S. Moral.
Computing probability intervals with simulated
annealing and probability trees. Journal of Ap-
plied Non-Classical Logics, 12(2):151–171, 2002.

[6] A. Cano, M. Gómez, S. Moral, and J. Abellán.
Hill-climbing and branch-and-bound algorithms
for exact and approximate inference in credal
networks. International Journal of Approximate
Reasoning, 44(3):261–280, 2007.

[7] A. Cano and S. Moral. A genetic algorithm
to approximate convex sets of probabilities. In
IPMU’96, 6th international Conference on In-
formation Processing and Management of Uncer-
tainty in Knowledge-Based Systems, pages 859–
864, Granada, Spain, 1996.

[8] A. Cano and S. Moral. A review of prop-
agation algorithms for imprecise probabilities.
ISIPTA’99, 1st Internation Symposium on Im-
precise Probabilities and Their Applications,
pages 51–60, Ghent, Belgium, 1999.

[9] A. Cano and S. Moral. Using probability trees to
compute marginals with imprecise probabilities.
International Journal of Approximate Reasoning,
29(1):1–46, 2002.

[10] J. E. Cano, S. Moral, and J. F. Verdegay-López.
Propagation of convex sets of probabilities in di-
rected acyclic networks. Uncertainty in Intelli-
gent Systems, pages 15–26. North-Holland, 1993.

[11] E. Charniak. Bayesian networks without tears.
AI Magazine, 12(4):50–63, 1991.

[12] M. Chavira and A. Darwiche. Compiling
Bayesian networks with local structure. In IJ-
CAI’05, 19th International Joint Conference on
Artificial Intelligence, Edinburgh, U.K., 2005.

[13] M. Chavira and A. Darwiche. Compiling
Bayesian networks using variable elimination.
In IJCAI’07, 20th International Joint Confer-
ence on Artificial Intelligence, Hyderabad, India,
2007.

[14] M. Chavira, A. Darwiche, and M. Jaeger. Com-
piling relational Bayesian networks for exact in-
ference. International Journal of Approximate
Reasoning, 42(1–2):4–20, 2006.

[15] I. Couso, S. Moral, and P. Walley. A survey of
concepts of independence for imprecise probabil-
ities. Risk, Decision and Policy, 5(2):165–181,
2000.

[16] F. G. Cozman. Credal networks. Artificial Intel-
ligence, 120(2):199–233, 2000.

[17] F. G. Cozman. Graphical models for imprecise
probabilities. International Journal of Approxi-
mate Reasoning, 39(2–3):167–184, 2005.

[18] F. G. Cozman and C. P. de Campos. Local com-
putation in credal networks. In ECAI’04, 16th
European Conference on Artificial Intelligence,
Workshop 22 on “Local Computation for Logics
and Uncertainty”, pages 5–11, Valencia, Spain,
2004.

[19] J. C. F. da Rocha and F. G. Cozman. Infer-
ence in credal networks with branch-and-bound
algorithms. ISIPTA’03, 3rd International Sym-
posium on Imprecise Probabilities and Their Ap-
plications, pages 480–493, Lugano, Switzerland,
2003.

[20] J. C. F. da Rocha, F. G. Cozman, and C. P. de
Campos. Inference in polytrees with sets of prob-
abilities. UAI’03, 19th Conference on Uncer-
tainty in Artificial Intelligence, pages 217–224,
Acapulco, Mexico, 2003.

[21] A. Darwiche. A differential approach to inference
in Bayesian networks. UAI’00, 16th Conference
on Uncertainty in Artificial Intelligence, pages
123–132, Stanford, USA, 2000.

[22] A. Darwiche. A compiler for deterministic, de-
composable negation normal form. In AAAI’02,
18th National Conference on Artificial Intelli-
gence, pages 627–634, Edmonton, Canada, 2002.

[23] A. Darwiche. A logical approach to factoring
belief networks. KR’02, 8th International Con-
ference on Principles and Knowledge Represen-
tation and Reasoning, pages 409–420, Toulouse,
France, 2002.

[24] A. Darwiche. New advances in compiling CNF
to decomposable negational normal form. In
ECAI’04, 16th European Conference on Artifi-
cial Intelligence, Valencia, Spain, 2004.

[25] A. Darwiche and P. Marquis. A knowlege com-
pilation map. Journal of Artificial Intelligence
Research, 17:229–264, 2002.

[26] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Al-
gorithms and Applications. Springer, 2nd edition,
2000.

[27] C. P. de Campos and F. G. Cozman. The inferen-
tial complexity of Bayesian and credal networks.
IJCAI’05, 19th International Joint Conference
on Artificial Intelligence, pages 1313–1318, Ed-
inburgh, U.K., 2005.

[28] R. Dechter. Bucket elimination: a unifying
framework for reasoning. Artificial Intelligence,
113(1–2):41–85, 1999.

[29] R. G. Downey and M. R. Fellows. Parameterized
Complexity. Springer, 1999.

[30] E. Fagiuoli and M. Zaffalon. 2U: An exact inter-
val propagation algorithm for polytrees with bi-
nary variables. Artificial Intelligence, 106(1):77–
107, 1998.

[31] J. S. Ide and F. G. Cozman. IPE and L2U:
Approximate algorithms for credal networks.
In STAIRS’04, 2nd European Starting AI Re-
searcher Symposium, pages 118–127, Valencia,
Spain, 2004.

[32] J. S. Ide and F. G. Cozman. Approximate infer-
ence in credal networks by variational mean field
methods. ISIPTA’05, 4th International Sympo-
sium on Imprecise Probabilities and Their Appli-
cations, pages 203–212, Pittsburgh, USA, 2005.

[33] J. Kohlas and P. P. Shenoy. Computation in val-
uation algebras. Handbook of Defeasible Reason-
ing and Uncertainty Management Systems, vol-
ume 5: Algorithms for Uncertainty and Defea-
sible Reasoning, pages 5–39. Kluwer Academic
Publishers, Dordrecht, Netherlands, 2000.

[34] J. Kohlas and N. Wilson. Exact and approximate
local computation in semiring induced valuation
algebras. Technical Report 06–06, University of
Fribourg, Switzerland, 2006.

[35] H. E. Kyburg. Interval-valued probabilities. The
Imprecise Probabilities Project. IPP Home Page,
available at http://ippserv.rug.ac.be, 1998.

[36] I. Levi. The Enterprise of Knowledge. The MIT
Press, Cambridge, USA, 1980.

[37] J. Pearl. On probability intervals. International
Journal of Approximate Reasoning, 2(3):211–
216, 1988.

[38] J. Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, San Mateo, USA,
1988.

[39] M. Pouly. Implementation of a generic archi-
tecture for local computation. ECAI’04, 16th
European Conference on Artificial Intelligence,
Workshop 22 on “Local Computation for Logics
and Uncertainty”, pages 31–37, Valencia, Spain,
2004.

[40] M. Pouly. NENOK 1.1 user guide. Technical
Report 06–02, Department of Informatics, Uni-
versity of Fribourg, Switzerland, 2006.

[41] S. Russell and P. Norvig. Artificial Intelligence:
A Modern Approach. Prentice Hall, 2nd edition,
2003.

[42] T. Sang, P. Beame, and H. Kautz. Solving
Bayesian networks by weighted model counting.
In AAAI’05, 20th National Conference on Artifi-
cial Intelligence, volume 1, pages 475–482, Pitts-
burgh, USA, 2005.

[43] P. P. Shenoy and G. Shafer. Axioms for prob-
ability and belief-function propagation. UAI’88,
4th Conference on Uncertainty in Artificial Intel-
ligence, pages 169–198, Minneapolis, USA, 1988.

[44] B. Tessem. Interval probability propagation. In-
ternational Journal of Approximate Reasoning,
7:95–120, 1992.

[45] M. Wachter and R. Haenni. Logical compilation
of Bayesian networks. Technical Report iam-06-
006, University of Bern, Switzerland, 2006.

[46] M. Wachter and R. Haenni. Propositional DAGs:
a new graph-based language for representing
Boolean functions. KR’06, 10th International
Conference on Principles of Knowledge Repre-
sentation and Reasoning, pages 277–285, Lake
District, U.K., 2006. AAAI Press.

[47] M. Wachter and R. Haenni. Multi-state di-
rected acyclic graphs. CanAI’07, 20th Canadian
Conference on Artificial Intelligence, LNAI 4509,
pages 464–475, Montréal, Canada, 2007.

[48] K. Weichselberger. The theory of interval-
probability as a unifying concept for uncertainty.
International Journal of Approximate Reasoning,
24(2–3):149–170, 2000.

