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Abstract

In this paper we consider some bounds for lower pre-
visions that are either coherent or centered convex.
As for coherent conditional previsions, we adopt a
structure-free version of Williams’ coherence, which
we compare with Williams’ original version and with
other coherence concepts. We then focus on bounds
concerning the classical product and Bayes’ rules.
After discussing some implications of product rule
bounds, we generalise a well-known lower bound,
which is a (weak) version for coherent lower proba-
bilities of Bayes’ theorem, to the case of (centered)
convex previsions. We obtain a family of bounds and
show that one of them is undominated in all cases.

Keywords. Conditional lower previsions, product
rule, Bayes’ theorem, Williams’ coherence, centered
convex previsions.

1 Introduction

Quite recently, P.M. Williams’ 1975 seminal paper
Notes on conditional previsions was published in a
slightly revised version [21], preceded by an introduc-
tory paper discussing basic aspects and historical mo-
tivations for his work [14]. This fact confirms that
Williams’ ideas on coherence still play a very impor-
tant role in the theory of conditional imprecise previ-
sions.

One of the aims of this paper is to show that Williams’
coherence, while being more general than other co-
herence concepts that have been developed, may be
quite simple to work with in several problems. Pre-
cisely, we shall use a variant of Williams’ original co-
herence which does not impose any structural con-
straint on the set of conditional (bounded) random
variables forming the domain of the lower prevision
P and which is a generalisation of Walley’s coher-
ence for unconditional (bounded) random variables
(or gambles) [16].

Paolo Vicig
University of Trieste
paolo.vicig@econ.units.it

After recalling some preliminary notions in Section
2, we discuss this variant in Section 3, comparing it
firstly with Williams’ original version and then with
other generalisations of Walley’s unconditional coher-
ence, either potential or proposed in [16]. When being
equivalent to the notion of coherence mainly adopted
by Walley in [16], as is the case in the sequel of the pa-
per, Williams’ coherence may be conveniently used to
prove certain results, which therefore hold in Walley’s
approach too.

We shall use Williams’ coherence to study some
bounds for conditional lower previsions. Actually we
prove that several results hold also for previsions that
are (centered) convex, i.e. satisfy a consistency no-
tion (introduced in [10]) which is more general than
Williams’ coherence.

We focus on generalisations of product rule and Bayes’
rule bounds together with other bounds which we
termed sign rules. A motivation for investigating all
these bounds is that they may give us some guid-
ance for extending coherent or convex lower previ-
sions. This is particularly relevant when conditioning,
given that many rules or standard procedures for in-
ferences or anyway for getting unconditional coherent
evaluations do not apply in a conditional framework
(for instance, convex combinations of coherent condi-
tional lower previsions are not necessarily coherent).

In Section 4 we discuss some inequalities (product
and sign rules), which are essentially known, explor-
ing some of the implications they have for extending P
under an epistemic irrelevance assumption. It appears
here that when the product rule may hold with equal-
ity, the lower prevision obtained from this equality is
not necessarily the natural extension as in the case of
events, but may also coincide with the opposite con-
cept of upper extension. In Section 5 we generalise the

A
well-known lower bound P(A|B) > %

to the case of conditional random variables and of
lower previsions that are Williams’ coherent or, more



generally, centered convex. We derive a family of
bounds, proving that one of them, given by equation
(11), is the best in all cases.

Section 6 contains some further comments and con-
clusions.

2 Preliminaries

In the sequel, D is an arbitrary (non-empty) set
of bounded random variables (also termed gambles
[16] or random quantities [21]), or more generally of
bounded conditional random variables.

In the conditional case, if X|B € D, X is a random
variable and B a non-impossible event. When B = 2,

we obtain the (unconditional) random variable X =
X|Q.

The supremum sup(X|B) of X|B may be computed
as sup,_p X (w) (sup,cp X(w) in the set-theoretic
interpretation of events), where all w belong to a large
enough partition (possibility space) IP. It will be also
denoted as supg X. Analogously, inf(X|B) = infp X.

We write B for both an event B and its indicator
function |B| (de Finetti’s convention), appearing from
the context which of the two meanings is intended.

A lower prevision P on D is a map P : D — R.
An upper prevision P may be defined through the
equality P(—X) = —P(X), which always lets us refer
to either lower or upper previsions only. A precise
prevision P is the special case P(X) = P(X) = P(X).

The consistency notions we shall consider for P are
those of coherence or (centered) convexity. More
specifically, when D is made of unconditional random
variables, P is said to be coherent when satisfying the
definition in [16], sec. 2.5.4 (a):

Definition 1 P : D — R is a coherent lower previ-
sion on D iff, for alln € N*,V Xo,X1,...,X, €D,
V S0, 81, .-,5n Teal and non-negative, defining G =

iy 8i(Xs — P(X5)) — s0(Xo — P(Xo)), supG > 0.

This definition has a well-known behavioural interpre-
tation: P(X) is an agent’s supremum buying price for
X, and G is the agent’s gain resulting from her/his
buying s;X;, for i = 1,...,n, and selling sgXg. We
shall use this terminology too, saying that the agent
bets on Xy, ..., X, with stakes sq, ..., s, respectively.

In a conditional environment, we adopt the follow-
ing generalisation of Definition 1 to define a coherent

P(-]):

Definition 2 P D — R is a coherent condi-
tional lower prevision on D iff, for all n € NT,
VXo|Bo,...,Xn|Bn € D, V so,81,...,5, real and

non-negative, defining B = \/!_B; and G =
> im1 8iBi(Xi — P(Xi|By)) — s0Bo(Xo — P(Xo|By)),
sup(G|B) > 0.

Here the gain is G|B, a conditional random variable
itself. Conditioning on B has the meaning of con-
sidering only those values for G when at least one of
By, ..., By, is true. It is easy to realise that we would
get an equivalent definition (adopted in [18]) by re-
placing G|B with G|S, where the support S is defined
as S=V{B;:s;#0,i=0,...,n}.

Throughout the paper, Definition 2 will be referred
to as Williams’ coherence, or W-coherence or simply
coherence, but as we will explain in Section 3, it is ac-
tually a structure-free version of the original Williams’
coherence.

A weaker notion than W-coherence is that of lower
prevision that avoids uniform loss [16, 18]. It may be
obtained from Definition 2 by ruling out the bet on
Xo|Bo and modifying B and G accordingly. In the
unconditional environment it is termed condition of
avoiding sure loss and is defined in [16], Sec. 2.4.4 a).

The consistency notion of centered convexity [10, 11] is
weaker than coherence, but sufficiently stronger than
the conditions of avoiding sure or uniform loss to al-
low for interesting properties and applications (for in-
stance, in risk measurement [10]). In fact, several of
the results in the next sections apply to centered con-
vex previsions too.

Formally, the definition of convex lower prevision is
obtained from Definition 1 and Definition 2 by intro-
ducing just the extra convezity constraint >, | s; =
so (> 0) and eventually by further imposing (this is
not restrictive) that sp = 1 [9, 10]. Again, we could
condition G on its support S rather than on B, getting
an equivalent definition of convex conditional lower
prevision. This is done in [10, 11]. Centered convex-
ity requires in addition that (0 € D and) P(0) =0 in
the unconditional case, and further that VX|B € D,
0|B € D and P(0|B) = 0 in the conditional case.

Centering is quite a natural requirement: mnon-
centered convex previsions have rather weak consis-
tency properties, but special instances of them may
be found in the risk literature (cf. [10]).

Proposition 1 If P : D — R is centered convex,
then necessarily [10]:

P1) inf X < P(X) <supX (internality);

P2)Y < X = PY) < PX), VX,)Y € D

(monotonicity);
P3) POX + (1 - \)Y) > AP(X) + (1 - NE(Y),
VX,Y € D, VA€ [0,1].



These properties obviously hold for coherent lower
previsions too, while P1) might fail for non-centered
convex previsions.

Let P be a lower prevision defined on an arbitrary set
D. Any consistency condition satisfied by P should
guarantee that there exists an extension of P on any
D’ D D which satisfies the same consistency condi-
tion. If such an extension is not unique, its vaguest or
least-committal one, if existing, has a special impor-
tance. This peculiar extension is the natural extension
E in the case of coherent or, when conditioning, W-
coherent previsions [14, 16, 21], the conver natural
extension E_ for centered convex (unconditional or
conditional) previsions [9, 10]. The natural or convex
natural extensions always exist for these consistency
notions, not necessarily with other ones, like Walley-
coherence in [16], Section 7.1.4 (b), or non-centered
convexity. Hence, the consistency notions we shall be
working with always allow for extensions of the same
kind on any superset: we shall often use this fact in
the proofs of the results, without always mentioning
explicitly that we are performing an extension.

When working with conditional random variables, like
G|B, we shall employ the equality

where f is any real function [3].

3 Two or Three Things on Williams’
Coherence

3.1 About Williams’ definition

Williams’ original definition ([21], Definition 1) dif-
fers formally from our definition of W-coherence. One
reason is that it refers to upper rather than lower
previsions, but this is unimportant, since using the
conjugacy relation P(—X) = —P(X) our condition
sup G|B > 0 corresponds exactly to his inequality in
(A*) of [21]. The true difference is that his notion is
not completely structure-free, as it asks that for every
X|B in D, P(X|B) is assigned for any X in a linear
space X'g. It follows for instance that Williams’ defin-
ition does not formally generalise Walley’s coherence
for unconditional previsions (our Definition 1), which
is structure-free: when B = Q for all X|B € D, the
set of all X is constrained to form a linear space Xg.
On the contrary, Definition 2 is in particular a gen-
eralisation of Walley’s unconditional coherence and
appears to be, in general, nimbler. For instance, the
bounds in Section 4 involve just a few random vari-
ables and no structure is actually needed for proving
them. The fundamental link between the two versions

of Williams’ coherence is ensured by the following ez-
tension theorem.

Proposition 2 If P : D — R is W-coherent on D
(according to Definition 2), it has a W-coherent ex-
tension on any D' D D.

Although we are not aware of any published proof for
this proposition, nevertheless it should be regarded
as essentially known. In fact, it can be proven by
adapting the proofs concerning the convex natural ex-
tension in [10], thus proving that there always exists
the natural extension of a W-coherent lower previ-
sion on any D’ D D. Alternatively, the scheme of
de Finetti’s extension theorem can be followed, with
suitable (but basically minor) modifications. After
de-Finetti’s path-breaking proof concerning precise
(unconditional) previsions in [6], this scheme was em-
ployed in several generalisations (see e.g. [1, 4]). Its
two-step proof shows in the first step that there exist
W-coherent extensions on D' = DU {X|B}, VX|B,
while the second step generalises the proof to any
D’ using Zorn’s lemma or equivalent results. A by-
product of the first step is that the set of admissi-
ble W-coherent extensions on X|B is proved to be
a closed interval. Its lower endpoint is the natural
extension E(X|B), while the upper endpoint is the
upper extension U(X|B) of P. We shall meet again
upper extensions in Section 4.

As an important implication of Proposition 2 in our
framework, when D in Definition 2 does not meet
Williams’ structure requirements in his definition it
is always possible to coherently extend P on a set
D’ such that these requirements hold, and there the
two notions of coherence coincide. It follows that our
W-coherent lower previsions have all the properties
established for Williams’ coherence in [21], including
the important envelope theorem, stating that P is co-
herent on D if and only if

P(X|B) = inf P(X|B),vX|B €D
S

where M is the set of the coherent precise pre-
visions P(:|-) dominating P(:|) on D (P(X|B) >
P(X|B),VX|B € D).

3.2 Alternative concepts of coherence

Another issue concerning Definition 2 of W-coherence
is: equivalent formulations of Definition 1 are known,
so why not rather generalise them in a conditional
environment? An answer is that Definition 2 seems
more appropriate for further generalisations. In fact,
an equivalent version of coherence in Definition 1 is
obtained by restricting the stakes sq, ..., s, to be in-
teger (this is Walley’s Definition 2.5.1 in [16]), and



this can be done in a conditional environment too.
However, considering integer combinations only is not
sufficient when the random numbers are unbounded,
even in the unconditional case, as shown in [12].

Another definition, less used ! but equivalent to Def-
inition 1, is:

Definition 3 P : D — R is a coherent lower previ-
sion on D iff, for alln € NT, V Xgo,X1,..., X, €
D, V s1,...,8, > 0, V N € R such that
Xo > Yo' .8Xi + Ao, it holds that P(Xo) >
Z?:l siP(Xi) + Ao

To the best of our knowledge, no generalisation of this
definition to a conditional environment is available in
the literature, nor does the problem of generalising it
to an equivalent version of W-coherence seem to have
a straightforward solution.

A further issue is that a number of different gener-
alisations of coherence (Definition 1 or equivalent) to
a conditional framework have been proposed in [16]:
how do they relate to W-coherence? We observe some
basic facts about it.

a) The generalisations in [16] are not structure-free:
the conditioning events have some special fea-
tures. When being comparable, W-coherence in
Definition 2 is equivalent to the following two of
them:

e the concept of coherence defined in Sec.
7.1.4 (b) (referred to as Walley-coherence
here), with the extra assumption that all
partitions B; in that definition are finite
(this equivalence is stated (without proof)
in [16]);

e the concept of separate coherence defined in
Sec. 6.2.2, without any other extra assump-
tion (this equivalence is proved in the Ap-
pendix).

b) In general, W-coherence may be weaker than
Walley-coherence (when at least one B; is infi-
nite). This fact may lead to the disadvantages
discussed in [16], but has the non-negligible ad-
vantages over Walley-coherence that the natural
extension always exists and that the envelope
theorem characterises W-coherence. A weaker
notion than Walley-coherence, weak coherence
defined in Sec. 7.1.4 (a), is sometimes stronger
and sometimes weaker than W-coherence. This

IDefinition 3 has a curios story: not mentioned explicitly
in Walley’s book [16], although following directly from results
established there, it appears in [2], but without being related
to coherence for imprecise previsions. It was then discussed
extensively in [7].

notion is anyway rather counterintuitive, and
Walley-coherence is in fact the major conditional
coherence condition in [16].

¢) At any rate, properties of W-coherence involving
only finitely many distinct conditioning events
hold for Walley-coherence too (a W-coherent as-
sessment or possibly one of its W-coherent exten-
sions, cf. Proposition 2, may be referred in this
case to a finite set of finite partitions B;). In par-
ticular, the bounds we investigate later on hold
in Walley’s framework too.

Last but not least, we note that the notion of con-
ditional random variable (and of conditional event)
is often left at an informal level in the literature, in-
cluding [16, 21]. A formal approach to these and other
descriptive tools of uncertainty is developed in [3, 4].

Although this issue is seemingly not particularly rel-
evant in many matters, a greater formalisation turns
out to be useful with other ones. For an example,
consider Lemma 6.2.4 in [16]: this lemma states that,
if BX = BY and other coherence conditions hold for
a lower prevision P, then P(X|B) = P(Y|B). But
using (1), BX|B = (B|B) - (X|B) = X|B, thus con-
dition BX = BY alone implies X|B = Y|B. Conse-
quently u(X|B) = u(Y|B) whatever the uncertainty
measure y is, not because of coherence (p could even
be incoherent), but merely because we are evaluating
the same thing.

4 Product and Sign Rules

The product rule is among the basic inferential rules
in Bayesian statistics. In its simplest version for prob-
abilities, it requires that P(A A B) = P(A) - P(B|A);
in a more general version involving a precise prevision
P, events A and B and a random variable X, we have
P(AX|B) = P(A|B) - P(X|A A B).

We investigate now some generalisations of this rule,
and related properties, for coherent lower previsions.

Proposition 3 Let P be coherent on D D
{AX|B, A|B, X|A A B}. Then, necessarily:

a) (product rule) if P(X|AA B) >0, then

P(AX|B) > P(A|B) - P(X|A A B) (2)

b) (product rule) if P(X|A A B) <0, then

P(AX|B) < P(A|B) - P(X|A A B) (3)

¢) P(AX|B) =0 iff P(A|B)- P(X|AAB) =0



d) (sign rules)
P(AX|B) > 0= P(X|AAB) >0
P(AX|B) < 0= P(X|AAB) < 0;

Proof. Put py = P(AX|B), p» = P(A|B), ps =
P(X|A A B), and consider a gain G in Definition 2
arising from betting on AX|B, A|B, X|AAB: G =
51B(AX —p1)+s2B(A—p2)+53AB(X —p3) = ((51+
$3)AX + (s2 — s3p3)A — s1p1 — s2p2)B. Now choose
$1, S2, 83 such that

S1 = —S3,82 = S3P3 (4)

and G specialises into

G = (p1 — p2p3)s3B. (5)

Proof of a). We have p3 > 0. Choose s3 > 0. Then
from (4) s; < 0, s2 > 0. Since only one of the stakes
S1, So2, S3 is negative, we have an admissible bet ac-
cording to Definition 2. To ensure sup G|B > 0 it is
necessary from (5) that py — paps > 0, which is (2).

Proof of b). Analogous to a), after choosing s3 < 0.

Proof of ¢). To prove the implication P(X|A A B) -
P(A|B) = 0 = P(AX|B) = 0, note that when
P(X[ANA B) - P(A|B) = paps = 0 the gain G in (5)
reduces to G = s3p1 B, and G|B = s3p;. To ensure
sup G|B > 0, whatever the sign of s3 may be, it is
necessary that p; = P(AX|B) = 0. The proof of the
converse implication is similar.

Proof of d). For the first implication, suppose
P(AX|B) > 0. Then P(X|A A B) can be neither
negative (since then b) would contradictorily imply
P(AX|B) < 0), nor zero (c¢) would imply P(AX|B) =
0). Hence P(X|A A B) > 0. The other implication is
proven similarly. ]

4.1 Comments

The sign rules are obtained here from the product
rule. A simpler version of the first rule holds for con-
vex previsions too, and may be derived from Lemma
1 (cf. Section 5.1). Sign rules introduce some rough
inferential constraints. For instance, let B = Q. Then
knowing or assuming that P(AX) > 0 implies neces-
sarily P(X|A) > 0 (no matter what sign P(X) has).

The product rule has interesting implications, involv-
ing the natural and upper extension. To outline this
point, let B =, and suppose that A is epistemically
irrelevant for X, so P(X|A) = P(X). If we have as-
sessed P(A) and P(X), but not P(AX), it is tempting
to extend P on AX putting P(AX) = P(A) - P(X)
(multiplicative rule). There are instances when this
is possible: if X is an event too, under an additional

assumption (logical independence of A and X); in
this case P(AX) is the natural extension E(AX) [13].
These properties do not necessarily hold if we fur-
ther introduce some constraints on P. For instance,
it was shown in [8] that the multiplicative rule holds
only in very special cases if we require P to be a
necessity measure. However, as long as only events
are involved, we can hope to simultaneously apply
P(AX) = P(A)- P(X) and obtain the natural exten-
sion E(AX) = P(AX). Proposition 3 informs us that
in the realm of random variables the situation is more
complex: even assuming that P(AX) = P(A) - P(X)
is a coherent extension of P on AX, there are in-
stances (cf. a)) when P(AX) = E(AX), but other
conditions (cf. b)) imply that P(AX) is just the op-
posite, i.e. the upper extension of P.2 This happens
in particular when sup X < 0 (hence P(X) < 0 by
P1) of Proposition 1), or also X < 0 if P(X) # 0.

Finally, note that some sign constraints arise as a
joint consequence of a), b), ¢), depending on the
sign of P(A|B): if P(A|B) > 0 then P(AX|B) and
P(X|A A B) must take the same sign (both positive,
both negative, or both null), while if P(A|B) = 0 then
P(AX|B) =0, but P(X|A A B) is unconstrained.

5 Bayes’ Rule Bounds for Centered
Convex Previsions

The following inequality, which holds if P(B) > 0 and
its terms are well-defined, is well-known in the theory
of coherent imprecise probabilities [15, 16, 17]:

P(A|B) > ——LAND)

~ P(AANB)+ P(AAB) (©)

Together with an analogous bound, eq. (6) generalises
Bayes’ theorem for precise probabilities (when P =
P = P it reduces to P(A|B) > P(AA B)/P(B). The
reverse inequality may be obtained from P(A|B) <
P(ANB)/(P(AAB) + P(AA B))). In fact, an im-
mediate, inferential way of interpreting (6) is to sup-
pose that an unconditional coherent P is assigned:
then (6) gives a lower bound for extending P on A|B,
hence also a lower bound for its natural extension
E(A|B). It is well-known [15] that when P is de-
fined on an algebra A and is 2-monotone there (i.e.
P(AVB)> P(A)+ P(B)— P(ANB),VA,B € A),
the bound in (6) is precisely equal to E(A|B), which
under these assumptions may be written in terms of
Choquet integrals. Inequality (6) was also studied in
various other papers, including [17], where it is also
compared with Dempster’s rule of conditioning, and
[19].

2Upper extensions received little attention in [16], while they
were investigated in [20].



Our main purpose in this section is to generalise eq.
(6) introducing a more general bound, holding for
random variables with corresponding lower previsions
that are centered convex. For this, we need a pre-
liminary Lemma, which has also other implications,
commented below.

Lemma 1 Let P : D — R.Whenever the lower pre-
visions below are defined,

a) if P is conver on D, then for A € R

P(B(X —\)) > 0= P(X|B) > X
P(X|B) > XA = P(B(X — X)) > 0;

b) if P avoids uniform loss on D, then for X € R,

P(B(A—X))>0= P(X|B) < A.

Proof. To prove a), write the gain G| = G for a
bet on B(X — \), X|B with stakes s; = sp (note that
s1 = Sp is the convexity condition in this case): G =
s1(B(X — \) = P(B(X - \))) - s B(X — P(X|B)) =
s1(B(P(X|B) —\) - P(B(X — \))).

To prove the first inequality, put s; = 1. To en-
sure supG > 0 (note that G varies only with B),
the following inequality must be false for at least one
value of B: B(P(X|B) — \) < P(B(X —)\)). If
P(B(X — X)) > 0, then necessarily P(X|B) — A > 0.

To prove the second inequality, put s; = —1. To
guarantee now that sup G > 0, the reversed inequality
B(P(X|B) — A) > P(B(X — X)) must be false. If
P(X|B) > A, it is necessary for this that P(B(X —
A)) > 0.

To prove b), consider the bet on B(A— X)), X|B with
gain G = B(\— X)— P(BO\— X))+ B(X — P(X]|B)),
and argue similarly to the preceding cases. ]

Corollary 1 Under the assumptions of Lemma 1, b),

P(B(X —)\)) <0=P(X|B) < A.

Proof. Follows from Lemma 1, b) and P(B(A—X))
—P(B(X = X)).

5.1 Comments

Only the first inequality in a) will be actually used to
generalise (6), but the three inequalities deserve some
comments. The inequalities in a) imply when A =0 a
simpler version of the first inequality in Proposition 3
d) (sign rules), but holding under the weaker assump-
tion that P is convex. As for the inequality in b), it
holds also for centered convex previsions, since these
previsions avoid uniform loss [10].

5.2 A Generalised Lower Bound

We obtain now a generalisation of the lower bound

(6)-

Proposition 4 Let P be an wunconditional cen-
tered convex lower prevision on D O {B,B(X —
sup(X|B)), B(X — inf(X|B))} and P(B) > 0. If
P(B(X — nf(X|B))) ~ P(B(X — sup(X|B))) # 0,
any (centered) convex extension of P on X|B is such
that, Vh < inf(X|B), Yk > sup(X|B),

_ kP(B(X—h))—hP(B(X—k))
P(X|B) > ¢(h,k) = MBEXMEBX ) (7)

Proof. We preliminarily observe that the denomina-
tor in (7) is positive. This follows from the assump-
tions and internality and monotonicity of P (Proposi-
tion 1, P1) and P2)), which imply: B(X —h) >0 =
P(B(X—~h)) > 0, B(X~k) <0 = P(B(X ~k)) <0,
and then 0 < P(B(X — inf(X|B))) — P(B(X —
sup(X|B))) < P(B(X — h)) — P(B(X — )).

To start now the proof, note that for any A € R,
B(X—=((1=Mh+Xk)) = (1=N)B(X —=h)+AB(X —k).
From this equality, we get for any A € [0,1] (use P3)
of Proposition 1) P(B(X —((1—-A)h+Xk))) = P((1—
MNB(X —h)+AB(X —k) > (1 -NP(B(X—-h))+
AP(B(X — k)) = P(B(X — h)) — A(P(B(X — h)) -

B(B(X - k))) Deﬁning X = E(B(XB_(}ﬁ)()_(é(th)(X_k)y

X € [0,1]. We can therefore replace A with A in the
above derivation, getting P(B(X — ((1—X)h+Ak)) >

P(B(X —h)) = A[P(B(X — h)) = P(B(X — k))| = 0.

If P(B(X — ((1 — X)h + Ak))) > 0, use Lemma 1, a)
to obtain P(X|B) > (1 — AN + Xk = ¢(h, k).

If P(B(X — ((1 —X)h+ Ak))) =0, then P(X|B) =
(1 = XN + Mk = é(h,k). We apply here Proposi-
tion 9 in [10], which generalises to convex lower pre-
visions a result known for coherent lower previsions
[16], ensuring that » = P(X|B) is the unique solution
of P(B(X —r)) =0, if P is convex and P(B) > 0. &

Notation. When unambiguous we write Sp =
sup(X|B), Ig = inf(X|B).

Remark 1 When P is coherent, the assumptions
i Proposition 4 ensuring that the denominators are
non-zero simplify as follows: it is sufficient to ask that

i) X|B is non-constant;

it) P(B) > 0.
In fact, i) and i) imply P(B(X — Ip)) — P(B(X —
Sp)) > 0. To see this, consider a bet on B, B(X —

Sp), B(X — Ip) with stakes Sp — Ig, 1, —1 respec-
tively. Then G = (S — Ig)(B — P(B)) + B(X —



Sp)—P(B(X —-Sp))—B(X —1Ig)+P(B(X —-1p)) =
P(B(X —Ip)) — P(B(X - Sg)) — (Sg — I)P(B) =
supG. ThussupG > 0 iff P(B(X —Ip)) — P(B(X —
Sgp)) > (S — Ip)P(B) > 0.

As a further remark, note that P(B) = 0 (P coher-
ent) implies P(B(X — Ig)) — P(B(X — Sg)) =0, by
Proposition 3 ¢).

The lower bound (7) is as a matter of fact a family
of lower bounds, indexed on h and k. The immediate
question is therefore: which h, k should be chosen?
It is not clear a priori that there should be a unique
couple (h,k) preferable in all cases, but the follow-
ing proposition solves the problem in favour of the
remarkable couple h = inf(X|B), k = sup(X|B).

Proposition 5 Under the assumptions of Proposi-
tion 4, $(Ip,Sp) > ¢(h.k), Vh < Ip, Yk > Sp.

Proof. The proof is made up of two steps. In the first
step we prove that for any fixed h < Ip, ¢(h, k) <
¢(h,Sp); in the second that ¢(h,Sg) < ¢(Ip, SB).

To shorten notation, we define f(r) = P(B(X —r)), so
that for instance f(h) = P(B(X — h)) and ¢(h, k) =
kf(h)—hf(k)

F)=Fk) -
First step. Fix h and define 6 = §(k) = kK — h. We
have § > Sp — Ip > 0 (the last inequality is implied
by the assumption P(B(X —1Ip))—P(B(X—Sg)) #0
in Proposition 4, which rules out the trivial case that
X|B is constant).

We write now ¢(h, k) as a function u(0) of §: u(d) =
(h+06)f(h)—hf(h+d)
F(h)=f(h+d)

, or also
f(h)
f(h) = f(h+0)

We now consider the function of ¢ in (8), 6/[f(h) —
f(h 4+ 0)], proving that:

u(8) = p(h,h+6) =h+6 8)

5 J.
01> 02 (>0) = sm=rasn < F=foey: (9

To prove (9), we first verify that f(r) is concave on R.
In fact, for A € [0, 1] and using also P3) of Proposition
1, f(/\’l“l + (1 — )\)TQ) = B(B(X —Ary — (1 — /\)7“2)) =
PAB(X —r1)+(1-A)B(X —r2)) = AP(B(X —r1))+
(L=NE(B(X —r2)) = Af(r1) + (1 = A) f(r2).

For a standard property of concave real functions,
F(5) = w is monotone non-increasing for
d € R, hence in particular for 6 € I = [Sp — Ip, +|.
Interval I is the domain of § in our case; here § > 0
and (cf. the beginning of the proof of Proposition 4)
f(h+8)— f(h) is negative, thus F(§) < 0,V € I. Re-
calling this, we easily get (9) from §; > dy = F(01) <
F(d2).

Using (9), and recalling that f(h) > 0, u(d) is max-
imised, for a given h, by minimising §, putting hence
0 = Sp — h. This is equivalent to choosing k = Sp in
o(h, k). Thus ¢(h, k) < ¢(h, Sg), Vk > Sp.

Second step. Define § = §(h) = h — Sp < 0 and write
¢(h, Sp) as a function v(d) of 4:

f(SB)
f(Se+96)— f(SB)

v(0) =¢d(Sp+6,5) =Sp—9¢

We prove now that
01 < 09 (< 0) = 0(51) < 'U((SQ). (10)

For this, we can follow a scheme similar to the proof of
the first step (alternatively, a longer proof essentially
exploiting the definition of convex prevision is possi-
ble). As before, the function F(d) = w
is monotone non-increasing, and negative for § €] —
00, Ig — Sp]. From this and recalling that f(Sg) <0,
(10) follows straightforwardly.

We conclude that ¢(h, k) < ¢(h,Sp) < ¢(Ip,SgB),
Vh < Ig, Yk > Sp, where the first inequality follows
from step 1, whilst the second is a consequence of step

2. ]

The most notable consequence of Proposition 5 is that
we get the following lower bound for P(X|B):

SpP(B(X—1Ip))—IgP(B(X—Sg))
P(X|B) > *Rpa sty (1)

When X is an event, X = A, (11) reduces to

P(AAB)
P(ANB) - P(B(A—1))

P(A|B) >

and then to (6), with simple manipulations (B(A —
1) = —BA).

Thus the lower bound in (11) generalises (6) to ran-
dom variables and to lower previsions that are cen-
tered convex (in particular, W-coherent).

An upper bound for P(X|B) can be derived from (11):

Corollary 2 In the assumptions of Proposition 4 and
whenever the relevant previsions are defined 3

5} IpP(B(Sp—X))—-SpP(B(Ig—X
P(X|B) < g e=, o © (12)

Proof. Write (11) for —X|B:

—I5P(B(Sp—X))+SsP(B(Ig—X
P(-X|B) > =0 e ey

3When X is an event A, (12) reduces to P(A|B) <
P(AAB)

P(AAB)+P(AAB)’

following eq. (6).

We already met this bound in the paragraph



Eq. (12) follows, reversing signs in the above inequal-
ity and since —P(—X|B) = P(X|B). |

An issue which remains to be investigated is under
what conditions the bound in (11) is sharp, i.e. it is
actually equal to the natural extension E(X|B) if P is
coherent, or to the convex natural extension E (X |B),
when P is centered convex. The following example
illustrates the case of coherence.

Example Given the partition IP = {e1,ea,e3,€4},
define X such that X(e1) =1, X(ea) = —1, X(e3) =
0, X(es) = 2. Given the precise probabilities P,
P», having the following values on IP: Pi(e;) = 0.2;
P1(€2) = 03, Pl(eg) = 0.2,‘ P1(64) = 03, Pz(el) =
0.5; Pa(e2) = 0.1; Py(es) = 0; Pa(eq) = 0.4, and call-
ing A(IP) the powerset of IP, each of Py, P» has a
unique coherent extension to a precise prevision on
U=AP)U{X}U{B(X —r) : r € R}, where
B is a given event in A(IP). A coherent lower pre-
vision P may be defined on any subset D of U as
P(Y) = min{P(Y), P2(Y)}, VY € D (lower enve-
lope theorem). We choose D = A(IP) U {B(X —
inf(X|B)), B(X — sup(X|B))}. Thus in particular
P(e1) = 0.2, P(e; Vea Vez) =0.6, etc. Note that the
restriction of P on A(IP) is a lower probability which
is not 2-monotone (for instance P(e1VegVey) = 0.7 <
P(e;Ves)+PlesVes)—Ples) =0.8).  We have 10
non-trivial different choices for the conditioning event
B in A(IP). It may be verified that the bound is sharp
in all of these but one.

a) For instance, let B = e; V ex V es. This is
one of the 9 choices for B giving a sharp bound
(11). In fact, Sp = 1, Ip = —1. Since

P(B(X—-r))=P(BX)—rP(B)=-01-0.7r
and Py(B(X —r)) = 04 — 0.6r, we obtain
P(B(X —r)) = min{—-0.1 — 0.7r,04 — 0.6r} =
—0.1 = 0.7r iff r > —5. Then the bound (11) is
¢(Ip,Sp) = ¢(—1,1) = —1 = E(X|B), because
Pi(X|B) = B3, = =4, Note that ¢(—1,1) is
not the only sharp bound in the ¢(h,k) family:
o(h, k) = —% for h € [=5,-1], k> 1.

b) Let now B = e V eq. This choice corresponds to
the unique non-exact bound (11). In fact, now
P(B(X —r)) = 08 —05r, B(B(X —r)) =
1.3-0.9r, P(B(X —7)) =1.3-0.97 iffr > 2 and
the bound is ¢(Ip,Sp) = ¢(1,2) = L. To see
that the bound cannot be reached, note that [15]
if it were sharp, there would be a precise prevision
P, in the set Mp(P) of precise previsions dom-
inating P on D, such that its extension on X|B

ensures that P(X|B) = P;ﬁ;g) = I;,((eell))f;i”‘)) =

11

5 » which means that

Ples) = S P(en) (13)

It is then easy to check that no such P may be
found in Mp(P): just verify that there is no
real solution for the system of linear inequalities
formed by (13), the dominance constraints P > P
on D, and the non-negativity and normalisation
constraints for P on IP.

¢) Let us introduce partition P = {wi,wa3,wa}
which is a coarsening of IP: wi = e, wa3 =
ea Ves, wy = eq. We do not modify the uncer-
tainty evaluations of b), defining Py, Py on IP’ as
the restrictions of the previously defined Py, P
respectively (thus Pi(w1) = 0.2, Pi(wa3) = 0.5,
Pl(W4) = 03, Pg(wl) = 05, Pg(a)g,g) = 0.1,
Py(wg) = 0.4) and P as their lower envelope
on D' = A(P") U {B(X — sup(X|B)),B(X —
inf(X|B))}, B € A(IP'). Here B = wy V wy,
and X(w1) = 1, X(wg) = 2, while X(wa3) may
take any value, it does not influence the following
computations. Note that now P is 2-monotone on
A(IP"), since IP' is a three-atom partition [15].
Obviously, the bound (11) is again X as in b),
since, when passing from b) to c), we essentially
only grouped together es and ez, which are irrel-
evant in the computation of ¢(1,2). However,
there is now a prevision P in Mp/(P) which
reaches the bound, i.e. such that P(X|B) = &
its values on IP’" are P(w1) = 0.5, P(ws,3) = 0.2,
P(ws) = 0.3.

6 Conclusions

In a first part of the paper (Section 3) we related
W-coherence with Williams’ original definition, and
also with other notions of coherence in a conditional
framework, especially Walley-coherence. Our main
purpose here was to show that W-coherence can be
profitably employed to obtain results which hold for
Walley-coherence too (Section 4). A more extended
comparison between these two coherence concepts is
beyond the aims of the present paper, but is an un-
doubtedly interesting question. It requires analysing
further issues, like the role of the conglomerative prop-
erty or the interpretation of Walley’s updating prin-
ciple.

In the sequel of the paper, we have discussed some
implications of product rule bounds and generalised
a Bayes’ theorem bound to either W-coherent or cen-
tered convex lower previsions. Although we did not
consider them here, other similar bounds or simple
generalisations may be found (for instance, for upper



previsions), with analogous properties. A less imme-
diate question is that of investigating further the re-
lationships of these bounds with important concepts
in the theory of imprecise previsions: epistemic irrele-
vance and natural and upper extension for (more gen-
eral) product rule bounds, 2-monotonicity and possi-
bly Choquet integration for the bound (11). Concern-
ing the latter issue, a generalisation to lower previ-
sions of 2-monotonicity with related results was re-
cently proposed in [5]. There remain anyway two
features in our approach which, while ensuring gen-
erality, make it difficult to apply pre-existing results
to sufficiently general situations, for instance in the
problem of establishing when the bound (11) is sharp.
One feature is that we are working in a structure-free
environment, while 2-monotonicity is customarily re-
ferred to algebras of events [15] or (linear) lattices of
random variables [5]. With respect to this feature,
our example is still rather peculiar: there is a parti-
tion IP there such that A(IP) C D, but this inclusion
is generally not required. A second issue is that we
consider also the centered convexity condition, and
relationships of 2-monotonicity (for previsions) with
convexity are still largely to be explored.

Appendix. W-coherence and separate
coherence

Let IP be an arbitrary (finite or not) partition of non-
impossible events. We recall the definition of separate
coherence in [16]:*

Definition 4 The conditional lower previsions
Pp(X|B), defined for any B € IP and X € H(B),
where H(B) is an arbitrary set of gambles containing
B, are separately coherent iff, for every B € IP,

i) Pp(B|B) =1

1) Vsg,...,sn, > 0, VXo,..., X,, € H(B), defining
G =YL, (Xi = P(Xi|B)) — s0(Xo — P(Xo|B)),
it holds that sup G > 0.

When defined on the same domain, separate coher-
ence and W-coherence are equivalent, as we now
prove. Define for this the conditional lower previ-
sion P such that P(X|B) = Pg(X|B), VB € P,

VX € H(B) (P is the collection of all Pg).

Proposition 6 The lower previsions Pg (B € IP)
in Definition 4 are separately coherent iff P is W-
coherent on D = UpepDp, where Dp ={X|B: X €
H(B)}.

4The integer stakes in [16] may be equivalently replaced by
real non-negative ones, as we do here.

Proof. We prove first that W-coherence implies
separate coherence. If P is W-coherent, i) neces-
sarily holds. As for ii), it follows from supG =
max{supgp G,supg G} > supgG = supG|B =
sup(BG|B) > 0, the last equality holding by (1), the
inequality by W-coherence.

To prove the converse implication, suppose that sep-
arate coherence holds. Betting on B, Xg,...,X,,
it follows then sup(s(B — P(B|B)) + Y1 s:i(X; —
P(Xi|B))—s0(Xo— P(Xo|B))) = sup(s(B—1)+G) =
max(supg(s(B — 1) + G),supz(s(B — 1) + G)) > 0.
The last inequality implies supg(s(B — 1) + G) >
0, if we choose s > max(supzG,0), since then
supg(s(B — 1) + G) = —s +supgG < 0. Us-
ing also (1), supg(s(B — 1) + G) = sup(G|B) =
sup(BG|B) = sup(Yl, s:B(X: — P(Xi[B)) ~
soB(Xo — P(Xo|B))|B) > 0, which means, given the
arbitrariness of n, Xo,..., X, and sq, ..., s, > 0, that
P is W-coherent on Dp. It is then a simple exercise to
prove that W-coherence of P on each Dp implies W-
coherence of P on D, because of the special structure
of D. |
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