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Abstract

This paper studies and bounds the effects of approxi-
mating loss functions and credal sets, under very weak
assumptions, on choice functions. In particular, the
credal set is assumed to be neither convex nor closed.
The main result is that the effects of approximation
can be bounded, although in general, approximation
of the credal set may not always be practically pos-
sible. In case of pairwise choice, I demonstrate how
the situation can be improved by showing that only
approximations of the extreme points of the closure
of the convex hull of the credal set need to be taken
into account, as expected.

Keywords. decision making, E-admissibility, maxi-
mality, numerical analysis, lower prevision, sensitivity
analysis

1 Introduction

Classical decision theory tells a decision maker to
choose that option which maximises his expected util-
ity. A generalisation of this principle is compelling
when the probabilities and utilities relevant to the
problem are not well known. Choice functions are
one such generalisation, and select a set of optimal
options: instead of pointing to a single solution based
on possibly wrong assumptions, choice functions pro-
vide a set of optimal options. The decision maker can
then investigate further if the set is too large, or not,
if for instance the optimal set is a singleton, or if a
single option from the set stands out from the rest by
other arguments.

However, in modelling decision problems, we often af-
ford ourselves the luxury of infinite spaces and infinite
sets, making those problems sometimes hard to solve
analytically. In such cases we must resort to com-
puters, and these cannot handle gambles on infinite
spaces, let alone arbitrary infinite sets of probabili-
ties. Hence, in that case we must approximate our

infinite sets by finite ones. By taking the finite sets
sufficiently large, hopefully the approximation reflects
the true result accurately. This paper confirms this
intuition when modelling choice functions induced by
arbitrary (not necessarily convex) sets of probabilities
and a single cardinal utility, extending similar results
known in classical decision theory [5, 10].

The paper is organised as follows. Section 2 intro-
duces notation, and briefly reviews the theory of co-
herent choice functions and their role in decision the-
ory. In Section 3 the building blocks for a theory of
approximation are introduced, along with some useful
results on what they imply for loss functions, sets of
probabilities, and expected utility. The main part of
the paper begins in Section 4, studying and bound-
ing the effects of approximation on coherent choice
functions. Section 5 improves the results of the pre-
vious section for pairwise choice. Section 6 concludes
the paper. Some essential but technical results on ap-
proximating the standard simplex in Rn are deferred
to an appendix.

2 Choice Functions

Let Ω denote an arbitrary set of states. Bounded
random quantities on Ω, i.e. bounded maps from Ω to
R, are also called gambles [17], and will be denoted
by f , g, . . . L(Ω) denotes the set of all gambles on
Ω. Finitely additive probability measures, or briefly
probability charges [2], are denoted by P , Q, . . . and
P(Ω) denotes the set of all probability charges on the
power set ℘(Ω) of Ω.

In a decision problem, we desire to choose an optimal
option d from a set D of options. Choosing d induces
an uncertain reward r from a set R of rewards, with
probability charge µd(·|w) over ℘(R), depending on
the outcome of the uncertain state w ∈ Ω. For each
w ∈ Ω, µd(·|w) is a lottery over R, and as a function
of w, µd(·|·) : w 7→ µd(·|w) is a horse lottery or act.



If we model our belief about states and rewards by a
probability charge P on ℘(Ω) and a state dependent
utility function U(·|w) on R, then utility theory [16,
1, 4] tells us to choose a decision d which maximises
the expected utility, or prevision:

E(d) =
∫

Ω

(∫
R

U(r|w) dµd(r|w)
)

dP (w)

=
∫

Ω

fd(w) dP (w)

where fd(w) =
∫

R
U(r|w) dµd(r|w) is the gamble asso-

ciated with decision d, and the integrals are Dunford
integrals [2]. For simplicity, in this paper, we assume
U(r|w) to be bounded, i.e.

sup
r,w

U(r|w)− inf
r,w

U(r|w) < +∞

Among other things, this ensures that relative approx-
imation can be defined, as in Section 3, without tech-
nical complications.

A decision which maximises expected utility is called a
Bayes decision for the decision problem (Ω, D, P, U).

However, if we are not sure about the probability of
all events and the utility of all rewards, a more reliable
design is to use a family (Pα, Uα)α∈ℵ of probability-
utility pairs (where ℵ is an index arbitrary set), and
to elicit from D those options which maximise ex-
pected utility with respect to at least one of the pairs
(Pα, Uα). First, for each α ∈ ℵ, let

Eα(d) =
∫

Ω

fα
d (w) dPα(w)

where fα
d (w) =

∫
R

Uα(r|w) dµd(r|w) is the gamble as-
sociated with decision d and model α ∈ ℵ. Then we
define:

Definition 1. A decision d ∈ D is called an optimal
decision for the decision problem (Ω, D, (Pα, Uα)α∈ℵ)
if d belongs to the set

opt(Ω, D, (Pα, Uα)α∈ℵ)
= {d ∈ D : (∃α ∈ ℵ)(∀e ∈ D)(Eα(d) ≥ Eα(e))}

=
{

d ∈ D : (∃α ∈ ℵ)
(

Eα(d) = sup
e∈D

Eα(e)
)}

As such, the operator opt selects a set of optimal de-
cisions, namely all decisions which are Bayes with re-
spect to (Ω, D, Pα, Uα) for at least one α ∈ ℵ. Such
an operator is called a choice function or optimality
operator [3, 15].

In case (Pα, Uα)α∈ℵ = M× U for some convex sets
M and U , optimality as defined above is also called
E-admissibility [9, Sec. 4.8].

There are many ways to define a choice function start-
ing from a set (Pα, Uα)α∈ℵ (see [9, 12, 17, 8, 15]). The
one in Definition 1 satisfies an interesting set of ax-
ioms [8, 13], and is subject of a representation theorem
in case utility is precise and state independent (i.e. if
Uα(r|w) depends on neither on α nor on w) and Ω is
finite (for infinite Ω the representation theorem is sub-
ject to additional constraints, which preclude merely
finitely additive probabilities over Ω) [13].

For the sake of simplicity, we shall only be concerned
about decision problems with precise and state in-
dependent utility functions, i.e. when (Pα, Uα)α∈ℵ =
M× {U} with U : R → R a bounded state indepen-
dent utility over R and

M = {Pα : α ∈ ℵ}

The set M is called a credal set as it represents our
belief about w ∈ Ω. We can identify M itself as index
set, and write

EP (d) =
∫

Ω

fd(w) dP (w)

with fd(w) =
∫

R
U(r) dµd(r|w), for any P ∈M.

Finally, defining the loss function L : D × Ω → R
as L(d, w) = −fd(w), the expected value EP (d) is
uniquely determined by P and L alone: we need not
be concerned explicitly with R, µd(r|w), and U(r).

3 Approximate Gambles,
Probabilities, and Previsions

Let A = {A1, . . . , An} denote a finite partition of Ω.
As we approximate Ω by the finite set A, we also need
to approximate decisions, gambles, and probability
charges on Ω.

Let ε ≥ 0. For a gamble f in L(Ω) and a gamble f̂ in
L(A), we shall write f ∼ε f̂ if

max
A∈A

sup
w∈A

∣∣∣f(w)− f̂(A)
∣∣∣ ≤ [sup f − inf f ]ε

Note that f ∼ε f̂ implies af +b ∼ε af̂ +b, for any real
numbers a and b, a > 0. Therefore, the relation ∼ε

is invariant with respect to positive linear transfor-
mations of utility: it only depends on our preferences
over lotteries, and not on our particular choice of util-
ity scale.

For a probability charge P in P(Ω), and a probability
charge P̂ in P(A), we shall write P ∼ε P̂ if∑

A∈A

∣∣∣P (A)− P̂ (A)
∣∣∣ ≤ ε



Note that this implies |P (A) − P̂ (A)| ≤ ε for any
A ∈ ℘(A). Also note the differences between the def-
initions of ∼ε for gambles and bounded charges.

For a loss function L on D ×Ω and a loss function L̂
on D ×A we write L ∼ε L̂ if for all d ∈ D

fd ∼ε f̂d

(with fd(w) = −L(d, w) and f̂d(A) = −L̂(d, A)).

For a subset M of P(Ω) and a subset M̂ of P(A), we
write M ∼ε M̂ if for every P in M there is a P̂ in
M̂ such that P ∼ε P̂ , and for every P̂ in M̂ there is
a P in M such that P ∼ε P̂ .

A few useful results about approximations are stated
in the next lemmas.

Lemma 2. Assume that D is finite. Then, for every
loss function L on D × Ω and every ε > 0, there is a
finite partition A of Ω and a loss function L̂ on D×A
such that L ∼ε L̂ and |A| ≤ (1 + 1/ε)|D|.

Proof. Consider any d in D, and let Rd = sup fd −
inf fd. Because fd is bounded, we can embed the
range of fd in k intervals I1, . . . , Ik of length Rdε,
say

[inf fd, inf fd + Rdε), [inf fd + Rdε, inf fd + 2Rdε),
. . . , [inf fd + (k − 1)Rdε, inf fd + kRdε)

with k such that sup fd ∈ Ik. Therefore, inf fd + (k−
1)Rdε ≤ sup fd < inf fd + kRdε and hence k − 1 ≤
1/ε < k. Observe that k is independent of d ∈ D.

The sets A1, . . . , Ak defined by

Aj = f−1
d (Ij)

form a finite partition Ad = {Aj : Aj 6= ∅} of cardi-
nality |Ad| ≤ k ≤ 1 + 1/ε and the gamble f̂d ∈ L(Ad)
defined by

f̂d(Ai) = inf
w∈Ai

fd(w)

satisfies

sup
w∈Aj

∣∣∣fd(w)− f̂d(Aj)
∣∣∣

= sup
fd(w)∈Ij

∣∣∣∣fd(w)− inf
fd(w)∈Ij

fd(w)
∣∣∣∣

≤ sup Ij − inf Ij = Rdε

for all Aj ∈ Ad; hence fd ∼ε f̂d. Defining L̂(d, A) =
−f̂d(A) for all d ∈ D, we have L ∼ε L̂.

The finite collection of partitions {Ad : d ∈ D} has
a smallest common refinement A. Since each Ad has
no more than 1 + 1/ε elements, A has no more than

ε:
0.2 0.1 0.05 0.02 0.01

|D|: 2 1.6 2.1 2.6 3.4 4.0
4 3.1 4.2 5.3 6.8 8.0
8 6.2 8.3 10.6 13.7 16.0

16 12.5 16.7 21.2 27.3 32.1
32 24.9 33.3 42.3 54.6 64.1

Table 1: Upper bound on log10(|A|), i.e. the loga-
rithm of the cardinality of the finite partition A for
various values of precision ε > 0 and number of deci-
sions (see Lemma 2).

(1 + 1/ε)|D| elements. Indeed, two partitions of car-
dinalities k1 and k2 respectively have a smallest com-
mon refinement of cardinality no more than k1k2.By
induction, n partitions of cardinalities k1, . . . , kn have
a smallest common refinement of cardinality no more
than

∏n
j=1 kj and hence,

|A| ≤ (1 + 1/ε)|D|

Table 1 lists upper bounds on the size of the partition,
to ensure L ∼ε L̂, for various values of ε and |D|,
according to Lemma 2.

Let
(
a
b

)
be the binomial coefficient, defined for all real

numbers a ≥ b ≥ 0 by(
a

b

)
=

Γ(a + 1)
Γ(b + 1)Γ(a− b + 1)

with Γ the Gamma function.

Lemma 3. For every subset M of P(Ω), every δ > 0,
and every finite partition A of Ω, there is a finite
subset M̂ of P(A) such that M ∼δ M̂ and |M̂| ≤(|A|(1+1/δ)

|A|−1

)
.

Proof. Consider any P in M. Let n = |A| and let the
elements of A be A1, . . . , An. Consider the vector
x = (P (A1), . . . , P (An)) in ∆n. Let N be the smallest
natural number such that N ≥ n/δ.

By Lemma 13 there is a vector y in ∆n
N such that

|x− y|1 < n/N ≤ δ

Define P̂ in P(A) by

P̂ (Ai) = yi

for all i ∈ {1, . . . , n}—by finite additivity, P̂ is well
defined on ℘(A). By construction, P ∼δ P̂ because

n∑
i=1

∣∣∣P (Ai)− P̂ (Ai)
∣∣∣ = |x− y|1 < δ



δ:
0.2 0.1 0.05

|A|: 4 3.3 4.1 5.0
8 7.9 9.8 11.8

12 12.5 15.5 18.7
16 17.1 21.3 25.6
20 21.8 27.1 32.6
24 26.4 32.9 39.5
28 31.1 38.6 46.5
32 35.8 44.4 53.4

log10(|A|): 0.7 4.4 5.5 6.7
1.4 27.6 34.3 41.3
2.1 144.6 179.5 215.5
2.8 731.3 906.8 1088.2
3.5 3666.1 4544.7 5452.8
4.2 18341.5 22735.9 27277.5
4.9 91719.7 113693.0 136402.5

Table 2: Upper bound on log10(|M̂|), i.e. the loga-
rithm of the cardinality of the finite set of probability
charges M̂, for various values of precision δ > 0 and
cardinality of the partition |A| (see Lemma 3).

Approximating each P in M in this manner, the set

M̂ = {P̂ : P ∈M}

is finite as each of its elements corresponds to an ele-
ment of the finite set ∆n

N , and therefore |M̂| ≤ |∆n
N |.

By Lemma 12,

|M̂| ≤
(

N + n− 1
n− 1

)
≤

(
n/δ + 1 + n− 1

n− 1

)
=

(
|A|(1 + 1/δ)
|A| − 1

)
The second inequality follows from the fact that

(
a
b

)
is strictly increasing in a, for fixed b (for integer a and
b this follows immediately from Pascal’s triangle; the
general case follows from the properties of the Gamma
function).

Table 2 lists upper bounds on the cardinality of M̂
on a logarithmic scale, for some values of |A| and δ.
The cardinality follows an exponential trend in |A|
and in 1/δ. The table shows that the influence of |A|
is much larger than the influence of δ: more precisely,
doubling |A| increases |M̂| by far more than halving
δ.

Next, we study the effect on the expectation if both
gambles and probabilities are approximated. Let us
use the notation EP (f) =

∫
Ω

f(w) dP (w). In the
lemma below, assume 0 < ε < 1/2.

Lemma 4. For every finite partition A of Ω, every
f ∈ L(Ω), f̂ ∈ L(A), P ∈ P(Ω), and P̂ ∈ P(A), the

following implications hold. If f ∼ε f̂ and P ∼δ P̂
then∣∣∣EP (f)− EP̂ (f̂)

∣∣∣ ≤ [sup f − inf f ](ε + δ(1 + 2ε))

and∣∣∣EP (f)− EP̂ (f̂)
∣∣∣ ≤ [sup f̂ − inf f̂ ]

(
ε

1− 2ε
+ δ

)

Proof. Let R = sup f − inf f , R̂ = sup f̂ − inf f̂ ,
and write infA f for infw∈A f(w) and supA f for
supw∈A f(w). Then∣∣∣EP (f)− EP̂ (f̂)

∣∣∣ =

∣∣∣∣∣ ∑
A∈A

(∫
A

f dP − f̂(A)P̂ (A)
)∣∣∣∣∣

and since P (A) infA f ≤
∫

A
f dP ≤ P (A) supA f ,

there is an rA ∈ [infA f, supA f ] such that P (A)rA =∫
A

f dP , and hence

=

∣∣∣∣∣ ∑
A∈A

(
rAP (A)− f̂(A)P̂ (A)

)∣∣∣∣∣
but, because |f(w) − f̂(A)| ≤ Rε for all
w ∈ A, and infA f ≤ rA ≤ supA f ,
it must also hold that |rA − f̂(A)| ≤ Rε,
and therefore

∣∣∣∑A∈A

(
rAP (A)− f̂(A)P (A)

)∣∣∣ ≤∑
A∈A

∣∣∣rA − f̂(A)
∣∣∣ P (A) ≤

∑
A∈A RεP (A) = Rε,

whence

≤

∣∣∣∣∣ ∑
A∈A

(
f̂(A)P (A)− f̂(A)P̂ (A)

)∣∣∣∣∣ + Rε

=

∣∣∣∣∣ ∑
A∈A

f̂(A)
(
P (A)− P̂ (A)

)∣∣∣∣∣ + Rε

and because
∑

A∈A(P (A)− P̂ (A)) = 0,

=

∣∣∣∣∣ ∑
A∈A

(f̂(A)− inf f̂)
(
P (A)− P̂ (A)

)∣∣∣∣∣ + Rε

≤
∑
A∈A

(f̂(A)− inf f̂)
∣∣∣P (A)− P̂ (A)

∣∣∣ + Rε

≤ (sup f̂ − inf f̂)
∑
A∈A

∣∣∣P (A)− P̂ (A)
∣∣∣ + Rε

≤ R̂δ + Rε

and since R(1 + 2ε) ≥ R̂ ≥ R(1− 2ε)

≤

{
R(1 + 2ε)δ + Rε = R(ε + δ(1 + 2ε))
R̂δ + R̂ε/(1− 2ε) = R̂ (ε/(1− 2ε) + δ)
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Figure 1: Upper bound on log10 |M̂| for various values
of ε, with ε + δ = 0.2 and |D| = 2.

Let us now investigate what is the most optimal choice
for ε > 0 and δ > 0. The cardinality of M̂ is of largest
concern as it follows an exponential trend in the car-
dinality of the finite partition A and in the inverse of
the required precision δ > 0 (see Table 2). Therefore,
as a first step, let us see how we can minimise |M̂|,
assuming a fixed relative error ε + δ on the expecta-
tion (see Lemma 4)—omitting higher order terms in
ε and δ to simplify the analysis.

We wish to minimise the upper bound (neglecting
lower order terms) (

(1/(ε|D|δ)
1/ε|D|

)

on |M̂| along the ε–δ-curve γ(ε, δ) = ε + δ = γ∗. Fig-
ure 1 demonstrates a typical case: the ε–δ-ratio has
a large impact on the upper bound of |M̂|. In par-
ticular, the curve grows extremely large for small ε,
because a small ε corresponds to a large partition A,
and the cardinality of the partition has a huge impact
on the cardinality of M as shown in Table 2.

4 Approximate Choice

Let us now consider again the decision problem
(Ω, D,M, L) with state space Ω, decision space D,
credal set M, and loss function L, and reflect upon
how the results in the previous section could be of use
in finding the optimal decisions opt(Ω, D,M, L). Can
we still find the optimal decisions after approximating
the loss function L and the set of probabilities M?

As we admit a relative error on gambles and prob-
abilities, and therefore also on previsions, we should
admit a relative error on the choice function as well.

Let RD be defined by (recall that fd(w) = −L(d, w))

RD = sup
d∈D

[sup fd − inf fd]

Definition 5. Let ε ≥ 0. A decision d in D is
called an ε-optimal decision for the decision problem
(Ω, D,M, L) if it belongs to the set

optε(Ω, D,M, L) ={
d ∈ D : (∃P ∈M)

(
sup
e∈D

EP (e)− EP (d) ≤ εRD

)}

Note that

optε(Ω, D,M, aL + b) = optε(Ω, D,M, L)

for any real numbers a and b, a > 0. In other words,
optε(Ω, D,M, L) is invariant with respect to positive
linear transformations of utility: ε-optimality does not
depend on our choice of utility scale.

Clearly,

opt(Ω, D,M, L) ⊆ optε(Ω, D,M, L)

because

optε(Ω, D,M, L) ⊆ optδ(Ω, D,M, L)

whenever ε ≤ δ, and

opt0(Ω, D,M, L) = opt(Ω, D,M, L)

In approximating a decision problem (Ω, D,M, L), we
start with a finite partition A, consider a (possibly
finite) set M̂ such that M ∼δ M̂, and approximate
the loss L(d, w) by a loss L̂(d, A) such that L ∼ε L̂.

Theorem 6. Consider two decision problems
(Ω, D,M, L) and (A, D,M̂, L̂). If L ∼ε L̂ and M∼δ

M̂ then, for any γ ≥ 0,

optγ(Ω, D,M, L)

⊆ opt
γ

1−2ε +2( ε
1−2ε +δ)(A, D,M̂, L̂) (1)

and

optγ(A, D,M̂, L̂)

⊆ optγ(1+2ε)+2(ε+δ(1+2ε))(Ω, D,M, L) (2)

Proof. We prove Eq. (1). Let d ∈ optγ(Ω, D,M, L).
Then

sup
e∈D

EP (fe)− EP (fd) ≤ γRD (3)



for some P ∈ M. Let P̂ be such that P ∼δ P̂ . Be-
cause, by Lemma 4,∣∣∣∣sup

e∈D
EP̂ (f̂e)− sup

e′∈D
EP (fe′)

∣∣∣∣
≤ sup

e∈D

∣∣∣EP̂ (f̂e)− EP (fe)
∣∣∣

≤ sup
e∈D

[sup f̂e − inf f̂e](ε/(1− 2ε) + δ)

= (ε/(1− 2ε) + δ)R̂D (4)

it follows that

sup
e∈D

EP̂ (f̂e)− EP̂ (f̂d)

≤ sup
e∈D

EP (fe)− EP̂ (f̂d) + (ε/(1− 2ε) + δ)R̂D

and again by Lemma 4,

≤ sup
e∈D

EP (fe)− EP (fd) + 2(ε/(1− 2ε) + δ)R̂D

and by Eq. (3),

≤ γRD + 2(ε/(1− 2ε) + δ)R̂D

≤ [γ/(1− 2ε) + 2(ε/(1− 2ε) + δ)]R̂D

hence, d ∈ optγ/(1−2ε)+2(ε/(1−2ε)+δ)(A, D,M̂, L̂).

Next, we prove Eq. (2). Let d ∈ optγ(A, D,M̂, L̂).
Then

sup
e∈D

EP̂ (f̂e)− EP̂ (f̂d) ≤ γR̂D (5)

Because, by Lemma 4,∣∣∣∣sup
e∈D

EP̂ (f̂e)− sup
e′∈D

EP (fe′)
∣∣∣∣

≤ sup
e∈D

∣∣∣EP̂ (f̂e)− EP (fe)
∣∣∣

≤ sup
e∈D

[sup fe − inf fe](ε + δ(1 + 2ε))

= (ε + δ(1 + 2ε))RD (6)

we have that

sup
e∈D

EP (fe)− EP (f)

≤ sup
e∈D

EP̂ (f̂e)− EP (f) + (ε + δ(1 + 2ε))RD

and again by Lemma 4,

≤ sup
e∈D

EP̂ (f̂e)− EP̂ (f̂e) + 2(ε + δ(1 + 2ε))RD

and by Eq. (5)

≤ γR̂D + 2(ε + δ(1 + 2ε))RD

≤ [γ(1 + 2ε) + 2(ε + δ(1 + 2ε))]RD

so d ∈ optγ(1+2ε)+2(ε+δ(1+2ε))(Ω, D,M, L).

If we ignore higher order terms in γ, ε, and δ, then
the above theorem says that when moving from an
original decision problem to an approximate decision
problem, or the other way around, with relative error
ε in gambles and relative error δ in probabilities, the
relative error in optimality increases by 2(ε + δ). For
example, for small ε and δ the following holds, up to
a small error: if L ∼ε L̂ and M∼δ M̂, then

opt(Ω, D,M, L)

⊆ opt2(ε+δ)(A, D,M̂, L̂) ⊆
opt4(ε+δ)(Ω, D,M, L)

So, the approximate problem with relative error 2(ε+
δ) will contain all solutions to the original problem
with no relative error, and will, so to say, not con-
tain any solutions to the original problem with rel-
ative error over 4(ε + δ). Because of this property,
opt2(ε+δ)(A, D,M̂, L̂) seems a logical choice when
solving decision problems in practice.

5 Pairwise Choice

Table 2 reveals that the credal set is a serious com-
putational bottleneck. Therefore, it is worth to in-
vestigate how the size of M̂ can be reduced, without
compromising the accuracy δ > 0. One way to this
end is to restrict to pairwise comparisons, i.e. using
maximality [17, Sec. 3.7–3.9].

5.1 Maximality

Definition 7. A decision d ∈ D is called a maxi-
mal decision for the decision problem (Ω, D,M, L) if
d belongs to the set

max(Ω, D,M, L)
= {d ∈ D : (∀e ∈ D)(∃P ∈M) (EP (d) ≥ EP (e))}

Denote by co(M) the convex hull of M. Obvi-
ously max(Ω, D,M, L) = max(Ω, D, co(M), L), be-
cause for any λ ∈ [0, 1] and any two P and Q in M,
the inequalities EP (d) ≥ EP (e) and EQ(d) ≥ EQ(e)
imply the inequality

EλP+(1−λ)Q(d) ≥ EλP+(1−λ)Q(e)

This does not hold for optimality as defined in Defi-
nition 1: assuming Ω finite, for any two distinct sub-
sets M and M′ of P(Ω), we can always find a set
D and a loss function L such that opt(Ω, D,M, L) 6=
opt(Ω, D,M′, L) (see Kadane, Schervish, and Seiden-
feld [8, Thm. 1, p. 53]).

To understand why the above notion of optimality is
called maximality, consider the strict partial ordering



> on D defined by

(e > d) ⇐⇒ (∀P ∈M) (EP (e) > EP (d))

for any d and e in D, that is, e is strictly preferred to
d if e is strictly preferred to d with respect to every
P ∈M. Then,

max(Ω, D,M, L) = {d ∈ D : (∀e ∈ D)(e 6> d)}

so max(Ω, D,M, L) elects those decisions d which are
maximal with respect to >. Therefore, maximality
can be expressed through pairwise preferences only—
again in contrast to opt(Ω, D,M, L) as demonstrated
by Kadane, Schervish, and Seidenfeld [8, Sec. 4, p. 51].

However, because

opt(Ω, D,M, L) ⊆ max(Ω, D,M, L)

we may interpret max(Ω, D,M, L) as an approxima-
tion to opt(Ω, D,M, L), an approximation which dis-
cards all preferences but the pairwise ones.

Let us admit a relative error on the choice function
max as well. Recall, RD = supd∈D[sup fd − inf fd].

Definition 8. Let ε ≥ 0. A decision d in D is
called an ε-maximal decision for the decision problem
(Ω, D,M, L) if it belongs to the set

maxε(Ω, D,M, L) =
{d ∈ D : (∀e ∈ D)(∃P ∈M)

(EP (e)− EP (d) ≤ εRD)}

5.2 Approximating Extreme Points

It turns out that we can restrict our attention to the
extreme points of the closure of the convex hull of M,
with respect to the topology of pointwise convergence
on members of L(Ω). This topology is characterised
by the following notion of convergence: limn Pn = P
if

lim
n

EPn(f) = EP (f) for all f ∈ L(Ω)

Without further mentioning, I will assume this topol-
ogy on P(Ω).

There is a nice connection between the closure of M,
denoted by cl(M), and ε-maximality.

Lemma 9. Assume that RD > 0. Let ε ≥ 0. For any
decision problem (Ω, D,M, L), the following equality
holds:

maxε(Ω, D, cl(M), L) = lim
δ

>→0

maxε+δ(Ω, D,M, L)

Proof. Assume d ∈ maxε(Ω, D, cl(M), L). Consider
any e ∈ D. By assumption, there is a P ∈ cl(M)

such that EP (e)−EP (d) ≤ RDε. Hence, there is a se-
quence (Pn ∈M)n∈N such that limn EPn(f) = EP (f)
for all gambles f , and therefore also limn EPn(e) −
limn EPn(d) ≤ RDε. This implies that for every δ > 0,
there is an n ∈ N such that EPn(e) − EPn(f) ≤ (ε +
δ)RD. So, for every δ > 0, there is a P ∈M such that
EP (e) − EP (f) ≤ (ε + δ)RD. Whence, because this
holds for any e ∈ D, d ∈ maxε+δ(Ω, D,M, L) for all
δ > 0, and therefore, d ∈ lim

δ
>→0

maxε+δ(Ω, D,M, L).

Conversely, assume d ∈ lim
δ

>→0
maxε+δ(Ω, D,M, L).

Consider any e ∈ D. Then, for all δ > 0, there is
a Pδ ∈ M such that EPδ

(e) − EPδ
(f) ≤ (ε + δ)RD.

Hence, for all n ∈ N, there is a Pn ∈M such that

EPn(e)− EPn(d) ≤ 1/n + εRD (7)

For any m ∈ N, consider the following closed subset
of P(Ω):

Rm = cl({Pn : n ≥ m})
The collection {Rm : m ∈ N} satisfies the finite inter-
section property. By the Banach-Alaoglu-Bourbaki
theorem [11, §28.29(UF26)] P(Ω) is compact, and
hence

R = ∩m∈NRm

is non-empty as well [11, §17.2].

Take any R ∈ R. Since each Pn ∈ M, it follows
that each Rm ⊆ cl(M), and hence R ∈ cl(M). If
we can show that ER(e) − ER(d) ≤ εRD, then d ∈
maxε(Ω, D, cl(M), L) is established.

Indeed, because R ∈ Rm, there is a sequence (Pnk
)k∈N

in {Pn : n ≥ m}—so nk ≥ m, but nk is not necessarily
an increasing function of k—such that limk Pnk

(fe −
fd) = R(fe − fd). Hence, by Eq. (7), for each γ > 0,
there is a k ∈ N such that ER(e)−ER(d) ≤ Pnk

(e)−
Pnk

(d)+γ, and hence ER(e)−ER(d) ≤ 1/nk+εRD+γ.
Because this inequality holds for every m and every
γ > 0, and nk ≥ m, it follows that ER(e)− ER(d) ≤
εRD.

In particular, assuming RD > 0, if for any δ > ε > 0

maxε(Ω, D,M, L) = maxδ(Ω, D,M, L)

then

maxε(Ω, D,M, L) = maxε(Ω, D, cl(M), L)

As a special case, Lemma 9 implies an interesting con-
nection between maximality and ε-maximality:
Corollary 10. Assume that RD > 0. For any de-
cision problem (Ω, D,M, L), the following equality
holds:

max(Ω, D, cl(M), L) = lim
ε

>→0

maxε(Ω, D,M, L)



In the following theorem, assume that 0 < ε < 1/2.

Theorem 11. Consider two decision problems
(Ω, D,M, L) and (A, D,M̂, L̂). Assume that RD >
0. If L ∼ε L̂ and ext(cl(co(M))) ∼δ M̂ then, for any
γ ≥ 0,

maxγ(Ω, D,M, L)

⊆ max
γ

1−2ε +2( ε
1−2ε +δ)(A, D,M̂, L̂) (8)

and

maxγ(A, D,M̂, L̂)

⊆ lim
η

>→0

maxη+γ(1+2ε)+2(ε+δ(1+2ε))(Ω, D,M, L) (9)

Proof. First, note that

maxγ(Ω, D,M, L)
= maxγ(Ω, D, co(M), L)
⊆ maxγ(Ω, D, cl(co(M)), L)
= maxγ(Ω, D, ext(cl(co(M))), L)

because, by convexity of cl(co(M)) [11, §26.23] and
the Krein-Milman theorem [6, p. 74], the convex hull
of ext(cl(co(M))) is cl(co(M)). Now apply the same
argument as in the proof of Theorem 6 to recover
Eq. (8).

To establish Eq. (9), observe that M′ ∼δ M̂′ implies
co(M′) ∼δ co(M̂′) because if P ∼δ P̂ and Q ∼δ Q̂
then, for any λ ∈ [0, 1],

λP + (1− λ)Q ∼δ λP̂ + (1− λ)Q̂

In particular, because ext(cl(co(M))) ∼δ M̂, and be-
cause the convex hull of ext(cl(co(M))) is cl(co(M))
(again see [11, §26.23] and [6, p. 74]), it follows that

cl(co(M)) ∼δ co(M̂)

So,

maxγ(A, D,M̂, L̂)

= maxγ(A, D, co(M̂), L̂)

and again from the same argument as in the proof of
Theorem 6

⊆ maxγ(1+2ε)+2(ε+δ(1+2ε))(Ω, D, cl(co(M)), L)

= lim
η

>→0

maxη+γ(1+2ε)+2(ε+δ(1+2ε))(Ω, D, co(M), L)

= lim
η

>→0

maxη+γ(1+2ε)+2(ε+δ(1+2ε))(Ω, D,M, L)

Again, if we ignore higher order terms in γ, ε, and
δ, then the above theorem says that when moving
from the original decision problem to the approximate
decision problem, with relative error ε in gambles and
relative error δ in probabilities, the relative error in
maximality increases by 2(ε + δ). Hence, for small
ε and δ the following holds, up to a small error: if
L ∼ε L̂ and ext(cl(co(M))) ∼δ M̂, then

max(Ω, D,M, L)

⊆ max2(ε+δ)(A, D,M̂, L̂) ⊆
max4(ε+δ)(Ω, D,M, L)

Again, max2(ε+δ)(A, D,M̂, L̂) seems a logical choice
when calculating maximal decisions in practice.

6 Conclusion and Remarks

With this paper, I hope to have consolidated at least
part of our every day intuition when approximating
decision problems involving sets of probabilities, for
instance when those problems have to be solved by
computer.

One result is quite depressing: Lemma 2 and Lemma 3
seem to tell us that except in the simplest cases, any
approximation will need too many resources to be of
any practical value, as demonstrated by Table 1 and
Table 2.

Fortunately, not all is lost. If we resort to pairwise
comparison, we may restrict ourselves to the extreme
points of the closure of the convex hull of the credal
set, which can be much smaller than the original
credal set. Closing the credal set only has an arbitrary
small effect on maximality, and in part for this rea-
son, it turns out that approximating extreme points
suffices when restricting to pairwise preference.

I wish to emphasise that the bounds on the cardinal-
ities of the approximating partition and the approxi-
mating credal set are only upper bounds under very
weak assumptions. These bounds are only attained in
extreme situations. In many cases the credal set and
the loss function have additional structure which may
allow for much lower upper bounds.

In case the problem has sufficient structure, an al-
ternative approach is to develop algorithms which do
not need to traverse the complete credal set (or an
approximation thereof) to compute the optimal solu-
tion. The imprecise Dirichlet model has already been
given considerable attention in this direction [7].

Finally, one could also simply sample elements from
the credal set, for instance through Monte-Carlo tech-
niques, and solve a classical decision problem for



each of these samples. If the sample s from M̂
is large enough, then—since

⋃
P∈s opt(A, D, P, L) =

opt(A, D, s, L)—hopefully

opt(A, D,M, L) =
⋃
P∈s

opt(A, D, P, L)

The question how large a sample we need to ensure
convergence is definitely worth further investigation.
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A Discretisation Of The Standard
Simplex In Rn

In this appendix a simple discretisation of ∆n, the
standard simplex in Rn, is studied—these results are
not new and are in fact related to well known notions
from combinatorics, in particular multisets [14]. The
standard simplex ∆n is defined as

∆n = {x ∈ Rn : x ≥ 0, |x|1 = 1}

where | · |1 denotes the 1-norm, i.e. |x|1 =
∑n

i=1 |xi|.

For any non-zero natural number N , let ∆n
N denote

the following finite subset of ∆n:

∆n
N = {m/N : m ∈ Nn, |m|1 = N}

(above, N is the set of natural numbers including 0).

Lemma 12. The cardinality of ∆n
N is

(
N+n−1

N

)
.

Proof. There is an obvious one-to-one and onto corre-
spondence between ∆n

N and all multisets of cardinal-
ity N with elements taken from {1, . . . , n}—for any
m/N ∈ ∆n

N , interpret mi as the multiplicity of i. The
number of all such multisets is precisely

(
N+n−1

N

)
(see

Stanley [14]).

Lemma 13. For every x in ∆n there is a y in ∆n
N

such that
|x− y|1 < n/N

Proof. For each i ∈ {1, . . . , n}, let mi be the unique
natural number such that xi ∈ [mi/N, (mi + 1)/N),
or equivalently, let mi be the largest natural number
such that mi/N ≤ xi. Define M =

∑n
i=1 mi. Then,

M ≤ N < M + n since M/N = |m/N |1 ≤ |x|1 = 1
and (M + n)/N = |(m + 1)/N |1 > |x|1 = 1. Define

ei =

{
1 if i ∈ {1, . . . , N −M}
0 if i ∈ {N −M + 1, . . . , n}

and let y = (m + e)/N . Note that y ∈ ∆n
N because

|y|1 = |m + e|1/N = (M + (N −M))/N = 1. Finally,

|x−y|1 =
N−M∑
i=1

|xi−mi+1
N |+

n∑
i=N−M+1

|xi−mi

N | < n/N

as |xi − mi+1
N | ≤ 1/N and |xi − mi

N | < 1/N .
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