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Abstract

Starting from considering different definitions of con-
ditioning for decomposable measures, in particular for
totaly monotone measures (belief functions) and to-
taly alternating measures (plausibility functions), we
provide a concept of independence which covers some
natural properties. In particular, we characterize the
proposed independence for plausibility functions and
we check some relevant properties. Relationships with
other notions studied in literature are shown.
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1 Introduction

The subtle notion of conditioning is controversial
in several contexts, for example for non-additive
measures and more specifically for plausibility and
belief functions (which are totally alternating and
monotone, respectively). We consider a general ax-
iomatic definition of conditional measures proposed
in [7]: the conditional measure is directly defined as a
function on a set of conditional events which satisfies a
suitable set of axioms. In this framework conditional
measures are seen as a primitive notion, analogously
to conditional probability according to de Finetti ap-
proach [16]. Among the conditional measures we deal
with conditional plausibility and belief functions.

The theory of belief functions, also known as
Dempster-Shafer theory [18] and theory of evidence,
aims to model degree of belief. It can be regarded as a
generalization of the probability approach and many
interpretation have been proposed: a belief function
can be seen as a particular lower probability or it
can be derived from probability where a probability
space is mapped by a one-to-many mapping on an-
other space.

In [10] it is shown a sort of converse property of the
fact that a belief function is a specific lower proba-
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bility: a lower probability obtained as extension of
a suitable coherent conditional probability is a belief
function.

Starting from this general framework some other well-
known definitions arise naturally (see also [6]). A
comparison of these different conditioning operators
has been carried out in [12] from another point of
view by looking to a comparative setting and, more
precisely, by studying local representability of ordinal
relations defined on a finite algebra.

In particular, we refer to a well-known definition (see
[19, 26]) of conditional belief, which can be obtained
from the above one as particular case and, for any
given conditioning event H, it can be seen as the dual
function of a conditional plausibility.

Actually, we refer to a generalization of the definition
provided in [26] that allows to deal also with events of
zero plausibility. Then, the problem of dealing with
“partial assessments” on (not necessarily structured)
domains, containing only elements of interest, is faced.
In any real situation the events of interest, and those
in which the field expert or the decision maker has
information, give rise usually to an arbitrary set. For
this reason we need a notion of consistency, which
allows to check whether a partial assessment is the
restriction of a conditional belief function (or a con-
ditional plausibility) [6]. A characterization of both
consistent conditional plausibility and conditional be-
lief, in terms of a suitable class of plausibility func-
tions, is carried out: a conditional belief/plausibility
is not always singled out by a unique unconditional
measure.

In such framework, we study an important concept
for uncertainty reasoning, which is independence. In
probabilistic theory this condition has been deeply
studied (see e.g. [15, 9, 32]); moreover such notion
has been studied also in other non-probabilistic frame-
works [1, 4, 11, 30, 31, 35] and in particular in up-
per and lower probabilities theory (see, for example,



[5, 8, 13, 34]).

However, the concept of independence has not been
widely treated in belief theory (see [2, 3, 27, 29]). In
addition to the theoretical reasons for the study of
independence, there are also practical interest: many
computational tasks can be simplified by using inde-
pendence notion.

In this paper we propose a definition of independence
for conditional plausibility, which can be reformulated
by means of duality property also for belief functions.
This notion covers some natural properties also in
the case of events with degree equal to 0 or 1. In
particular, we show that such independence notion
implies logical independence. This is an intuitive im-
plication: in fact if an event is “logically” related to
another one, the two events must be dependent un-
der any uncertainty measure. Handling logical con-
straints is interesting also from a practical point of
view, since in many real applications (e.g. in finance,
economics, medicine) variables are suitably linked (see
e.g. [20, 21]). Then, we get this natural implication,
which does not need to be required explicitly as in [2].
Actually, our definition of independence is inspirited
to that one given for coherent conditional probabil-
ity in [9, 32] and that for conditional possibilities in
11, 24].

We give a numerical characterization of the proposed
definition of independence that helps to compare our
definition with other ones given in literature [2, 3, 27,
29].

In Section 2, we introduce conditional plausibility and
in Section 2.1 (through duality) conditional belief; we
briefly deal with a consistency notion for partial as-
sessments.

In Section 3 we provide an independence notion firstly
for plausibility and then for belief function. We study
its main properties by comparing it also with other
notions introduced in literature.

2 Conditional plausibility and belief
functions

Usually in literature conditional measures are pre-
sented as a derived notion of unconditional ones, but
this is a restrictive view of conditioning. It is instead
essential to adopt a general definition of generalized
(@, ®)-decomposable conditional (uncertainty) mea-
sure (introduced in [10]). The peculiarity of this ap-
proach consists in the fact that conditional measures
are directly defined on a suitable set of conditional
events.

Moreover, by specifying the two operations ®,® we

obtain some particular conditional uncertainty mea-
sures. In particular, by taking the usual sum and
product, respectively, we get a conditional probability
(in the sense of de Finetti [16]), while for & = max and
©® = min we obtain conditional possibility [4, 23]. In
[10] it is shown that for specific operations conditional
belief functions can be seen as particular generalized
decomposable measures.

In order to revisit the belief functions and their con-
nections with the so-called “imprecise” probabilities
and with extensions of coherent conditional proba-
bilities, we recall firstly some basic notions and then
some results given in [10]. An assessment p on a set
of conditional events C is a coherent conditional prob-
ability iff there exists a conditional probability P on
the product of an algebra £ and an additive set (closed
under finite unions) H C £\ {0} such that C C & x H
and the restriction of P on C coincides with p (i.e.
P(E|H) = p(E|H) for any E|H € C).

Given an arbitrary set C of conditional events, a coher-
ent lower conditional probability on C is a nonnegative
function P such that there exists a non-empty dom-
inating family P = {P(-|-)} of coherent conditional
probabilities on C whose lower envelope is P, that is,
for every F|H € C,

P(E|H) = inf P(E|H).

In particular, by taking C as a set of unconditional
events, we get a coherent lower probability.

It is well known that a belief function (totaly
monotone measure) is a lower probability; the follow-
ing result proved in [10] shows the converse property:
a lower probability obtained as extension of a suitable
coherent conditional probability is a belief function.

Theorem 1 Let D ={Hy,...,H,} be a finite set of
pairwise incompatible events. Denoting by IC the addi-
tive set spanned by them, and given an algebra A D IC,
put C = AXK. If P(-) is a coherent probability on D,
let P be the class of coherent conditional probabilities
P(-|-) extending P(-) on C. Consider, for E|K € C,
the lower probability

P(B|K) = inf P(F|K) (1)

then for any K € K the function P(-|K) is a belief
function on A.

The involved set D is not a consequence of some par-
ticular circumstances, but it is always possible to find
it, as shown by the following theorem [10] (Section
3.1.):

Theorem 2 Let A be a finite algebra and Bel be a
belief function on A. Then, there exists a partition



D ={Hy,...,H,} of Q and a (coherent) probability
on D such that the lower envelope of the class of co-
herent conditional probabilities P(-|-) extending P(-)
on C=AxK (K is the additive set generated by D)
coincides with Bel on A.

The following axioms are naturally derived (see [6]):

Definition 1 Let € be an algebra and H C & \ {0}
an additive set. A function Pl defined on C =& x H
is a conditional plausibility if it satisfies the following
conditions

i) PI(E|H)=PI(ENH|H);
ii) Pl(-|H) is a plausibility function VH € H;
iit) For every E € € and H K € H

PI(EAH|K) = PI(E|H ANK) - PI(H|K).

Moreover, given a conditional plausibility, a condi-
tional belief function Bel(-|-) is defined by duality as
follows: for every event E|H € C

Bel(E|H) =1 — PI(E°|H).

It is possible to see that the above axiomatization
extends the Dempster’s rule, i.e.

PI(F¢ A H)
Bel(F|H) =1 PIH)
for all H such that PI(H) > 0 (from condition
191)). When all the conditioning events have pos-
itive plausibility, i.e. Q € H and PI(H|Q) > 0
for any H € 'H, the above notions of conditional
plausibility and conditional belief coincide with that

given in [19, 26]. In fact, if PI(H) > 0 it follows

PIU(H)—PI(F°AH Bel(FVH®)—Bel(H®
Bel(F|H) = ( )Pl(H() L= ( Pl()H) ==

2.1 Coherent conditional belief

By regarding a conditional plausibility function as a
(®, ®)-decomposable measure, it is possible to study
the structure underlying the conditional measure and
to build an algorithm to check the consistency (with
the model of reference) of a partial assessment.

In the following we denote by F =
{E1|Fy, Es|Fy, ..., Ey|F,}  an  arbitrary  finite
set of conditional events, by £ the algebra generated
by {Ei,Fi1,...,E,, F,} and by K the additive
set generated by the set of the conditioning events
{Fi,....,Fn}.

Definition 2 A function f(:|-) on an arbitrary finite
set F is a coherent conditional belief (plausibility) if
there exists C D F, with C = & x K such that f(-|")
can be extended from F to C as a conditional belief
(conditional plausibility).

The following theorem [6] characterizes (coherent)
conditional belief functions in terms of a class of plau-
sibilities {Ply, ..., Pl,, }.

Theorem 3 Let F = {E\|Fy, Es|Fs, ..., Ep|Fn} be
an arbitrary finite set of conditional events and de-
note by € = {Hy, Ha, ..., H, } the algebra generated by
{Er,....Em, F1,...,Fp} and HY = Vi, Fj. For a
real function Bel on F the following statements are
equivalent:

(a) Bel : F — [0,1] is a coherent conditional belief
assessment;

(b) there exists (at least) a class L = {Pl,} of plau-
sibility functions such that Plo(HS) = 1 and
H§ C H(’)B for all B < o, where HS' is the greatest
element of IC for which Pli—1)(H§) = 0.

Moreover, for every E;|F;, there exists an index «
such that Plg(F;) =0 for all« > 3, Plo(F;) >0
and

Pla (E’L(‘F’L)

Bel(E;|F)) =1 —
cl(EilFy) Pl.(F)

(2)

(c) all the following systems (S%), with a =
0,1,2,....,k < n, admit a solution X = zf =
ma(Hk):

Z J?g . [1 — Bel(EZ|Fz)} ZZ x%, VFZQH(?
Hy Fi#0 HyESF;#0
>, wp=1
HyeHg
ry 20,

(5%)=

VH,CHE

where HS 1is the greatest element of K such that

>, M- (H;)=0.
H Hg£0

The above characterization result holds for coherent
conditional belief functions as well as for coherent
conditional plausibility. In particular condition (c)
stresses that this measure can be written in terms of
a suitable class of basic assignments, instead of just
one as in the classical case where all the conditioning
events have positive plausibility.

Note that every class £ (condition (b) of Theorem 3)
is said to be agreeing with both the conditional belief
Bel and its dual conditional plausibility Pl. When-
ever there are events in IC with zero plausibility the
class of unconditional plausibilities is formed by more



than one element and we can say that Pl; gives a re-
finement of those events judged with zero plausibility
under Plg.

The following example shows the construction of the
class L characterizing (in the sense of the above result)
a conditional belief.

EXAMPLE 1 Let {C1,...,C5} be a partition of Q, &
the corresponding algebra and K = {Cy V C5,Cy V
C3Vv (Cy,C1VCyV (05,0}

Consider the following function f defined as follows
on € X H:

for K € {Q,CQ\/C3\/C4} and H C C1V Cs
F(CIK) = f(H|K) = f(HV Gi|K) =0 for i = 3,4
f(C2|K) = f(C2VH|K) = f(C2V Cy|K) =
f(CavCyVv HIK) =0.5,

f(Cs VLK) = f(C3vCyVHIK) =02,

f(CQ \/Cg‘K) = f(CQ Vv (s \/H|K> =0.8

f(CQ \/03 vV C4|K) = f(OQ vV 03 V 04 \/H|K) = 1,‘

moreover (fori=1,5)

F(CS|Ch v Ca v Cs) = F(Cy v C5|Ch v Cy v Cs) = 0,
f(02|01 Vv Cy V 05) = f(C2 V Cz|Cl v Cy V 05) =
f(Cl v Csy V C5|01 Vv Oy V 05) =1

and f(01|01 vV 05) = 0.2, f(05‘01 vV 05) = 03,
f(CLV Cs5|CL v Cs) =1,

We can prove that the above function is a conditional
belief since there exists a suitable class L = {Ply, Ply}
of plausibilities such that, for any E|F € A X I, one
has f(E|F)=1— %, The function Ply is de-
fined on A as follows: for any H C C1VCs Plg(H) =
0, Plo(Cs) = Plo(CaVH) = 0.8, Ply(Cy) = Ply(CyV
H) = 0.2, Ply(C3) = Plo(C3 vV H) = Ply(C3 V Cy) =
Ply(C3Vv CyV H) =0.5,

Ply(Co vV C3) = Ply(Co vV C3V H) = Plo(Cy vV Cy) =
Pl()(Cg\/C4\/H) = PlO(CQ\/O3 \/04) =
Plo(CQ\/CgVC4VH) =1.

Note that Ply is associated to the following basic as-
signment m(C3) = 0.5,m(Cy vV C3) = 0.3,m(Cs V
C4) = 0.2 and it is zero otherwise.

Then, HY = C; V Cs, and Ply is defined
as follows Pl(C1) = 0.7,PL1(C5) = 038,
Pl (Cy vV C5) =1.

Results similar to the above one, characterizing con-
ditional possibility and necessity in terms of a class
of unconditional possibilities, have been given in
[4, 11, 24], and for conditional probability see e.g. [9].

2.2 Zero-layers

The characterization of conditional plausibility (and
conditional belief function) in terms of a suitable class
of plausibilities gives rise to the following notion of
zero-layers.

Definition 3 Let Pl be a coherent conditional plau-
sibility on F, and L a class agreeing with Pl, then, for
every event H € &, the zero-layer of H (denoted as
o(H)) related to L is defined as the minimum number
« such that Ply,(H) > 0.

Moreover, define o(()) = +o0.

Zero-layers single-out a partition of the algebra, in
particular it follows that the zero-layer of any event
FE with positive plausibility is zero. Then, if the class
L contains only an everywhere positive plausibility
Pl,, there is only one (trivial) zero-layer.

Remark 1 It is immediate to prove that the zero-
layers, related to L, satisfy the following formal pro-
prieties

o(AV B) = min{o(A),o(B)},
o(A A B) > max{o(A),o(B)}.

Note that zero-layers (which are obviously significant
for events of zero plausibility) are a tool to detect
“how much” a null event is ... null. In fact, if
o(A) > o(B) (that is, roughly speaking, the plausi-
bility of A is a “stronger” zero than the plausibility
of B), then by Theorem 3 (b) PI(A|AV B) = 0 and
so PI(B|AV B) = 1. On the other hand o(A) = o(B)
iff PI(A|AV B)PI(B|AV B) > 0; this formula recalls
the probabilistic notion of commensurable given by de
Finetti in [17].

Definition 4 Let Pl be a coherent conditional plau-
sibility on F, and L a class agreeing with Pl, then,
for every event E|H € £ x K, the zero-layer of E|H
(denoted as o(E|H)) related to L is defined as the
(positive) number

o(E|H) = o(E A H) — o(H).

Since o(f)) = oo it results o( E|H) = 0o iff EA H = ().

Remark 2 More precisely, PI(A|B) > 0 if and only
if o(A|B) =0 (i.e. o(AAB)=0(B)).

Moreover, from the properties of conditional plausi-
bilities, for any conditioning event H, there is at least
an atom C C H such that o(C|H) = 0.

EXAMPLE 1 (continued) Let us consider again the
conditional plausibility in Example 1, which admits
a unique agreeing class and note that o(Cy vV C5) =1

and O(Cllcl \ 05) = O(Cg,lCl V 05) =0.

The above properties recall those related to the no-
tion of zero-layer [9] arising in de Finetti conditional
probability framework and they satisfy the same prop-
erties of k-functions of Spohn [30], so suggest relevant
connections with the results shown in [11, 22, 24].



3 Independence

The background is now ready to introduce a definition
of independence for coherent conditional plausibilities
(i.e. the measure can be assessed on arbitrary set
of conditional events without requiring any algebraic
structure).

Definition 5 Given a coherent conditional plausibil-
ity Pl on a set of conditional events F containing
D = {A*|B*, A*} - where A* (analogously B*) stands
for either A or A°-, A is independent of B under Pl
(in symbol A1LB[PI]), if both the following condition
holds:

(a) PI(A|B) = PI(A|B°) = Pi(A)
PI(A®|B) = PI(A¢|B) = PI(A®),

(aa) there exists an agreeing class L = {Ply} for the
restriction of Pl to D such that

o(A|B) = o(A|B€) and o(A°|B) = o(A°|B°).

Remark 3 Definition 5 requires for the statement
“A independent of B under [Pl]” that B # Q and
B # 0 (since conditioning events cannot be impossi-
ble).

This syntactical constraint has also a semantical
counterpart: Q and () correspond to a situation of
complete information (since the former is always true
and the latter always false), and so it does not make
sense to ask whether they could influence the plausi-
bility of another event.

Conversely, by definition it follows that, under any
coherent conditional plausibility, the events Q and )
are independent of every possible (i.e. different from
Q and 0) event B. In fact, condition (i) holds and
for any agreeing class o(2B) = o(QB¢) = 0 and
o(0|B) = o(0]B°) = +o0.

This conclusion is natural, since the plausibility (1
and 0, respectively) of Q and § cannot be changed by
assuming the occurrence of any other possible event
B.

In condition (a) of Definition 5 we require equalities
that could seem very strong at the first light, this is
due to remove situations such as those arising in the
following examples:

EXAMPLE 2 Let consider a basic assignment on the
algebra generated by two possible events A and B, with
focal elements

m(AAB)=m(AAB) =m(A°AB) =

m(A° A B°) =m(AV B) :%

(i.e. on all the other events of the algebra m(-) is equal
to zero). This basic probability assignment implies
PI(A) = PI(A®) = PI(B) = PI(B°) = 2, PI(AAB) =
PI(A°AB) = PI(AAB¢) = £ but PI(A°AB®) = £. By
applying the conditioning rule (Definition 1) it follows
that PI(A|B) = PI(A|B°) = 2 # PI(A). Moreover,
PI(A°|B) = 2 # & = PI(A°|B°).

The above example shows that PI(A|B) = PI(A|B¢)
does mnot imply neither PI(A|B) = PI(A) nor
PI(A°|B) = PI(A°|B¢), furthermore from the next
example it arises the necessity of requiring all the
equalities in condition (a).

ExXAMPLE 3 Consider the following basic assignment

m(AAB)=m(AAB%) =m(A°AB) =

m(A° A B) =m(Q) = £
Then, PI(A* A B*) = 2, PI(A*) = PI(B*) = £ and

PI(A*|B*) = 2. This implies that

PI(A|B) = PI(A|B°)

and
PI(A°|B) = PI(A°|B°),

but PI(A|B) # PI(A).

When both PI(A) and PI(A°) are greater than zero
condition (a) of Definition 5 assures that Al B[PI],
in fact in this case all the zero-layers in condition (aa)
are equal to 0 and so condition (aa) is trivially satis-
fied.

If condition (a) holds and PI(A) = 0 [PI(A°) = 0],
then the second [first] equality under (aa) is trivially
satisfied, so that the statement A B[PI] is ruled by
the first [second] one. In other words equality (a) is
not enough to assure independence in this situation:
it needs to be reinforced by the requirement that also
their zero-layers must be equal.

We finally note that the statement Al B [Pl] depends
only on the restriction of the assessment Pl on D,
hence the statement is not effected by the values of
the assessment Pl on F \ D (actually the influence,
e.g. of PI(B|A) is related to condition (aa), as it will
be clear from the next result). Since (aa) depends on
a class agreeing with the coherent conditional plausi-
bility, and since this class is in general not unique, it is
necessary to prove that independence is well-defined
by Definition 5, that means that is invariant with re-
spect to the choice of any agreeing class.

Theorem 4 Given two events A and B such that
B # 0,Q and a coherent conditional plausibility Pl
defined on F, containing D = {A*|B*, A*}, such that



PI(A|B)
PI(A°|B)

= PI(A|B°) = Pi(A)
= PI(A¢|B¢) = PI(A°).

If there exists a class agreeing with Pl|p such that
o(A|B) = o(A|B) and o(A°|B) = o( A°| B,
then this holds for any other class agreeing with Pl|p.

Proof: This theorem can be decomposed in three main
cases:

1. PI(A) - PI(A°) > 0
2. PI(A) =0,
3. PI(A°) =0.

1. If PI(A) - PI(A°) > 0 the theorem is true since
o(A*|B*) = 0 for all agreeing class.

2. If PI(A) =0 then PI(A°) =1 and the only masses
which can be greater than zero (i.e. the focal ele-
ments) are m(A°¢ A B), m(A° A B®), m(A°). If an
agreeing class is such that PI(B) - PI(B°) > 0 (i.e.
m(A°) > 0 or m(A° A B) - m(A° A B¢) > 0) then
(in both the cases) o(A°|B) = o(A°|B¢) = 0. Now,
we need to look at B|A and B€¢| A, through the system
(S1) (of Theorem 3), that can be written in a compact
form by referring to PI' and m!, i.e.

PI'(A A B) = PU(B|A) - PI'(A),

PIY(A A BY) = PI(BY|A) - PI(A),

m (AN B) +m'(AAB¢) +ml(A) =1,
m!(-) > 0.

(8%) =

To second equality of condition (aa) of Definition 5
holds if and only if o(A A B) = o(A A B€), that
means Pl(B|A) - PI(B¢|A) > 0. Then, if PI(B|A) -
PI(B°|A) > 0 all the agreeing class with Pljp are
such that o(A|B) = o(A|B°) = 1 and o(4¢|B) =
o(A°|B¢) = 0; otherwise none agreeing class satisfies
condition (aa).

If PI(B) =0 (i.e. m(A° A B¢) =1) then o(A°|B°) =
o(B¢) =0 and (S%) is

PI'Y(AAB)=0-PIY(B),
I'(A°AB) =1-PIY(B),
(S =14 PI*(AAB)=PI(B|A) - PI'(A),
I'(A A B¢) = PI(B¢|A) - PI'(A),
) > 0.

T

I

e

A solution of (S1) is such that m(D) = 0 for any
D A (AN B) # (; then when PI(B|A) = 0 we need to
take in consideration the following cases

- PIY(A) - PIY(B) > 0, then it follows

PIY(AAB°) - PIN(A° A B) > 0 and

o(A|B) = o(lAANB)—1 = 1,0(A|B°) = 1 and
o(A¢|B) =1—1=0=o(A°|B°).

- PI'(A) > 0 and PI}(B) =0, then it follows

o(A|B) = o(AAB)—2 = 1,0(A|B°) = 1 and
o(A°|B) = 2 — 2 = 0 = o( A°| BY).

- PI*(A) =0 and PI'(B) > 0, then it follows

o(A|B) = o(AANB)—1 = 2,0(A|B° = 2 and
o(A°|B) =1—1=0=o(A°|B°).

On the other hand, when PI(B|A) > 0, it follows from
the above system PI'(A) = 0, so PI}(B) = 1 and
o(A°AB) =1,0(AA B) = 2, while o(A A B¢) > 2. Tt
implies o(A|B) = 1 while o(A|B¢) > 2.

We can conclude this case: if PI(B|A) = 0 any agree-
ing class of Plp satisfies the two equalities; while if
PI(B|A) > 0 no agreeing class satisfies the two equal-
ities among the relevant zero-layers.

If PI(B¢) = 0 is analogous to the previous one, just
exchange B with B°€.

3. If PI(A°) = 0 is the same as 2., with A° playing
the role of A.

From the above result we get

Corollary 1 Given a coherent conditional plausibil-
ity Pl defined on F. If A is independent of B under
Pl, then

PI(A A B) = PI(A)PI(B).
It follows that the proposed notion of independence
implies cognitive independence of Shafer [29], called
also weak independence by Kong [27].

We have also the converse implication under suitable
hypothesis, as shown in the next result.

Proposition 1 Given a coherent conditional plau-
sibility Pl defined on F. If PI(B), PI(B°),
PI(A), PI(A°) are greater than 0, and

PI(A A B) = PI(A)PI(B)
PI(A A B¢) = PI(A)Pl(B°)
PI(A° A B) = PI(A°)PI(B)

PI(A° A B®) = PI(A°)Pl(B°)

then A is independent of B under [PI].

Proof: It follows directly from the definition of con-
ditional plausibility and the properties of zero-layers.

The following example shows that the positivity con-
dition cannot be avoided.



EXAMPLE 4 Let A, B be two possible events and con-
sider the assessment

PI(B) =0,Pl(B°) =1,PI(ANB°) = PI(A° A B°) =
PIl(A) = PI(A°) = PI(A|B¢) = PI(A°|B°) = %,
PI(A|B) = PI(A°|B) = %

It is easy to show that Pl is a coherent conditional
plausibility and for any atom generated by A and B,
e.g. AN B, its plausibility is equal to the product of
the plausibilities of A and B, i.e.

PI(A A B) = PI(A)PI(B).

But, under Pl, we have that A is not independent of
B.

Proposition 2 Under any coherent conditional plau-
sibility Pl, for any event A the statement “A is inde-
pendent of itself” does not hold.

Proof: Since by the axioms of conditional plau-
sibilities we have that PI(AJA) = 1, while
PI(A]A°) = PI(B|A°) = 0, if follows that the
statement does not hold.

The previous property (irreflexivity) is natural and
essential, in fact any event must be dependent on itself.

Moreover, independence implies logical independence,
as proved below. Recall that two events A and B
are logically independent if all the events of the form
A* A B* (where A* stands for A or A€) are possible,
i.e. the number of relevant atoms is maximal.

Theorem 5 Let Pl be a coherent conditional plausi-
bility defined on F. Given two possible events A, B €
F, if A is independent of B under Pl, then A and B
are logically independent.

Proof: 1If there is a logical constraint between A
and B we show that there is no agreeing class
satisfying condition (aa). If, for example, A A B = 0),
then PI(A|B) = 0 and o()) = o(A|B) = +o0;
while being A A B = A a possible event
o(A|B€) < o(A A B°) < +oo. The proof for
other logical constraints follows similarly.

This is an intuitive implication: in fact if an event
is “logically” related to another, the two events must
be not independent under any uncertainty measure.
Handling logical constraints is interesting also from a
practical point of view, since in many real applications
variables are suitably linked.

Remark 4 Actually, independence under a measure
assures the logical independence and this implication
is guaranteed by the requirement (aa) of Definition 5.

We recall that logical independence is taken into ac-
count also in [29] (as well in [2]), and it looks natural
looking on Dempster rule. However, the independence
notion introduced in [2] do not respect the above impli-
cation when events with degree of belief 0 are involved.

We recall that the main difference between the ap-
proaches of [29] and [2] is that the first is referred to
belief or plausibility function that are normalized (as
in this paper) while in the second approach are taken
in consideration also not normalized measures.

The following result characterizes independence in
terms of the conditional plausibility (avoiding zero-
layers).

Theorem 6 Let A and B be two logically indepen-
dent events. If a coherent conditional plausibility Pl
s such that

PI(A|B) = PI(A|B°) = PI(A)
and
PI(A°|B) = PI(A°|B¢) = PI(A°)

then AL BI[PI] if and only if one (and only one) of
the following conditions holds:

1. PI(A) - PI(A°) > 0;

2. PI(A) = 0 and the coherent extension of Pl to
PI(B), PI(B°), PI(B|A), PI(B°|A) satisfies one
of the following:

a) PI(B)- Pl(B¢) >0 and
PI(B|A) - PI(B¢|A) > 0,
b) PI(B) =0 and PI(B|A) =0,
¢) PI(B¢) =0 and PI(B¢|A) =0;
3. PI(A®) = 0 and the coherent extension of Pl

to PI(B), Pl(B¢), Pl(B|A¢), Pl(B¢|A°) satisfies
one of the following:

a) Pl

Pl
b) Pl
¢) Pl

B) - PI(B°) >0 and
BJ|A€) - PI(B¢|A°) > 0,

B) =0 and PI(B|A°) =0,
B°) = 0 and PI(B°|A°) = 0;

—_—~ ==

Proof: The items highlighted in the theorem state-
ment follow directly by the proof of Theorem 4. In
particular when PI(A)- PI(A°) > 1 is obvious because
o(A*|B*) = 0 for all agreeing class. Moreover cases
PI(A) = 0 and PI(A°) = 0 correspond to the case 2.
and 3. of Theorem 4 respectively: this result follows
along the same proof of the previous result.



From the above result it comes out that the provided
independence notion is not symmetric, and this hap-
pens when events with zero plausibility are involved.
If PI(A), PI(A®), PI(B), PI(B¢) takes positive values
and A1 B under PI, then
PI(A|B)PI(B)
Pl(A)

so going along the same computations PI(B|A) =
PIl(B|A€) and PI(B¢|A) = PI(B¢|A°) = PI(B°),
which implies that also the statement B 1. A holds.

PI(B|A) = = PI(B),

Since coherent conditional probability are a particular
plausibility, and since the provided conditional inde-
pendence for conditional plausibility is just a general-
ization of that given for conditional probability [9, 32]
the fact that symmetry can fail when possible events
of zero plausibility are involved is not a surprise, dif-
ferent examples have been given in the quoted papers
to show that the lack of symmetry can be intuitive.

3.1 Independence for belief functions

By means of duality we obtain that if Pl is a coherent
conditional plausibility on a set of conditional events
C and Bel is its dual function on

¢* = {E|H : E°|H € C},

then Bel is a coherent conditional belief function (see
Theorem 3).

Moreover, for A|B, A|B¢, A€
PI(A|B) = PI(A|B°) = PI(A)
if and only if
Bel(A°|B) = Bel(A°|B°) = Bel(A°)
for A¢|B, A€|B¢, A¢ € C.

Then, it could seem reasonable to take A independent
of B under Bel if and only if A is independent of B
under the dual conditional plausibility PI.

Recall that as shown in Section 2 a class L is agreeing
for Bel if and only if it is agreeing also for the dual
conditional plausibility PI.

Note that this means that many properties of indepen-
dence under plausibilities continue to be valid under
belief functions, as for example independence implies
logical independence. Moreover, also several results
can be reformulated, as e.g. the characterization of
independence of two possible events in terms of their
belief (as done for plausibilities in Theorem 6).

Nevertheless, this notion of independence need to be
studied more deeply: we need to detect better the role
of zero-layers, and to exploit the relationship with the
factorization property, i.e.

Bel(A* A B*) = Bel(A*)Bel(B*).

Actually, the factorization has been adopt (as notion
of independence) in [28] to prove under some technical
hypothesis a strong law of large numbers for belief
functions.

In the following example we propose a situation
where, under a plausibility PI, the event A is inde-
pendent of B, but the factorization fails under the
dual function of PI.

EXAMPLE 5 Consider the following basic assignment
with focal elements

1 1
MAAB = §,mAvB =mq = Z;

which gives rice to the following belief function
Bel(A N B) = Bel(A) = Bel(B) = Bel(AV B¢) =
Bel(A° V B) = i, Bel(A° A B®) = Be(A%) =
Bel(B¢) = Bel(A°V B¢) = 0, and so to plausibil-
ity PI(ANB) = Pl(A) = PI(B) =1 PI(AAB°) =
PI(A° A B) = 1 PI(A° A B°) =

~—
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Then, the induced conditional plausibility is such that
ALBIPI] (and BALA[PI]), but Bel(AA B) = § #

Bel(A)Bel(B) = L.

Thus, our notion of independence under a plausibil-
ity is stronger than cognitive independence [27, 29].
However, in the case of positive events it does not im-
ply evidential independence, called also strong inde-
pendence [29, 27], which coincides with the require-
ment of factorization of the belief function and its
dual. However, by adding to our independence notion
the factorization property with respect to the belief
function, we obtain a notion stronger than evidential
independence. These considerations are useful also
for comparing our notion with some concepts of in-
dependence, irrelevance and non-interactivity, given
in [2] (also for non necessarily normalized measures)
since the notion of doxastic independence and non-
interactivity coincide with evidential independence in
the case of interest, i.e. for normalized measures.

3.2 Conditional independence

The notion of independence between two events given
in Definition 5 can be generalized to that of condi-
tional independence:

Definition 6 Given a coherent conditional plausibil-
ity Pl on a set of conditional events F containing
D = {A*|B* AC, A*|C}, A is independent of B con-
ditionally to C under Pl (in symbol AILB|C [Pl]), if
both the following conditions hold:

i. PI(A|B A C) = PI(A|B° A C) = PI(A|C)
PI(A°|B A C) = PI(A°|B¢ A C) = PI(A° A C),



ii. there exists an agreeing class L = {Pl,} for the
restriction of Pl to D such that

o(A|BAC)=0(A|B*AC) and
o(A¢|BAC)=0(A°|B°NC).

Considerations similar to the unconditional case can
be done: when PI(A|B A C) and PI(A°|B A C) are
both positive, then both equalities in condition 7. are
trivially (as 0=0) satisfied. While in the other two
cases (i.e. PI(A|BAC) =0or PI(A°|BAC) =0) the
equality 7. is not enough to assure independence, so
it is “reinforced” by the requirement that also their
relevant zero-layers must be equal.

Remark 5 If the events A and C (or A€ and C) are
incompatible, then A is independent of any event B
given C' whenever § # BAC # C. This conclusion is
natural since the plausibility 0 (or 1) of A|C' cannot
be changed by assuming the occurrence of B.

Actually, even if the restriction of Pl to D admits
more than one agreeing class, we can prove along the
line of Theorem 4, that condition 4. of Definition
6 holds either for all agreeing classes or for none of
them.

Going on the same line of the proofs given for Theo-
rem 4 and Theorem 6, we can characterize conditional
independence in terms of plausibilities: it would be a
simply generalization of Theorem 6.

4 Summary and Conclusions

In this paper, we look to conditional plausibility and
belief from a more general point of view. In partic-
ular we are able to handle events with null measure.
In this framework we provide a definition of indepen-
dence and we give a characterization of it, we study its
main properties, which allow us to compare our defin-
ition with other given in literature (in particular with
respect to the notions introduced in [2, 3, 27, 29]). We
recall that our notion of independence for plausibility
is in the same line of that studied in [9, 11, 24, 32] for
probability and possibility.

Through different examples we explain also the reason
for taking exactly the provided definition, our choice
has been guided mainly by two main reasons: to get
a natural condition overcoming critical aspects and
to get a suitable factorization of the joint plausibility
distribution.

We show that the provided independence notion is not
necessarily symmetric, then to represent such state-
ments we need to refer to some not necessarily sym-
metric separation criterion such as that proposed in

[33]. An open problem consists into looking for the
representability of the set of independence statements
induced by a conditional plausibility (belief) by means
of a directed or undirected graph by testing which
properties among the graphoid ones are satisfied: this
would allow to compare our definition also with other
independence notions given in the context of other
uncertainty formalisms.
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