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Abstract

A bookmaker takes bets on a two-horse race, attempt-
ing to minimise expected loss over all possible out-
comes of the race. Profits are controlled by manipu-
lation of customers’ betting behaviour; in order to do
this, we need some information about the probability
distribution which describes how the customers will
bet. We examine what information initial customers’
betting behaviour provides about this probability dis-
tribution, and consider how to use this to estimate the
probability distribution for remaining customers.
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1 Introduction

A bookie takes bets on a contest for which there are
only two possible outcomes, which we will label as A
and B. The bookie wishes to maximise his minimum
expected profit purely by manipulation of customers’
betting practice. A gambler enters the bookie’s shop
seeking to place a wager on this contest. Let p denote
the gambler’s probability that outcome A will occur.
The bookie quotes odds of O; against outcome A and
of Oy against outcome B. This means that a winning
wager of one unit on outcome A produces a return of
01 + 1 while a winning wager of one unit on outcome
B produces a return of Oy + 1. Hence a wager on
outcome A will be attractive to the gambler if

p(O1+1)>1

or equivalently

D= 0.

01+1:

Similarly a wager on outcome B will be attractive to
the gambler if

1—-p>
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or equivalently
p<1—0s.

The quantities 6; and 65 are called the bookie’s quoted
probabilities for outcome A and B respectively. Hence
the strategy for an individual gambler is simple - he
places a wager on any outcome for which his proba-
bility exceeds that quoted by the bookie.

It should be noted that the “quoted probabilities”, 6,
and 0, described above, are not probabilities, in the
sense that their sum will generally be greater than 1.
In fact, they may more properly be described as upper
probabilities, as defined in [13].It can be shown that it
is never to the advantage of the bookie to have these
upper probabilities sum to less than 1, as in Lemma
2 of [14]. Thus, for the remainder of this paper, we
shall assume that 6; + 65 > 1.

We also assume that the quoted odds, O and O, are
positive. This follows naturally from the requirement
that a wager of 1 unit leads to a return of O; + 1 on
outcome A or Oz+1 on outcome B, and the customer
is unlikely to wager more than the expected return.
By the definitions of #; and 0, this means that #; and
02, in turn, are positive. These conditions on #; and
05 ensure the coherence of the upper probabilities in
this case.

We idealise the bookie’s shop by assuming that the
bookie sells two types of tickets - one which guar-
antees a return of one unit should outcome A occur
and costs 01, and one which guarantees a return of
one unit should outcome B occur and costs 5. This
avoids sure loss, as the customer’s only options are
to bet on A or B, individually; to bet on both would
ensure a loss for the customer, as he would be re-
quired to bet an amount 6; + 05, greater than his
(guaranteed) return of 1. We also assume that the
bookie knows, before opening the book, that N cus-
tomers will consider a wager on the contest and that
their probabilities pq,ps,...,pny of outcome A occur-
ring behave like a random sample from a probability



distribution. Finally, we assume that customers can
buy at most one of each type of ticket and that the
bookie is free to alter the quoted probabilities after
each customer leaves.

The bookie seeks to manipulate customers’ betting
behaviour as best suits himself; this depends, how-
ever, on knowing the probability distribution from
which the customers’ probabilities pi1,po,...,pn de-
rive. After first considering the optimal procedure
when the distribution is known, we will consider how
the bookie may estimate this probability distribu-
tion using information derived from customers’ bet-
ting practices.

2 Distribution Known

Assuming the distribution of customers’ probabilities
to be known, the optimal algorithm for the bookie to
follow is the “Dynamic Programming” Algorithm, as
described in Barry & Hartigan[2]. This iterative algo-
rithm depends on knowledge of the customers’ prob-
ability distribution, F', the number of customers left
to come, n, and the current “state of the book”, i.e.
the amount of the bookie’s profit on outcome A, de-
noted a, and on outcome B, denoted b, if the book
was closed at that instant, i.e. no more bets were
taken.

Assuming knowledge of these quantities, the algo-
rithm is then given as follows;

a+b
2

R, (a,b) = + P,(d)

where

Pn(d) - Pn—l(d)

+max{

[1-F(61)][61 — 5 + Poo1(d — 1) = Po1(d)] }
01,62

FF(1-62)[02 — X + Pyi(d+1) - Pn_ll(d)}

with Po(d) = =4 and d = a — b. Here, R,(a,b)
denotes the expected value of the bookie’s final min-
imum profit between both outcomes. The algorithm
gives the bookie a method for deriving optimal quoted
probabilities for the next customer, given the current
state of the book, n customers left to go and F' known.

The above equation for P, (d) describes how it de-
pends on the previous value, P,_1(d), then adds a
term, maximised over #; and 05, which describes the
profit accruing if the customer bets on A, with prob-
ability 1 — F'(0), and if the bet is on B - with prob-
ability F'(1 — 62); the only two possible bets.

3 Strategy for Distribution Unknown

Having determined a strategy for F' known, we must
consider how to estimate F' when it is unknown. We
subdivide the interval [0,1] into r subintervals of equal
width - the choice of the value of r will be discussed
in Section 4. We then estimate F' by means of a his-
togram, with r intervals. For each of these r intervals,
the height of the histogram will be determined by the
probability assigned to that interval, 7;. This proba-
bility will be determined by the betting behaviour of
the customers, as described hereafter. F'() may then
be determined by the formula
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3.1 Estimation of I

This involves the EM Algorithm; we have an estima-
tion, and a maximisation, step.

3.1.1 Estimation

Each customer’s betting pattern gives us information
about their value of p, as follows;

Bet on Horse A
Bet on Horse B
No Bet

6 <p<1
0<p<1—06
1792<p<01

We denote the lower limit of the range in which p
falls by a¥ for customer k and the upper limit by a%
such that a¥ < a§. We also denote the lower and
upper limit of each of the subintervals of [0,1], I;,
by [L;, R;], with R; = L;1;. We have an indicator
function, X, defined as follows;

1
o {

In this case, the log likelihood function is given by

N r
{ = ZZXjklogﬁj.

k=1 j=1

p € [L;, Rj]
otherwise

Given the customer’s behaviour, we have a range for
the customer’s probability - i.e. a¥ < p < ak. Let us
call this information Y.



We will seek to maximize the Expected value of the
log likelihood, given this information, i.e.

E(Y) = ZZE X1 Ye)log ;.
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3.1.2 Maximisation

Next, we seek to maximise the expected value of the
log likelihood function. The Maximum Likelihood Es-
timate for 7; is given by

N
- 2ok B(XGe[Ye)
7Tj = N .

Each of the subintervals of [0,1] was assigned an initial
probability, 7 1 For simplicity, this initial probability
was the same for each subinterval, assuming the Uni-
form distribution, so that, with r subintervals, the
initial values of 7r]1 are given by

T 1
1 1 .
c=1=7r; = —-,Vj.
Z 7TJ 7T] r J

This initial probability was then updated by observing
each customer’s behaviour.

As will be seen in this, and the next, subsection, we
will now divide our customers into three groups; the
very first will be used to initialise the information
matrix, the second group will be used for the pur-
pose of maximising the information we may obtain,

leaving us with the third and final group for maximis-
ing profit, once F' has been satisfactorily estimated.
One of the questions with which we will be concerned
is how many customers should be allocated to each

group.
3.2 Early Customers

For the first few customers, the odds are chosen so as
to maximise the information obtained.

We derive the information matrix, I, using the for-
mula
0%t
on; 07
where £ is the log likelihood, defined as before.

Jij:E[—

As described in the previous section, we decided to
divide the interval [0,1] into a number of subintervals,
each of which was assigned a probability, m;, which
was updated by observation of customers’ behaviour.

As before, we may express the log likelihood function
as

N r
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where ¢;; = {1 if i = 4,0 otherwise}. Thus, we have
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The entries are added for each successive customer.

Having calculated the information matrix, we use it
to choose the odds for each of the customers before F'



is determined. Firstly, both 6; and 6, are set at %, for
convenience of programming. The information matrix
is recalculated for each combination of 8, and 65, each
being incremented in steps of % Finally, that com-
bination of odds which maximises the determinant of
the information matrix is used for the next customer,
so long as it satisfies the condition 6; + 63 > 1. In
practice, this condition was satisfied by every optimal
combination of odds. This procedure is repeated for
each of the customers in turn.

The optimal number of customers used to estimate F’
is found by inspection. This procedure is described
later.

After each of these customers bets, our estimate of
F is updated using the EM Algorithm, as described
previously. Finally, we must initialise the information
matrix.

3.3 Initialisation
3.3.1 0Odds for the Initial Customers

In order to initialise the information matrix, the
theta-values for the first few customers are chosen ac-
cording to the following plan;

If we divide the interval [0,1] into r equally-spaced
subintervals, placing the theta-values on the di-
visions of these subintervals will give us precise
information about the distribution of probability
within these subintervals. The optimal value of
r is found by inspection, and is described subse-
quently.

We do not need to set either a theta-value equal to
1, which guarantees no bets, or equal to 0, which
guarantees a bet from any customer.

Bearing these points in mind, we set the theta-values
for the first customer as

r—1
r

01 =0, =

We then take each theta-value down by a value % in
turn for each of the next few customers.

3.3.2 No. of Customers in this Group

As customers bet on Horse A with probability 1 —
F(61), the value of 8; will provide us with infor-
mation about the probabilities of the subintervals
above 1. Thus, this value provides us with infor-
mation about the subintervals at the upper end
of the interval [0,1].

Similarly, customers bet on Horse B with probability
F(1—05). Thus, the value of 63 provides us with
information about the probabilities of the subin-
tervals below 1 — 65, and thus provides us with
information about the subintervals at the lower
end of the interval [0,1].

So the theta-values for the very first customer tell
us something about the probability in the first, and
last, subintervals. Each successive customer’s set of
theta-values tells us about an additional subinterval.
Finally, we only need information about (r —1) subin-
tervals, as we know that the probabilities sum to 1 in
total. Altogether, this tells us that we need r — 2 cus-
tomers in the first group, to initialise the information
matrix.

4

Choice of No. of Subintervals and No.
of Customers to Use in Estimation

Firstly, as discussed previously, we divide the interval
[0,1] into r subintervals, to each of which is assigned
a probability, so as to estimate F'.

We now need to determine

1. the optimal number of subintervals, and also

2. the optimal number of customers, as a percent-
age of the total (assumed known), whose odds
we should use in order to maximise the informa-
tion matrix, as described in the previous section.
This number is in addition to the » —2 customers
used in the beginning to initialise the information
matrix.

These were estimated simultaneously, by calculating
profits for the same Dynamic Programming profit
function for a variety of combinations of (1) num-
bers of subintervals and (2) numbers of customers
used in estimation of F', and choosing the combina-
tion which proved best overall. The state of the book
for a particular outcome denotes the bookie’s profit if
that outcome occurs. Let A,, denote the state of the
book for outcome A, and B,, the state of the book for
outcome B, when n of the N customers remain. In
the strategy which our bookie uses, we have

-~ +A,— B -~ A, — B
91<u) and 0, (u)
n n
which are chosen to maximise

min{ E[A¢|A, = a, B, = b, E[By|A, = a, B, = b]}.



This gives the function to be maximised as

mm{gfnﬂfﬁﬂﬂglﬂﬁﬂ+n%Fﬂ79ﬁ,

i1 = ()]~ (1~ 02)F(1~ 03)}

where d = a — b. This is the objective function which
was used in the simulation study, a summary of whose
results follows. It assumes that the quoted probabil-
ities remain constant for all n remaining customers,
and calculates the final expected profit if A occurs as
the income from those customers who bet an amount
02 on B, with probability F(1 — 0s), less the outgo-
ing return of 1 unit to those who bet an amount 6,
on A, with probability 1 — F(6;). A similar calcula-
tion determines the final expected profit if B occurs.
The algorithm involves the calculation of the mini-
mum of these two expected final profits, given the
current state of the book.

It will be noted that this is a different algorithm to
the optimal one discussed in Section 2; as discussed
in Barry & Hartigan[2], this algorithm provides an
easier method for calculation of the quoted probabili-
ties, without excessive penalty in terms of the bookie’s
profit.

The measure of which combination of (1) and (2)
proved best was provided by obtaining the mean
profit, over fifty replications in each case, for each in-
dividual combination. The difference between each of
these values and the maximum value over all combi-
nations was then obtained for each distribution. This
was repeated for each of N = 100,500 and 1500 cus-
tomers, and for each of five distributions; namely,

1. Uniform i.e. F(0) =0

2.
0 0<6< 4
F0) =1 2(0-1%) 1<0<3
1 2<o<1
3.
0 ogeg%
F3(0) =< 20— 3 %3931
1 2<0<1
4, ,
_ 0 0<6<3
Fqﬁ_{zw3 3<0<1
5.
20 ogagé
F5(0) = 3 §Sf<3
be2(0-3) Y<e<t

We found the maximum difference, for each combi-
nation of number of subintervals and percentage of
customers, over the five distributions. This repre-
sents the maximum loss per customer. Thus, we use
the combination which provides the smallest value of
maximum loss. The maximum loss per customer over
all distributions is shown in the following tables.

Maximum Difference over Five Distributions

% of Customers to Estimate I
Intervals 0 1 2
1 0.0711 0.0715 0.0714
2 0.0358 0.0357 0.0356
3 0.0229 0.0216 0.0259
4 0.0259 0.0181 0.0195
5 0.03296 0.03624 0.03621
6 0.03305 0.03005 0.0295
7 0.03139 0.03453 0.03369
8 0.03531  0.03939 0.03728
10 0.03357 0.03355 0.0361
N=100
% of Customers to Estimate I
Intervals 0 1 2
1 0.015 0.015 0.015
2 0.009 0.009 0.009
3 0.0049  0.0054 0.0054
4 0.0035 0.0034 0.0036
5 0.0044  0.0057 0.0066
6 0.0049  0.0047 0.0051
7 0.005 0.005 0.0048
8 0.004 0.004 0.004
10 0.004 0.004 0.004
N=500
% of Customers to Estimate F
Intervals 0 1 2
1 0.005  0.0049 0.0049
2 0.0031  0.0031 0.0031
3 0.0016  0.0018 0.0018
4 0.0015 0.0015 0.0015
5 0.0015 0.0019 0.0022
6 0.0019 0.0019 0.0019
7 0.0019 0.0012 0.0017
8 0.0015 0.0015 0.0015
10 0.0015 0.0014 0.0014
N=1500



From these tables, we may see that the optimal % of
customers for maximisation of the information matrix
in all cases is 1%; higher percentages are not shown
here, as they led to greater loss. We also see that the
optimal number of subintervals into which to divide
the interval [0,1] is 4 for N = 100 and 500, and 7
intervals for N = 1500. The optimal combination
is that which minimises the difference shown in the
above tables.

We may further see from these tables, however, that
the maximum difference over all distributions de-
creases, for each combination, as the total number
of customers increases- demonstrating that, for larger
numbers of customers, there is reduced loss in using
a non-optimal combination.

5 Summary and Conclusions

In summary, the method described in this paper pro-
vides us with a means of estimating the overall distri-
bution of customers’ probabilities, based solely on the
betting practices of relatively few initial customers,
which provide us with interval estimates of these prob-
abilities. This proves a highly useful tool when distri-
butions are unknown.

Further work on this topic might include the examina-
tion of whether it is possible to incorporate an element
of profit maximisation into the stage where F' is being
determined. Another obvious extension of the work
is to the case where there are more than two possi-
ble outcomes; however, each extra outcome leads to
multiple extra possibilities for the customer, who may
bet on any individual outcome, or possibly on a com-
bination of them. As well as leading to a much more
complicated model, this gives rise to the possibility of
incoherence, and to the incurrence of sure loss; care
needs to be taken in this scenario.
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