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Abstract

We study three conditions of independence within Ev-
idence Theory framework. First condition refers to
the selection of pairs of focal sets. The remaining two
are related to the choice of a pair of elements, once
a pair of focal sets has been selected. These three
concepts allow us to formalize the ideas of lack of in-
teraction between variables and between their (im-
precise) observations. We illustrate the difference be-
tween both types of independence with simple exam-
ples about drawing balls from urns. We show that
there are not implication relationships between both
of them. We derive interesting conclusions about the
relationships between the concepts of “independence
in the selection” and “random set independence”.

Keywords. Evidence Theory, Independence, Ran-
dom Sets, Sets of Probabilities.

1 Introduction

The concept of stochastic independence is essential
in probability theory. Factorization allows us to de-
compose complex problems into simpler components.
When generalizing to imprecise probabilities, the con-
cept of independence, which is unique in probability
theory, can be extended in different ways. Different
definitions of independence for imprecise probabilities
are studied and compared in [1], [2] and [7].

Evidence theory ([5]) falls within the theory of impre-
cise probabilities. This way, definitions of indepen-
dence for imprecise probabilities can be transferred to
this context. In [3], for instance, sets of joint probabil-
ity measures associated to joint mass assignments are
constructed. Different ways of choosing the weights of
the joint focal sets and the probability measures inside
these sets are considered. Depending on these condi-
tions, different sets of joint probability measures are
obtained. The author shows that some of these cases
lead to types of independence described in [2] such as

strong independence, random set independence and
unknown interaction. The author initially considers
the class of all probability measures on a product
space whose marginals are dominated by a pair of
plausibility measures. Next he establishes three rules
to construct probabilities within that class. Each rule
is related to a particular aspect of independence and
it determines a subclass in the initial set of probabil-
ity measures. First rule refers to the choice of weights
of the joint focal sets, and it is related to the concept
of random set independence. Second and third rules
are referred to the choice of the probability measures
inside the focal sets. The author shows that the class
of probability measures based on these three rules sat-
isfies independence in the selection. We will go fur-
ther on this study. First, we will recall these notions
under a different framework. Then we will give an
intuitive meaning for each rule, by means of simple
examples about drawing balls from urns. Our main
goal is showing that none of these rules is strictly nec-
essary to get independence in the selection. In fact,
we will construct product probabilities without using
some of these rules. This will be possible because the
same probability measure can be constructed by using
different procedures. In fact, we can choose weights
of the joint focal sets and/or the probability measures
inside the focal sets and finally get the same proba-
bility measure.

We will also go into further details about the relation-
ships between random set independence ([2]) and type
1 independence [1]. It is well known that the class of
probability measures associated to random set inde-
pendence includes the class of probability measures
satisfying type 1 independence (see [2], for instance).
We will check in the paper that this is a strict inclu-
sion, except for trivial situations (precise probabili-
ties).

Our analysis does not apply to all interpretations of
Evidence Theory, but only when the pair of plausi-
bility and belief functions is regarded as a family of



probability measures. Different interpretations of Ev-
idence Theory as the Transferable Belief Model ([6])
lead to different approaches (see [8], for instance) to
the concept of independence.

The paper is organized as follows. Section 2 pro-
vides the necessary technical background about upper
probabilities, evidence theory and independence no-
tions for imprecise probabilities. Section 3 is devoted
to different representations of the class of probability
measures dominated by a particular plausibility func-
tion. We end the paper with some general concluding
remarks and open problems.

2 Preliminary concepts and notation

Let us introduce some notation and recall some defi-
nitions needed in the rest of the paper.

2.1 Sets of probability measures

Consider a finite universe 2 We will denote Pq the
class of all probability measures we can define on
(). Let P C Pq an arbitrary subset. It induces
upper and lower probability functions respectively de-
fined by

P(A) = Sup, Q(A); P.(4) = inf Q(4) (1)

The set of probability measures dominated by an up-
per probability P* is denoted by P(P*) = {Q :
Q(A) < P*(A),VA C Q}. If the upper probability
measure P* is generated by the family P, then P(P*)
is generally a proper superset of P.

Mathematical evidence theory of Shafer extends clas-
sical probability theory. In this framework, a basic
mass assignment, m, is a mass of probability defined
over the power set of 2. It assigns a positive mass to a
family of subsets of €2 called the set F,, of focal sub-
sets. Generally, m()) = 0 and >, m(E) = 1.
This mass assignment induces set functions called
plausibility and belief measures, respectively denoted
by Pl and Bel, and defined by Shafer [5] as follows:

> m(E) Bel(A)= ) m(E).

ENA#£(D ECA

PI(A) =

2.2 Independence concepts for imprecise
probabilities

Consider two variables or uncertain values which may
be regarded as the outcomes of two experiments. As-
sume that the two outcomes are known to belong
to the universes 2; and 5 which are finite. As-
sume that the set of possible joint outcomes is the

cartesian product Q1 x Q5. Let us respectively rep-
resent by P; C Pq, and Py C Pq, our knowledge
about the true distribution of probability that mod-
els each marginal experiment. Let P C Pq, xq,
represent our (imprecise) knowledge about the joint
probability distribution associated to the joint ex-
periment. Given a joint probability measure, P on
Q1 x Qo we will respectively denote P, and P» its
marginals on € and Oy, i.e., Pi(A) = P(A x Qa),
and Py(B) = P(Q; x B), VA C Q;,B C Q.

We say that there is type 1 independence [1] when
every joint probability P € P factorizes as P = P| ®
PQ, i.e., P(A X B) = P(A X QQ)P(Ql X B), VA -
4, B C Q5. In other words, when

P C {P1 QPy : PLeP, Py EPQ}.

This concept is closely related to the notion of inde-
pendence in the selection studied in [2].

Suppose that P; = P(Pl,,) and Py = P(Pl,,).
We say that there is random set independence if
P = P(Pl,,), where m = my @ ma, i.e.,

m(A X B) = ml(A) mg(B), VA g Ql, B Q Qg.

3 Probability measures dominated by
a plausibility function

In this section we will deal with representations of the
class of probability measures dominated by a partic-
ular plausibility function. Let € represent the (finite)
universe of discourse and let F,,, = {Ai,..., A} be
the class of focal sets associated to a basic mass as-
signment m. Let Pl,,, denote the associated plausibil-
ity measure. Grabisch et al. ([4]) consider the family
of tuples Z(F,,) = {@ = (ou1,...,qq) : o + A; —
0,1], X" ca, @i(w) = m(4;), i =1,...,q}. For each
particular tuple & € Z(F,,), they consider the asso-
ciated probability measure Qg : (2) — [0,1] such
that Qa({w}) = >;. 4,50 @i(w), Yw € Q. Under this
construction, they easily check that each Qg is dom-
inated by Pl,,. Furthermore, for each A C 2, there
exists a* € Z(F,,) such that Qg+(A) = Pl,,(A). Let
the reader notice that these conditions do not suffice!
to prove that the class J,, = {Qg : @ € Z(Fm)} co-
incides with P(Pl,,). But, in fact, it does, as we will
check at the end of this section.

Fetz independently considers in [3] the class of prob-
ability measures

q
K = {Z m(A;)P" : P' e ICZ}, where
i=1

1For instance, the class of extreme points of P(Ply,),
Ext(P(Plm)), satisfies the above conditions, but it does not
coincide with the convex set P(Ply,).



= {P'ePq,: P(A)=1,Vi=1,...,q}

In other words, each probability measure in IC,, is a
linear convex combination of ¢ probability measures,
P!, ..., P9. Each P? is a probability measure on the
focal A;.

The family KC,,, coincides with J,,. In fact, each tu-
ple @ = (aa,,...,a4,) is associated to the tuple of
probability measures (P!, P7) defined as

ag,(w) (w)

Pl = s

VLOEAZ', VZZI,,(]

We can give an additional alternative description of
the class IC,,. In fact a joint probability measure,
P : p(p(Q) x Q) — [0,1], can be associated to each
Q € K,,. Its marginals on p(2) and 2 are respectively
related to m and @, as follows:

P ({A}) =

(In other words, @ coincides with the second marginal
probability, 1P, while m is the mass function associ-
ated to the first marginal probability, IP;.) In fact,
let us define

PEC)= >

(i,w): (A;,w)eC

m(A) and Py(A) = Q(A), YA C Q.

a;(w), YC C p(Q) x Q.

Remark 1. For each particular pair (i,w), the quan-
tity o;(w) represents the mass on the “point” (A4;,w),
i.e. a;(w) =P{(A,w)}).

On the other hand, each probability P° in Fetz’s con-
struction ([3]) coincides with the conditional probabil-
ity measure:

P =P(- {4} xQ), Vi=1,...,q.

Furthermore, the second marginal probability measure
Q(A) = IP2(A) can be written as the linear convex
combination:

Q=> m(A)P

=1

Remark 2. We easily check that IP is univocally de-
termined by the pair (m, (P")?_,), since m represents
the first marginal Py and (P%)!_; represents a fam-
ily of conditional distributions, as we have checked
in last remark. From now on, we will write IP =

(m, (P*)s)-

Next we will show that the family Z,,, = K,,, coincides
with the class of probability measures dominated by
the plausibility measure, P(Pl,,).

Theorem 1. Let Q = {x1,...,2,} be a finite uni-
verse and let m : p(2) — [0,1] a basic mass assign-
ment on it. Let Pl : p(Q) — [0,1] be a plausibility
measure associated tom and let Q : p(2) — [0,1] be a
probability measure dominated by Pl,,, @ € P(Pl,,).

Then there exists a family of mappings {as : A —
0, 1]} acpa) such that
A) = Z as(w), and
weA
QU{w}) =) aa(w), Yw e QACQ.
Adw
Proof: Let us denote by F,, = {A4i,..., A4} the

family of focal sets associated to m. Let us define
the tuple @ = (aa,,...,aa,) as follows. For each
i=1,...,q, let as, : A; — [0,1] be defined as:

N min{aij, bl]} lf Ij S A7
@a,(zj) = {O otherwise,

E A, CL']

where a;; = Q({z;}) —

E OéA, 7).

On the other hand, let aA(gcj) = 0, Vj =
1,....,n,A & F,,. We easily check that the required
equalities hold.

Remark 3. For an arbitrary Q € P(Pl), there exists
at least one tuple & such that Q = Qg. But this as-
sociation is not necessarily unique. Let us consider,
for instance, the universe Q = {w1,wa,ws} and the
mass assignment m : p() — [0,1] such that F,, =
{A1, Ao} where A1 = {wi,wa}, Ay = {wi,wa,ws},
and m(A1) = 0.5 = m(As). Let us now consider
the probability measure Q : (L) — [0,1] such that
Q{w1}) = Q{w2}) = 5/12 and Q({ws}) = 1/6. Let
a=(aa,,aa,) and B = (Ba,,B4,) the tuples of map-
pings defined as follows:

and b;; = m(A

aa, (w1) = aa,(w) = 0.25,

4, (wl) =4, (WQ) = A, (w3) = 1/6
6141 (wl) = 5/127BA2 (wQ) = 1/12a
ﬁAz (W1) = 0761‘\2 (WQ) = 1/376A2 (ng) = 1/6

We easily check that

A) = Z aa(w) = Z Ba(w), VA and
wEA weA

Q({w}) = ZOéA ZﬂA(wL Yw e .
AdSw AdSw



4 Independence concepts in evidence
theory

The notion of independence in evidence theory is stud-
ied from different points of view in the literature. In
[8], for instance, the ideas of decomposability and ir-
relevance are studied and compared within the The-
ory of Evidence. In this paper, we will distinguish
between independence of variables and independence
of their observations. First one is related to the con-
cept of “type 1 independence” ([1]) and the second
one is associated to “random set independence” [2].

In [3], Fetz establishes three different restrictions to
the elements in P(Pl,,). Each one of them is related
to some aspect of independence. Fetz shows some re-
lationships between these restrictions and some other
notions of independence considered in [2]. In this sec-
tion, we will continue this investigations. First of all,
we will recall the notions given by Fetz, but we will
use a different nomenclature. For each definition, we
will give an intuitive interpretation and an example
of of an urn model to which the definition is applied.

4.1 Three conditions of independence

Let my : (1) — [0,1] and msy : p(Q2) — [0,1]
be two arbitrary basic mass assignments. Let us re-
spectively denote by Fy,, = {A1,..., 44} and Fpp, =
{Bi,..., B} their families of focal elements. Let us
now consider a basic mass assignment on 7 X o,
m: (1 x Q2) — [0, 1] satisfying the following con-
ditions:

e The family of focal elements associated to m co-
incides with (or it is included in) F,,, = {4, xB; :
i=1,...,q, j=1,...,1}h

[ ml(Az) = Z;:l m(A1 X Bj), 1= 1, .. q.

[ mg(Bj) = Zg=1 m(Al X Bj), ] = 1, o, T

Let P € P(le) and let IP : p(p(Ql XQQ), 04 XQQ) —
[0,1] be a probability measure satisfying IP; ({C}) =
m(C’),VC’ S p(Ql X QQ) and Pg =P.

For each pair (i,5) € {1,...,q} x {1,...,7}, let P :
(21 x Q9) — [0,1] be defined as follows:

PZJ(C) = P(p(Ql X QQ)|{AZ X B]} X C)

P is a probability measure on Q; x Qs and it sat-
isfies the equality P%(A; x B;j) = 1. According to
Remark 2, IP is univocally determined by the pair
(m, (PY)L_,%5_,) so we can identify them. Further-
more, the probability measure P can be written as

q T
P=>"% m(4; x B;)PY.

i=1 j=1

Let us now show three different definitions of indepen-
dence. They can be applied to probability measures of
the form P = (m, (PY){_,%_,) and they are closely
related to three restrictions established in [3] to the
elements in the class KC,,. Each condition reflects a
different aspect associated to the notion of indepen-
dence, as we will check below.

Definition 1. A probability measure P =
(m, (PY){_,%_,) satisfies first independence condi-
tion if m = mq ©® ma, i.e.

m(AZ X Bj) = ml(Al)
Vi=1,...

- ma(By)
,q, g =1,...,7

This notion is associated to the concept of random set
independence recalled in Section 2. Let us illustrate
this type of independence.

Example 1. Suppose that we have two urns, each of
them with 10 balls. First urn has five red, two white
and three unpainted balls. Second urn has three red,
three white and 4 unpainted balls. We select one ball
from each urn in a stochastically independent way,
and if either one the selected balls are not coloured,
then they are painted white or red by a completely un-
known procedure. There can be arbitrary correlation
between the colours they are finally assigned.

In this example, we are interested in the colours of
the balls we draw from the wrns. So, the universe
of discourse is Q1 x Qo = {r,w} x {r,w}. The fo-
cal elements associated to both selections are Fp,, =
{Al,AQ,Ag} and fmz = {_Bl,.BQ,Bg}7 where A1 =
By = {r}, Ay = By = {w} and A3 = Bz = {r,w}.
The marginal mass assignments for the colours of the
selected balls are:

ml(Al) =0.5 ml(Ag) =0.2
mg(Bl) =0.3 ml(Bg) =0.3

mg(Bg,) =04

The mass assignment associated to the joint experi-
ment satisfies the equalities:

m(AZ X B]) = ml(Al-) 7’)’L2(Bj)7 VZ,j

The class of probability measures representing our
(imprecise) information about the joint experiment is
P(Ply,) = Kpn. Each one of them is associated to a
probability measure IP satisfying first condition of in-

dependence.

Definition 2. A probability measure P =
(m, (PY)L_,%_)) is said to satisfy second inde-
pendence condition if P%¥ P’ ® Py, Vi =
1,...,q, 7=1,...,7 t.e.,

PY(Ax B)=P/’(A) - P(B),

VACQ,BCQy, Vi=1,...,q,Vj=1,...,r



Example 2. Consider the same urns as in exam-
ple 1 and assume again that we select one ball from
each urn in a stochastically independently way. Let
us also assume that, when both selected balls are not
painted, there is no correlation between the colours
they are assigned. If we have no additional informa-
tion, our knowledge about the joint experiment is de-
scribed by the class of probability measures of the form
P=37 2?21 m(A; x B;)PY, where m is the mass
assignment from Example 1, and PY is a probability
measure on 1 X Qo satisfying:

° Pij(A X B) =
©(Q1), B € p(Q2),

PI(A) x PY(B), YA €

o PU(A; x Bj) =1, for each i = 1,2,3 and each
j=1,2,3.

Every probability measure IP = (m, (PY)L_,5_)) as-
sociated to this information satisfies first and second
independence conditions. As we pointed out above,
both balls are selected in a stochastically independent
way. Furthermore, when both selected balls have no
colour, we use separate procedures to paint them. Nev-
ertheless, there can remain some dependence relation.
Let us, for instance assume the following procedure to
assign each colour:

e If only one of the selected balls is coloured, we
will draw a dice to choose the colour of the other
one. If the number in the dice is “5”7, we will
paint it with the same colour. Otherwise, we will
choose the opposite.

o If both selected balls have no colour we will draw
two coins, each one for each ball.

The probability measure, P : p( x Q2) — [0,1],
associated to the joint experiment satisfies both con-
ditions given in definitions 1 and 2. However, it can-
not be erpressed as a product. In fact, there exists
an stochastic dependence between the colours of both
balls. Let us notice, for instance, that

e P({(r,r)}) =0.15402-1+0.09- £ +0.12- 1

o P({r} x Q) =05+0.09-140.09-3+0.12- 3,
and

o P(Q x{r})=03+02-2+0.06-2+0.12-1

Thus, P({(r,7)}) = 0.245 does not coincide with
P({r} xQ2) - P(Q1 x {r}) =0.65 - 0.46.

Definition 3. A probability measure P =

(m, (PY)L_,%_,) satisfies third independence
condition when
Pl=. . . =Pr"=P VYi=1,...,¢ and

Example 3. Suppose again we have the urns in ex-
ample 1. Let us draw a ball from each urn. If some
of the balls is uncoloured, we decide its colour without
checking whether the other one is red, white or un-
coloured. Nevertheless, there can be some dependence
relationship between both colours. Let us, for instance,
consider the following procedure to assign each colour:

e If only one of the balls is coloured, we will toss
a dice. If the number in the dice is “57, we will
paint it red. Otherwise, we will paint it white.

o If both balls are uncoloured, we will toss the same
dice to decide their colour. If the number in the
dice is 5, we will paint both of them red. Other-
wise, we will paint them white.

The probability measure, IP = (m, (P7){_, i_,), asso-
ciated to the joint experiment satisfies the conditions
given in definitions 1 and 3. Nevertheless, the prob-
ability measure that models the joint experiment (the
probability measure QQ = Z§:1 Zle m(A; x Bj)P%Y)
cannot be written as the product of its marginals. For
instance, the probability of the result (r,r) is, approz-
imately, 0.22. On the other hand Q({r} x Q3) = 0.55
and Q1 x {r}) =~ 0.37. Hence, Q({(r,r)}) does not
coincide with the product Q({r} x Q2) - Q(Q1 x {r}).

Summarizing, each condition reflects a different as-
pect of the notion of independence. First condition
(random set independence) reflects independence be-
tween the procedures used to select both balls from
the urns. In last examples, this condition is satis-
fied, because each ball is selected from a different urn,
in a stochastically independent way. Second condi-
tion reflects independence between the procedures to
paint both balls, once they have been selected. Fi-
nally third condition reflects independence between
the procedure used to select one ball from a urn and
the procedure used to paint the other ball, once it has
been selected.

In examples 1, 2 and 3 we show situations where
some, but not all of these conditions are satisfied, and
P = I[P, cannot be written as a product. If IP =
(m, (PY){_,%_,), satisfies conditions 1 to 3 then the
probability measure P = IP, = >/, 22:1 m(A4; x
Bj)Pij can be factorized as P = P; ® Py, as Fetz
checks in [3]. Conversely, we easily check that every



product probability P = P} ® P, where P; € P(Pl,,,)
and P, € P(Pl,,,) can be written as P = P, =

i1 2251 m(A; x Bj)PY, where IP satisfies condi-
tions given in Definitions 1, 2 and 3. In next section
we will make a further study about the connection
between conditions 1 to 3 and independence in the
selection.

4.2 Independence in the selection

As we pointed out in last subsection, any proba-
bility measure P = P; ® P, with P, € P(Pl,,),
P, € P(Pl,,,) is associated to a probability measure
IP satisfying independence conditions given in last
section. In other words, it can be written as a linear
convex combination P =337 | 37" m(A; x B;)P",
where m = my ® mo and P9 = Pf@PQj, Vi=1=
1,...,q, 7=1,...,7. On the other hand, we can use
different linear convex combinations and get the same
probability measure, as we have checked in Remark 3.
So we can ask ourselves whether we can find an alter-
native linear convex combination

q T
P=>"% "m'(4; x B;)Q",
i=1 j=1
where IP = (m/,{Q7}]_,%_,) does not satisfy the
requirements considered in definitions 1, 2 and 3. In
fact, it is possible, as we show below.

Example 4. Suppose we have two wurns, each one
with 10 balls. The two of them have five red, and five
unpainted balls. We select one ball from the first urn
and then we select a similar ball (red or uncoloured)
from the second urn. (There is stochastic dependence
between both selections.) Once we have selected both
balls, we use the following procedure to paint them
in case they are uncoloured: we toss three coins, and
check the number of heads:

o [f the number is 3, we paint both balls with the
colour red.

o [f the number of heads is 2, we paint the first ball
red, and the second one, white.

o [f the number of heads is 1, we paint the first ball
white, and the second one, red.

o Finally, if three tails are obtained, we paint white
both of them.

The probability measure that models this random ex-
periment can be written as:

P =m(A; x By) P"* + m(Ay x By) P?2,

where Ay = By = {r}, As = By = {r,w},
m(A1 X Bl) = m(A2 X BQ) = 0.5 and
P =(1,0,0,0) and P** = (1/8,3/8,3/8,1/8).

There does not exist m1 and mo such that m = m; ©®
my. On the other hand, each P cannot be factorized
as P = P{®Pj. In other words, m and {P7}7_, 5_,
do not satisfy the requirements from definitions 1
and 2. (It has no sense to check condition 3, since
P}2, P32, P2 and P§* can be arbitrarily defined.)
Nevertheless, P coincides with the product of its
marginals. In fact, P({(r,7)}) =9/16, P({(r,w)}) =
P{(w,r)}) = 3/16, and P({(w,w)}) = 1/16, and
hence P(A x B) = P1(A) P,(B), VA, B C {r,w}.

Since the probability measure that models last exper-
iment can be written as a product, there must exists
an alternative linear convexr combination,

P=3"% ma(A)ma(B;)QY, @)

i=1j=1

where QY = Q} ® Q%,Vi,j. In fact, last experiment
1s equivalent to the following one: suppose we have
two urns, each one with 10 balls. The two of them
have five red, and five unpainted balls. We select
one ball from each urn in a stochastically indepen-
dent way. If some of the balls is uncoloured, we
toss a coin to decide its colour (one coin for each
ball). The probability measure associated to this new
random experiment coincides with P and it can be
written, in a natural way as in equation 2, where:
ml(Al) = ml(Ag) = mg(Bl) = mQ(BQ) = 057
Q;({r} =Q;({w}) =0.5,i=1,2, k=1,2.

In last example, we have built a product probability
measure P = P; ® P, without having into account any
of the requirements given in definitions 1 to 3. We can
also get a product probability by using some or these
rules, but not all of them. In next example, we will
only take into account the requirement from definition
1, and we will get a product probability measure.

Example 5. Consider a urn with 10 balls. Five of
them are red, and the other five are unpainted. Sup-
pose that a ball is drawn at random from the urn and
replaced, and then a second ball is drawn at random,
and the two drawings are stochastically independent.
Once both balls are selected from the urn, we consider
the following procedure to paint them:

e If both balls are red, we do not need to do any-
thing.

e If the first ball is red and the second one is un-
coloured, we paint it red with probability 5/8 and
white, with probability 3/8.



o [f the second ball is red and the first one is un-
coloured, then we paint it red with probability 1/2
(and white, with the same probability).

o Finally, if both balls are unpainted, we assign
them the pairs of colors (red, red), (red, white),
(white, red), (white, white) with respective prob-
abilities (1/8, 3/8, 1/4, 1/4).

The probability measure, P, that models the joint ex-
periment can be written as

P =

2
1=

Zm(Ai x Bj) PY, where
145=1
Ay =B ={r}, A> =By = {r,w},
m(A1 X Bl) = ’I’)’L(Al X BQ) = m(A2 X Bl) =
m(AQ X Bg) = 0.25 and

P =(1,0,0,0) P?2= (§ §,0,0)
P21E(%70’%’0) P22E(§7§7%7%)'

The probability measure IP = (m, (P¥)%_, ?:1) sat-
isfies first condition of independence, but it does not
satisfy the second and the third ones. On the other
hand, the probability measure P = 25:1 Z?:I m(A; X
B;) P can be identified with the tuple

PE gﬂiﬂi7i )
1616 16’ 16

so it can be factorized as

P=P ®P=(3/4,1/4) ® (3/4,1/4).

We can also build some IP satisfying the requirements
from definitions 2 and 3, but not the property from
definition 1, and such the probability measure P = IP»
can be written as the product of its marginals. Let us
show it in next example:

Example 6. Suppose that we have three urns. First
one has 8 balls: one white, one red and one un-
coloured. Second urn has two balls: one red and one
white. Third urn has two unpainted balls. We select
one ball from the first urn. If it is coloured, we select
another ball from second urn. If, otherwise, it is un-
coloured, we select a ball from the second urn. Once
the balls have been selected, we drop two coins to de-
cide their colour (if they are uncoloured), one coin for
each ball.

The probability measure that models this erperiment
can be written as:

3 3
P=>" "m(A; x Bj)P{ ® Pj, where
i=1 j=1

Ay =By ={r}, Ay = By = {w}, A3 = B3 = {r,w},

the mass assignment m is determined by:

By | By | Bs
A [ 1/6 [ 1/6 ] 0
A, [ 1/6 [ 1/6] 0
A |0 | 0 [1/3

and the marginal probability measures defined on each
focal are:

The mass assignment m cannot be written as the
product of its marginals, i.e., m # my ® msy. So,
P = (m,{P7}}_,3_,) does not satisfy the condition
described in definition 1. But it satisfies the con-
ditions described in definitions 2 and 3. (There is
independence inside the focal elements, but not be-
tween focals.) On the other hand, we easily check
that P({(r.1)}) = PU(rw)}) = P({(w.r)}) =
P{(w,w)}) = 0.25. So P can be factorized as the
product of its marginals. In fact:

P =(0.25,0.25,0.25,0.25) =

(0.5,0.5) ® (0.5,0.5) = P, @ P.

4.3 Random set independence and
independence in the selection

Let my : p(©1) — [0, 1], m2 : p(22) — [0,1] two arbi-
trary mass assignments and let m : p(Q; x Q) —
[0,1] satisfy m(A x Q2) = my(A4), m( x B) =
mq(B),YA C Q;,B C Q3. As we have pointed
out in Section 4.1, the class of probability mea-
sures P = Y1 30 m(A; x Bj)PY, where IP =
(m, (PY){_, _,) safisties the three conditions consid-
ered in last definitions coincides with the family of
product probability measures:

{PP®Py: P € P(Ply,), P> € P(Ply,)}.

On the other hand, we easily check that the class of
probability measures P = Y7, 37| m(A; x B;j)PY
where IP = (m, PY)]_, %_,) satisties the first condi-
tion coincides with P(Pl,,, om, ). Thus, the following
inclusion holds:
{PL® Py : P € P(Ply,,), P, € P(Pl,,)}

- P(P1m1®m2) (3)



The left hand side is associated to type 1 indepen-
dence. The right hand side is related to random
set independence. We may ask ourselves whether
the inclusion in equation 3 is strict or not, for any
pair of mass asignments mj,mo. Let us notice that
the probability measure P = (m,(PY){L_,%_)) in
example 5 satisfies the first condition of indepen-
dence, but it does not satisfy the second and the
third ones. Nevertheless, the probability measure
P =P =] 5" mA ® B;j)PY can be fac-
torized as P = P; ® P,, and hence it belongs to the
class {PL® P, : P € P(Pl,,), P> € P(Pl,)}. So,
we ask ourselves

Does there exists some pair m1, mq such that
any

P=3%% mi(A;) ma(B;)PY

i=1j=1

can be written as the product of its
marginals, P = P; ® P?

The answer is “no”, except for the cases where m;y
and mgy represent trivial situations. Let us show the
following result:

Theorem 2. Let us consider two finite universes 2y
and Qo and two arbitrary mass assignments my

p(21) — [0,1] and ma : p(Qs) — [0,1]. Let m be the
“product mass assignment”, i.e. m : p(Q x Q) —
[0,1] such that m(A x B) = my(A) - ma(B), YA, B.
Let us assume that P(Pl,,) coincides with the family:

{P1 QR Py, : P e P(le1)7 P, e P(lez)}

Then, some of the following conditions holds:

e Pl,,, and Pl,,, are probability measures (they are
additive).

e Pl,, orPl,, is a degenerate probability measure
(Le., al least one of the families F,, or Fu,, has
only one focal with only one element.)

Proof: (Sketch) Let us assume that Pl,,, is not a de-
generate probability measure. Then there exists B C
Oy and Q2 € P(Pl,,,) such that Q2(B) € (0,1). Let A
be an arbitrary subset of 1 and let Py, Q1 € P(Pl,,,)
such that P;(A) = Pl,,, (A) and Q1(A) = Bel,,, (A4).
(The existence of such P;, Q1 and @y is easily
checked.) Let &, & and 3 be respectively associated
to each one of them. Let ¥ = (7i;)i=; 5=, be defined
as ij(z,y) = ai(x)B;(y) Is(y) + oi(x)B;(y) Ie(y)-
We can check that 4 represents a probability mea-
sure, R, on 1 x Q9 such that (a) R € P(Pl,),

(b) R2 = QQ, RQ(A X B) = Pl(A)QQ(B) and (C)
Ry(A x B®) = Q1(A)Q2(B). We easily derive that
Pl (A) = Pi(A) = Q1(4) = Bel,,, (A4). Since A is
an arbitrary set, we conclude that Pl,,, is a additive.

5 Conclusion and open problems

We have considered three rules to build probabil-
ity measures on product spaces in Evidence Theory
framework. Each one of them reflects a particular as-
pect of independence, as we illustrate in Examples 1, 2
and 3. They are simple examples about drawing pairs
of balls from urns. As we show there, first condition
reflects that the selections of both balls are indepen-
dent. Second condition means that there is indepen-
dence between the procedures of painting the balls,
for a particular selection of a pair of balls. Finally,
third condition reflects independence between the se-
lection of a ball and the procedure used to choose the
colour to paint the other ball.

In a more general and applied context, first condi-
tion is related to the idea of independence between
mechanisms of observation of variables. If we add
second and third conditions, independence between
the actual variables holds. But, as we have checked
in Examples 4, 5 and 6, none of these conditions
is strictly necessary to guarantee this independence.
When there is no imprecision in the observations, sec-
ond and third conditions do not apply (they are triv-
ially satisfied when the focals are singletons). In that
case, independence between the variables and between
their observations are the same (perception and re-
ality do coincide). But when imprecision appears,
there is no an implication relationship between inde-
pendence of the observations and independence of the
variables.

All these ideas can be extended to non finite universes.
In the general context, pairs of upper and lower prob-
abilities associated to multi-valued mappings play the
role of pairs of plausibility-belief functions. Further-
more, the probability measures induced by the selec-
tions of the multi-valued mapping are dominated by
its upper probability. So, in the general context, the
mass assignment m : (0 X 2) — [0, 1] will be re-
placed by a multi-valued mapping ' =T xI's : A —
@(Ql X Qg), such that F()\) = Fl(A) X Fg(}\) (The
images of the multi-valued mapping play the role of
the focal sets of the basic mass assignment.) Further-
more, each probability measure on 1 x5 induced by
a selection (X1, X2) is dominated by the upper proba-
bility of I'. Hence, the finite tuple of probability mea-
sures (P*){_, *_; will be replaced by the conditional
distribution of (X7, X3) given I'. In this new setting,
we will say that first condition of independence is sat-



isfied when I'y and I's are stochastically independent
(random set independence). Second condition will be
satisfied when X; and X5 are conditionally indepen-
dent, given I'. Finally, third condition will be sat-
isfied when X7 and I'y are conditionally independent
given I'y and X5 and I'; are conditionally independent
given T's. In this general context, there is indepen-
dence in the selection when X; and X5 are stochasti-
cally independent. We intuitively observe that when
the three conditions are satisfied, then X; are X5 are
stochastically independent. But the converse is not
true. Furthermore, there is no implication relation-
ship between the independence of 'y and I's (random
set independence) and the independence between X
and X, (independence in the selection), as it happens
in the finite case.
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