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Abstract

In this paper we consider conditional prevision as-
sessments on random quantities with finite set of pos-
sible values. After some preliminaries, we give the
notions of generalized coherence and total coherence
for imprecise conditional prevision assessments on fi-
nite families of conditional random quantities. Then,
we examine some results on total coherence of such
conditional previsions under different assumptions for
the conditioning events. We first consider the case of
logically incompatible conditioning events; then, we
examine the case of logical independence. Finally, we
examine the general case in which there may be some
logical dependencies among the conditioning events.
We show that in this case the property of total coher-
ence is generally lost, while it is always valid a connec-
tion property. By exploiting such property, we obtain
suitable totally coherent sets of conditional prevision
assessments. We also give a necessary and sufficient
condition of total coherence for interval-valued condi-
tional prevision assessments.

Keywords. conditional random quantities, imprecise
conditional prevision assessments, generalized coher-
ence, total coherence, connection property.

1 Introduction

The probabilistic treatment of uncertainty plays a rel-
evant role in many applications of Artificial Intelli-
gence, e.g. reasoning under uncertainty with a vague
and partial information. In these applications typ-
ically the set of conditional events and/or random
quantities at hand doesn’t have any particular alge-
braic structure. Then, to obtain a flexible and con-
sistent probabilistic approach we can use imprecise
conditional probability and/or conditional prevision
assessments, by exploiting suitable generalization of
the coherence principle of de Finetti, or similar prin-
ciples like that ones adopted for lower/upper proba-
bilities and/or previsions (see, e.g., [1], [2], [5], [6], [7],

[10], [14], [15], [17], [18], [19]).
In this paper we examine interval-valued conditional
prevision assessments on finite families of conditional
random quantities having a finite set of possible val-
ues. Even if this is not the more general case from a
theoretical viewpoint, notwithstanding it is surely im-
portant in many applications. We use a notion of gen-
eralized coherence (g-coherence) which is equivalent
to avoiding uniform loss property (AUL) introduced
by Walley for lower previsions. We first recall some
results on precise and imprecise conditional probabil-
ity assessments on finite families of conditional events
([3], [4]). Then, we obtain some results concerning
the more general case of conditional prevision assess-
ments on finite families of conditional random quan-
tities; in particular, we illustrate a connection prop-
erty of the set Πn of coherent conditional prevision
assessments on a family Fn of n conditional random
quantities. Such a property may be important when
we want to determine conditional prevision assess-
ments which are intermediate between other assess-
ments which are judged too extreme, or not reason-
able in some sense. For instance, we can imagine that
we have two different assessments M′,M′′, given by
two experts, on the same family Fn, but we want
determine some assessment M which is intermediate
between M′ and M′′. Then, the connection property
assures us that we can choose M on a suitable curve
C, each point of which is a generalized convex com-
bination of the extreme points M′,M′′; we observe
that in general C could be constructed in an infinite
number of ways. It would be interesting to investigate
possible applications of the connection property in de-
cisional problems where there are several probability
assessors; but, the deepening of this aspect and a com-
parison with other approaches to imprecise probabil-
ities is out of the scope of this paper. By exploiting
the connection property, we obtain theoretical results
on totally coherent sets of conditional prevision as-
sessments. We observe that, given a family of n con-
ditional random quantities Fn, the total coherence of



a set S ⊆ IRn means that, for every M∈ S, the point
M is a coherent conditional prevision assessment on
Fn. In particular, we obtain a necessary and suffi-
cient condition of total coherence for interval-valued
conditional prevision assessments. This property as-
sures that, considering the interval I associated with
an interval-valued conditional prevision assessment on
a family of random quantities, if each vertex of I is
a coherent (precise) conditional prevision assessment,
then every point M ∈ I is coherent too. This allows
to choose, if needed, in a very flexible way a precise
conditional prevision assessment M ∈ I, being sure
that M is coherent.
We recall that an extension of a totally coher-
ent interval-valued conditional probability assessment
doesn’t always exist ([12]); however, while the ”least-
committal” coherent interval-valued assessment ”ap-
proximates” and contains the set Πn of the coherent
precise assessments on Fn, in a dual way we could use
(when possible) a suitable union of totally coherent
interval-valued assessments, with the aim of approxi-
mating Πn by a subset of it.
The paper is organized as follows. In Section 2 we
recall some preliminary notions on precise and impre-
cise conditional probability and/or prevision assess-
ments. Then, we give the notion of g-coherence for
interval-valued prevision assessments, by remarking
its equivalence with the notion of AUL lower previ-
sions. In Section 3, after some preliminary aspects,
we define the notions of g-coherence and of total co-
herence for a set of conditional prevision assessments.
In Section 4 we give a result on totally coherent sets
of conditional prevision assessments when the condi-
tioning events are logically incompatible. In Section
5, after an introductory example, we give a result
on coherent conditional probability assessments un-
der suitable hypotheses of logical independence; then,
we obtain a result on total coherence of conditional
prevision assessments. In Section 6 we examine the
general case in which among the conditioning events
there exist some (possibly partial) logical dependen-
cies. We show by an example that the property of to-
tal coherence is lost. Then, we give a theoretical result
concerning a connection property which assures that,
given two coherent conditional prevision assessments
M′,M′′, we can construct (in general, in an infinite
number of ways) a curve C each point of which is a
coherent intermediate assessment between M′,M′′.
In Section 7, exploiting the connection property, we
give some further results on total coherence; in par-
ticular, we obtain a necessary and sufficient condition
of total coherence for interval-valued conditional pre-
vision assessments. Finally, in Section 8 we give some
conclusions and comments on possible further devel-
opments of the work.

2 Some preliminary notions

We give some preliminary notions on coherence and
generalized coherence of precise and imprecise condi-
tional prevision assessments on finite families of con-
ditional random quantities. We assume that each ran-
dom quantity has a finite set of possible values. We
denote by Ac the negation of A and by A ∨B (resp.,
AB) the logical union (resp., intersection) of A and B.
We use the same symbol to denote an event and its in-
dicator. For each integer n, we set Jn = {1, 2, . . . , n}.

2.1 Precise conditional prevision
assessments

Given a real function P defined on an arbitrary fam-
ily of conditional random quantities K, let Fn =
{Xi|Hi, i ∈ Jn} be a finite subfamily of K and Mn

the vector (µi, i ∈ Jn), where µi = P(Xi|Hi). With
the pair (Fn,Mn) we associate the random gain Gn =∑

i∈Jn
siHi(Xi − µi), where s1, . . . , sn are arbitrary

real numbers and H1, . . . ,Hn denote the indicators of
the corresponding events. We set Hn = H1∨· · ·∨Hn;
moreover, we denote by Gn|Hn the restriction of Gn

to Hn. Then, using the betting scheme of de Finetti
(see, e.g., [13]), we have
Definition 1. The function P is coherent if and
only if, ∀n ≥ 1, ∀Fn ⊆ K, ∀ s1, . . . , sn ∈ R, it is
sup Gn|Hn ≥ 0.

We denote by Πn the set of coherent conditional pre-
vision assessments on Fn. Given two points

M′ = (µ′i, i ∈ Jn) ∈ Πn , M′′ = (µ′′i , i ∈ Jn) ∈ Πn ,

we set

µm
i = min {µ′i, µ′′i } , µM

i = max {µ′i, µ′′i } ,
Mm = M′ ∧M′′ = (µm

i , i ∈ Jn) ,
MM = M′ ∨M′′ = (µM

i , i ∈ Jn) .
(1)

Moreover, given any pair of points

x = (xi, i ∈ Jn), y = (yi, i ∈ Jn) ,

we set x ≤ y if and only if xi ≤ yi, ∀ i ∈ Jn.
Then, Mm ≤MM , for every M′,M′′.
In particular, given two probability assessments

P ′ = (p′i, i ∈ Jn) , P ′′ = (p′′i , i ∈ Jn)

on n conditional events E1|H1, . . . , En|Hn, as in (1)
we set

Pm = P ′ ∧ P ′′ , PM = P ′ ∨ P ′′ .

We remark that, given any point P = (pi, i ∈ Jn),
we have Pm ≤ P ≤ PM if and only if there exists a
vector ∆ = (δi, i ∈ Jn) ∈ [0, 1]n such that

pi = (1− δi)p′i + δip
′′
i , i ∈ Jn .



In this case we say that P is a generalized convex
combination of P ′,P ′′. Below, we recall (in a slightly
modified version) a result given in [3] which concerns
conditional events.

Theorem 1. Let P ′ = (p′i, i ∈ Jn), P ′′ = (p′′i , i ∈
Jn) be two coherent probability assessments defined
on Fn = {Ei|Hi, i ∈ Jn}. There exists a continuous
curve Γ with extreme points P ′,P ′′ such that:
(i) each P ∈ Γ is a generalized convex combination of
P ′,P ′′, i.e. Pm ≤ P ≤ PM ; (ii) Γ ⊆ Πn.

Theorem 1 assures that, for every pair of coherent as-
sessments P ′,P ′′ on Fn, we can construct (at least)
a continuous curve Γ ⊆ Πn (from P ′ to P ′′) whose
points are intermediate coherent assessments between
P ′ and P ′′. We remark that in general the number of
such curves is infinite.
Theorem 1 will be generalized to the case of condi-
tional random quantities by Theorem 4.
By Theorem 1, we obtain

Corollary 1. Given any quantities p1, . . . , pi−1,
li ≤ ui, pi+1, . . . , pn, let us define

P ′ = (p1, . . . , pi−1, li, pi+1, . . . , pn) ,
P ′′ = (p1, . . . , pi−1, ui, pi+1, . . . , pn) .

Moreover, let I = P ′P ′′ be the segment
{(p1, . . . , pi, . . . , pn) : li ≤ pi ≤ ui}, with set of ver-
tices V = {P ′,P ′′}. Then: I ⊆ Πn ⇐⇒ V ⊂ Πn.

We remark that Corollary 1 is also an immediate con-
sequence of the extension theorem for coherent condi-
tional probabilities. Conversely, as shown in [3], the
extension theorem can be obtained by Corollary 1 and
the closure property of coherent conditional probabil-
ity assessments.

2.2 Interval-valued conditional prevision
assessments

Let An = ([li, ui], i ∈ Jn) be any interval-valued
conditional prevision assessment on a family Fn =
{Xi|Hi, i ∈ Jn}. We give below a notion of gen-
eralized coherence (g-coherence), already used in [1]
for the case of conditional events (and simply named
’coherence’ in [9]).

Definition 2. An interval-valued conditional previ-
sion assessment An = ([li, ui], i ∈ Jn), defined on
a family of n conditional random quantities Fn =
{Xi|Hi, i ∈ Jn}, is g-coherent if there exists a coher-
ent precise conditional prevision assessment Mn =
(µi, i ∈ Jn) on Fn, with µi = P(Xi|Hi), which is con-
sistent with An, that is such that li ≤ µi ≤ ui for
each i ∈ Jn.

Remark 1. Notice that, as P(Xi|Hi) ≤ ui amounts
to P(−Xi|Hi) ≥ −ui, g-coherence can be expressed
by using only lower bounds. Then, g-coherence means
that there exists a dominating coherent precise pre-
vision and hence it is equivalent to avoiding uniform
loss property of lower previsions given in [17]. Below
we briefly comment on such equivalence. We recall
that a lower prevision P on a family of conditional
random quantities K avoids uniform loss (AUL) if,
for every

Fn = {X1|H1, . . . , Xn|Hn} ⊆ K ,

defining P (Xi|Hi) = li , i ∈ Jn and

Gn =
n∑

i=1

siHi(Xi − li) , Hn = H1 ∨ · · · ∨Hn ,

the inequality sup Gn|Hn ≥ 0 is satisfied for every
s1 ≥ 0, . . . , sn ≥ 0. By exploiting the conjugacy con-
dition P (X|H) = −P (−X|H), we can express upper
previsions in terms of lower previsions. As is well
known, every AUL conditional prevision assessment
admits the natural extension (see, e.g., [18]) which,
being coherent, is a lower envelope of a set of coher-
ent precise previsions (see [19], and for a review of
this basic paper see [16]) which dominate the natural
extension and hence the AUL assessment too. Con-
versely, as AUL property is given in terms of gains, it
can be verified that every assessment dominated by a
precise prevision is AUL.
A different method to show the equivalence between
g-coherence and AUL property of a lower prevision as-
sessment on a finite family K of conditional random
quantities, is based on the following two steps:
(i) for each F ⊆ K, let G and H be respectively the
random gain and the union of conditioning events as-
sociated with F . Then, by an alternative theorem
([8], Th. 2.10) it can be verified that the condition
sup G|H ≥ 0 is equivalent to solvability of a suitable
linear system Σ associated with F ;
(ii) it can be shown that the given lower prevision as-
sessment is g-coherent if and only if, for each F ⊆ K,
the associated system Σ is solvable.
This alternative method may be useful in real appli-
cations as, using a finite number of linear systems, we
may construct, for the conditional random quantities
in K, a probability distribution assessment consistent
with the given lower prevision assessment.

We denote by =n the set of g-coherent interval-valued
conditional prevision assessments on Fn. We recall
below (in a slightly modified version) a result (see
[4], Theorem 12) which generalizes Theorem 1 to the
case of interval-valued conditional probability assess-
ments, by showing how to construct an infinite class



of interval-valued assessments An = ([li, ui], i ∈ Jn)
which are intermediate between two given interval-
valued assessments

A′
n = ([l′i, u

′
i] , i ∈ Jn) , A′′

n = ([l′′i , u′′i ], i ∈ Jn) ;

this means that there exists a vector ∆ = (δi, i ∈
Jn) ∈ [0, 1]n such that

li = (1−δi)l′i +δil
′′
i , ui = (1−δi)u′i +δiu

′′
i , i ∈ Jn .

As already made in the case of precise probability
assessments, we say that An is a generalized convex
combination of A′

n,A′′
n, also denoted by A∆.

Theorem 2. Let be given two g-coherent interval-
valued assessments A′

n = ([l′i, u
′
i], i ∈ Jn), A′′

n =
([l′′i , u′′i ], i ∈ Jn), on a family of n conditional events
Fn = {Ei|Hi, i ∈ Jn}. Then, we can construct an infi-
nite class Υ of interval-valued probability assessments
on Fn such that: (i) each An ∈ Υ is a generalized con-
vex combination between A′

n,A′′
n; i.e., An = A∆ for

some ∆ = (δi, i ∈ Jn) ∈ [0, 1]n; (ii) An ⊆ =n.

By Theorem 2, we can move in a continuous way from
A′

n to A′′
n; then, by analogy with Theorem 1, we can

say that A′
n,A′′

n are connected by the interval-valued
probability assessments contained in Υ.

3 Some preliminary aspects

We recall that we consider random quantities with
finite sets of possible values. Let X be a random
quantity, with X ∈ X = {x1, . . . , xn}. We denote by
Ei, the event (X = xi), i ∈ Jn. Moreover, given any
event H 6= ∅, for each i we set pi = P (Ei|H); then, for
the prevision of X|H we have P(X|H) =

∑
i pixi. Of

course, the coherence of a given assessment P(X|H) =
µ amounts to the existence of a nonnegative vector
(p1, . . . , pn), with

∑
i pi = 1, such that

∑
i pixi = µ.

In equivalent terms, observing that EiH = ∅ implies
pi = 0 and denoting by XH ⊆ {x1, . . . , xn} the set of
possible values of X compatible with H, µ is coherent
if and only if the following condition is satisfied

minxi∈XH
xi ≤ µ ≤ max xi∈XH

xi . (2)

We denote by IH the interval with vertices having the
values minxi∈XH

, maxxi∈XH
; i.e. we set

IH = [minxi∈XH
xi , maxxi∈XH

xi] . (3)

Of course, given two coherent assessments P(X|H) =
µ′, P(X|H) = µ′′, it is [µ′, µ′′] ⊆ IH ; hence, the as-
sessment P(X|H) = µ is coherent, ∀µ ∈ (µ′, µ′′).
Given any pair of events H,K, we set P(X|H) =
µH , P(X|K) = µK . As noted above, the coherence of
µH (resp. µK) amounts to µH ∈ IH (resp. µK ∈ IK).

We set IHK = IH × IK . Of course, given an assess-
ment M = (µH , µK) on {X|H,X|K}, the coherence
of M amounts to the existence of two nonnegative
vectors (p1, . . . , pn), (π1, . . . , πn), with∑

i

pixi = µH ,
∑

i

πixi = µK ,
∑

i

pi =
∑

i

πi = 1 ,

such that the assessment (p1, . . . , pn, π1, . . . , πn) on
{E1|H, . . . , En|H,E1|K, . . . , En|K} is coherent.
We recall that, if EiH = ∅ (resp. EiK = ∅), then
pi = 0 (resp. πi = 0).
More generally, given n events H1, . . . ,Hn and n ran-
dom quantities X1, . . . , Xn, we denote by XHr

=
{xr1, . . . , xrkr} the set of values of Xr compatible with
Hr; then, for each r ∈ Jn, we set

Ir = [minxrj∈XHr
xrj , maxxrj∈XHr

xrj ] (4)

and I1···n = I1 × · · · × In. Then, based on Definition
2 we give the following

Definition 3. Let S be a subset of the interval I1···n.
We say that S is g-coherent if there exists M =
(µ1, . . . , µn) ∈ S such that M is a coherent condi-
tional prevision assessment on {X1|H1, . . . , Xn|Hn};
in this case we simply say that M is coherent. We
say that S is totally coherent if, for every M∈ S, M
is coherent.

We remark that in general the checking for total co-
herence of an (arbitrary) set S may be intractable,
while the situation is different for the case of interval-
valued assessments. In particular, considering the
case of conditional events, let be given an interval-
valued assessment An = ([l1, u1], . . . , [ln, un]) on a
family of n conditional events Fn and the associated
interval and set of vertices

I = [l1, u1]×· · ·×[ln, un] , V = {l1, u1}×· · ·×{ln, un} .

Then, a necessary and sufficient condition of total co-
herence for I, obtained in [11], is given below.

Theorem 3. Given an interval-valued probability as-
sessment An = ([l1, u1], . . . , [ln, un]) on Fn, one has
I ⊆ Πn if and only if V ⊆ Πn.

This necessary and sufficient condition says that total
coherence of the interval I is equivalent to coherence
of each of its vertices.

4 Logically incompatible conditioning
events

In this section we give a result on totally coherent con-
ditional prevision assessments when the conditioning
events are logically incompatible. We have



Proposition 1. Given the conditional random quan-
tities X1|H1, . . . , Xn|Hn, let Ij be the interval associ-
ated with the set of possible values of Xj compatible
with Hj , j ∈ Jn. Moreover, let I1···n denote the in-
terval I1× · · · × In. If HiHj = ∅ for every i 6= j, then
I1···n is totally coherent.

Proof. Given any M = (µ1, . . . , µn) ∈ I1···n, we have
µj ∈ Ij , j ∈ Jn; hence µ1, . . . , µn are (separately)
coherent. Then, there exist n nonnegative vectors

(pi1, . . . , piki) , i ∈ Jn ,

such that

ki∑
j=1

pij = 1 ,

ki∑
j=1

pijxij = µi , i ∈ Jn .

Based on well known results, it follows that the prob-
ability assessment

(p11, . . . , p1k1 , . . . , pn1, . . . , pnkn
)

on the family of conditional events

{A11|H1, . . . , A1k1 |H1, . . . , An1|Hn, . . . , Ankn |Hn}

is coherent; hence M is coherent. Therefore, I1···n is
totally coherent.

We remark that the previous result can be related to
the notion of separate coherence given in ([17], 6.2.2)
for the case of conditioning events belonging to a finite
partition of the sure event.
By our result we have that, when the conditioning
events are logically incompatible, separate coherence
implies total coherence.

5 Logically independent conditioning
events

In this section we relax the assumption of logical in-
compatibility among conditioning events, by assum-
ing some suitable hypotheses of logical independence.
We recall that n events E1, . . . , En are defined logi-
cally independent if and only if the number of con-
stituents is maximum, that is 2n. We first give an
introductory example.

Example 1. Let be given four events A1, A2,H1,H2

satisfying the following logical conditions:
(i) A1 and A2 are logically incompatible;
(ii) A1,H1,H2 are logically independent;
(iii) A2,H1,H2 are logically independent.
It could be shown that every non negative vector
(p1, p2, π1, π2) such that p1 + p2 ≤ 1, with

p1 + p2 = 1 if Ac
1A

c
2H1 = ∅ ,

and π1 + π2 ≤ 1, with

π1 + π2 = 1 if Ac
1A

c
2H2 = ∅ ,

is a coherent probability assessment on the family of
conditional events {A1|H1, A2|H1, A1|H2, A2|H2}.

More in general, we have

Lemma 1. Let be given k + n events A1, . . . , Ak,
H1, . . . ,Hn satisfying the following logical conditions:
(i) A1, . . . , Ak are logically incompatible;
(ii) for each index i ∈ Jk the events Ai,H1, . . . ,Hn

are logically independent.
Then, given any n nonnegative vectors

(p(1)
1 , . . . , p

(1)
k ) , . . . , (p(n)

1 , . . . , p
(n)
k ) ,

such that
∑

i p
(r)
i ≤ 1, with

∑
i p

(r)
i = 1 if

Ac
1 · · ·Ac

kHr = ∅, r ∈ Jn, the probability assessment

P = (p(1)
1 , . . . , p

(1)
k , . . . , p

(n)
1 , . . . , p

(n)
k )

on

F = {A1|H1 , . . . , Ak|H1 , . . . , A1|Hn , . . . , Ak|Hn}

is coherent.

Proof. Given any sub-family F ′ ⊆ F , we denote by
P ′ the associated sub-assessment of P and by G′ the
random gain associated with the pair (F ′,P ′). More-
over, we denote by H′ the union of those conditioning
events Hj ’s such that Ai|Hj ∈ F ′ for some index i; in
particular, we set H = H1 ∨ · · · ∨Hn. We will verify
the coherence condition

sup G′|H′ ≥ 0 , ∀F ′ ⊆ F ,

by the following steps:
1. We preliminarily observe that each nonnegative
vector Pr = (p(r)

1 , . . . , p
(r)
k ) such that

∑
i p

(r)
i ≤ 1,

with
∑

i p
(r)
i = 1 if Ac

1 · · ·Ac
kHr = ∅, is a coherent as-

sessment on the sub-family Fr = {A1|Hr, . . . , Ak|Hr};
so that, denoting by Gr the random gain associated
with the pair (Fr, Pr), it is

sup Gr|Hr ≥ 0 , ∀ r ∈ Jn .

For each h ∈ Jk we denote by g
(r)
h the value of Gr|Hr

associated with the constituent

HrA
c
1 · · ·Ac

h−1AhAc
h+1 · · ·Ac

k ;

moreover, if HrA
c
1 · · ·Ac

k 6= ∅, we denote by g
(r)
k+1 the

corresponding value of Gr|Hr. Hence

sup Gr|Hr = suph g
(r)
h ≥ 0 .



2. By the logical assumptions, the set of constituents
associated with the pair (F ,P) contains, for each r ∈
Jn, the following ones

(
∧
j 6=r

Hc
j )HrA

c
1 · · ·Ac

h−1AhAc
h+1 · · ·Ac

k , h ∈ Jk ,

denoted C
(r)
1 , . . . , C

(r)
k , and, if not impossible, the fur-

ther constituent

C
(r)
k+1 = (

∧
j 6=r

Hc
j )HrA

c
1 · · ·Ac

k .

We make two remarks:
a) the gains associated with the constituents above
are

s
(r)
1 −

k∑
i=1

p
(r)
i s

(r)
i , . . . , s

(r)
k −

k∑
i=1

p
(r)
i s

(r)
i ,

(and possibly −
∑n

h=1 p
(r)
h s

(r)
h );

b) these gains coincide respectively with the values
g
(r)
1 , . . . , g

(r)
k (and possibly g

(r)
k+1) of Gr|Hr.

Then, denoting by G the random gain associated with
the pair (F ,P), as

sup G|H ≥ s
(r)
h −

k∑
i=1

p
(r)
i s

(r)
i , ∀h ∈ Jk ,

and (from coherence of the assessment Pr on Fr)
suph g

(r)
h ≥ 0, it follows sup G|H ≥ 0.

3. Now, given any pair (F ′,P ′), where F ′ is a sub-
family of F and P ′ is the corresponding sub-vector of
P, we observe that the structure of (F ′,P ′) is sim-
ilar to that of (F ,P); in particular, the hypotheses
(i) and (ii), of logical incompatibility and of logical
independence, still hold for the sub-family of events
{Ai,Hr : Ai|Hr ∈ F ′}. Then, by the same reasoning,
we can verify that the (necessary) coherence condition
associated with (F ′,P ′), i.e. sup G′|H′ ≥ 0, is satis-
fied, ∀ (F ′,P ′). Thus, the probability assessment P
on the family F is coherent.

Now, we will consider the events Ej = (X = xj),
j ∈ Jk, which are a partition of the sure event Ω,
denoting by I the interval associated with the set of
possible values of X. By Lemma 1, we have

Proposition 2. Given the conditional random quan-
tities X|H1, . . . , X|Hn, let Ij be the interval associ-
ated with the set of possible values of X compatible
with Hj , j ∈ Jn. Moreover, let be I1···n = I1×· · ·×In.
If, for each j ∈ Jn, the events Ej ,H1, . . . ,Hn are log-
ically independent, then Ij = I, ∀ j ∈ Jn, and I1···n is
totally coherent.

Proof. By the hypotheses of logical independence it
immediately follows I1 = · · · = In = I. Given any
M = (µ1, . . . , µn) ∈ I1···n, we have µj ∈ I, j ∈ Jn;
hence, for each j, µj is (separately) coherent. Then,
there exist n nonnegative vectors (p(r)

1 , . . . , p
(r)
k ), with∑

j p
(r)
j = 1, r ∈ Jn, where p

(r)
j = P (Ej |Hr), such

that
∑

j p
(r)
j xj = µr, r ∈ Jn. By Lemma 1, the proba-

bility assessment (p(1)
1 , . . . , p

(1)
k , . . . , p

(n)
1 , . . . , p

(n)
k ) on

{E1|H1, . . . , Ek|H1, . . . , E1|Hn, . . . , Ek|Hn} is coher-
ent. Hence M is coherent too; thus I1···n is totally
coherent.

A comparison with other approaches to precise and/or
imprecise probabilities is out of the scope of this pa-
per; however, it is presumable that the results of the
sections 4 and 5 could be obtained by similar methods
proposed by other authors (see, e.g., [6], [18]).

6 Logically dependent conditioning
events

In this section we will give some results in the general
case in which among the conditioning events there
exist some (possibly partial) logical dependencies. In
this case generally the property of total coherence is
lost. We will illustrate this aspect in the following
Example 2. Given a random quantity X ∈
{x1, . . . , xn} and two events H,K, let us consider the
conditional random quantities K|H,X|HK,XK|H.
Then, let M1 = (m1,m2,m3),M2 = (µ1, µ2, µ3) be
two conditional prevision assessments on the family
F3 = {K|H,X|HK,XK|H}. As is well known, if
M1 (resp. M2) is coherent, then m3 = m2m1 (resp.
µ3 = µ2µ1). Then, denoting respectively by I1, I2, I3

the intervals associated with the set of possible values
of K|H,X|HK,XK|H, let be I = I1 × I2 × I3. We
observe that, even assuming I1 × I2 totally coherent,
the interval I is not totally coherent; that is, given
any M = (x, y, z) ∈ I, if z 6= xy, then M is not co-
herent. In particular, we observe that if M is a point
of the segment M1M2, generally M is not coherent.
Hence, the set Π3 of coherent conditional prevision
assessments on F3 is a strict non convex subset of I.
However, if we are searching for a (coherent) assess-
ment M = (x, y, xy) which is ”intermediate” between
M1 and M2, i.e. such that

min {x1, x2} ≤ x ≤ max {x1, x2} ,

min {y1, y2} ≤ y ≤ max {y1, y2} ,

min {x1y1, x2y2} ≤ xy ≤ max {x1y1, x2y2} ,

generally we can choose it in an infinite number of
ways. For instance, assuming

x1 < x2 , y1 > y2 , x1y1 < x2y2 ,



any coherent assessment M = (x, y, xy), such that

x1 ≤ x ≤ x2
y2

y1
, max {y1

x1

x
, y2} ≤ y ≤ y1 ,

satisfies the inequalities

x1 ≤ x ≤ x2 , y2 ≤ y ≤ y1 , x1y1 ≤ xy ≤ x2y2 ;

hence, M is intermediate between M1 and M2.
In general, we can construct an infinite number of
continuous curves C connecting M1 and M2, with
C ⊆ Π3, as is shown by the following examples, where
I1 × I2 is assumed totally coherent:
(i) defining M = (x2, y1, x2y1), the two segments

M1M = {(x, y1, xy1) : x = x1+t(x2−x1), 0 ≤ t ≤ 1} ,

MM2 = {(x2, y, x2y) : y = y1+t(y2−y1), 0 ≤ t ≤ 1} ,

belong to Π3. Then, the polygonal C = M1M ∪
MM2 is contained in Π3 and connects M1,M2.
(ii) defining M = (x1, y2, x1y2), the polygonal C =
M1M ∪ MM2 is contained in Π3 and connects
M1,M2.
(iii) given suitable values a, b, c, let Γ be the arc of
parabola defined as

Γ = {(x, y) ∈ I1 × I2 : y = ax2 + bx + c} .

Then the curve

C = {(x, y, z) : (x, y) ∈ Γ, z = xy = ax3 + bx2 + cx}

is contained in Π3 and connects M1,M2.
(iv) more in general, given a suitable interval [t1, t2]
and a continuous parameter t ∈ [t1, t2], let Γ be a
continuous curve contained in I1×I2, with parametric
equations x = x(t) , y = y(t) , t ∈ [t1, t2]. Then, the
continuous curve C, with parametric equations

x = x(t) , y = y(t) , z(t) = x(t)y(t) , t ∈ [t1, t2] ,

is contained in Π3 and connects M1,M2.

As shown by Example 2, when there exist logical de-
pendencies, the property of total coherence is gen-
erally lost; however, the possibility of searching for
”intermediate” assessments is preserved. By general-
izing Theorem 1, we will show that given any pair of
coherent conditional prevision assessments M′,M′′,
we can construct (in general, in an infinite number of
ways) a continuous curve C connecting M′,M′′, such
that, for every M ∈ C, M is coherent. We will see
that each point M of C is an intermediate conditional
prevision assessment between M′ and M′′. We have

Theorem 4. Given n events H1, . . . ,Hn and n ran-
dom quantities X1, . . . , Xn, for each r ∈ Jn denote
by XHr

the set {xr1, . . . , xrkr
} of possible values of

Xr compatible with Hr and by Ir the interval asso-
ciated with XHr

, as defined by (4). Moreover, let
M′ = (µ′1, . . . , µ

′
n), M′′ = (µ′′1 , . . . , µ′′n) be two co-

herent conditional prevision assessments on the fam-
ily Fn = {X1|H1, . . . , Xn|Hn}. Then, there exists
(at least) a continuous curve C contained in the in-
terval I1···n = I1 × · · · × In such that for every
M = (µ1, . . . , µn) ∈ C, we have:
(i) M is a coherent conditional prevision assessment
on Fn;
(ii) each M ∈ C is a generalized convex combination
of M′,M′′; i.e. min {µ′i, µ′′i } ≤ µi ≤max {µ′i, µ′′i },
∀ i ∈ Jn .

Proof. From coherence of M′ and M′′, there exist
two suitable nonnegative vectors

P1 = (p(1)
11 , . . . , p

(1)
1k1

, . . . , p
(1)
n1 , . . . , p

(1)
nkn

)

P2 = (p(2)
11 , . . . , p

(2)
1k1

, . . . , p
(2)
n1 , . . . , p

(2)
nkn

) ,

with

k1∑
j=1

p
(1)
1j = · · · =

kn∑
j=1

p
(1)
nj =

k1∑
j=1

p
(2)
1j = · · · =

kn∑
j=1

p
(2)
nj = 1 ,

which represent coherent assessments on the family

{Ai1|Hi , . . . , Aiki |Hi , i ∈ Jn} ;

that is, under the assessment P1 it is

P (Ai1|Hi) = p
(1)
i1 , . . . , P (Aiki

|Hi) = p
(1)
iki

, i ∈ Jn ,

while under the assessment P2 it is

P (Ai1|Hi) = p
(2)
i1 , . . . , P (Aiki

|Hi) = p
(2)
iki

, i ∈ Jn ;

moreover, P1 and P2 are such that

k1∑
j=1

p
(1)
1j x1j = µ′1 , . . . ,

kn∑
j=1

p
(1)
nj xnj = µ′n ,

k1∑
j=1

p
(2)
1j x1j = µ′′1 , . . . ,

kn∑
j=1

p
(2)
nj xnj = µ′′n .

By Theorem 1, there exists a continuous curve Γ con-
necting P1,P2, with

Pm = P1 ∧ P2 ≤ P ≤ P1 ∨ P2 = PM , ∀P ∈ Γ .

Moreover, each component pij of P is a convex com-
bination of the corresponding components p

(1)
ij , p

(2)
ij of

P1,P2, say pij = (1−tij)p
(1)
ij +tijp

(2)
ij , with tij ∈ [0, 1].



Then, from coherence of P it follows that the condi-
tional prevision assessment M = (µ1, . . . , µn) ∈ C on
Fn = {X1|H1, . . . , Xn|Hn}, where

µi = P(Xi|Hi) =
ki∑

j=1

pijxij , i ∈ Jn ,

is coherent too. Moreover, it is

ki∑
j=1

pijxij = (1− tij)
ki∑

j=1

p
(1)
ij xij + tij

ki∑
j=1

p
(2)
ij xij =

= (1− tij)µ′i + tijµ
′′
i ;

or, equivalently,

min {µ′i, µ′′i } ≤ µi ≤ max {µ′i, µ′′i } , i ∈ Jn .

Hence, M is a generalized convex combination of
M′,M′′; of course M ∈ I1···n. Finally, by moving
the point P on the curve Γ from P1 to P2, we con-
struct a continuous curve C, contained in the interval
I1···n, which connects M′,M′′.

By Theorem 4, it follows

Corollary 2. Given n conditional random quantities
X1|H1, . . . , Xn|Hn and any quantities µ1, . . . , µi−1,
li ≤ ui, µi+1 , . . . , µn, let

M′ = (µ1, . . . , µi−1, li, µi+1, . . . , µn) ,
M′′ = (µ1, . . . , µi−1, ui, µi+1, . . . , µn) ,

be two conditional prevision assessments on
{X1|H1, . . . , Xn|Hn}. Moreover, let I = M′M′′ be
the segment {(µ1, . . . , µi, . . . , µn) : li ≤ µi ≤ ui},
with vertices M′,M′′. Then, the segment I is totally
coherent if and only if M′ and M′′ are both coherent.

Proof. The proof immediately follows by observing
that in our case the interval I1···n coincides with the
segment I; therefore, the unique curve connecting
M′,M′′ is the segment I.

We observe that Corollary 2, which generalizes Corol-
lary 1 to the case of conditional prevision assessments,
is also an immediate consequence of the extension the-
orem for coherent conditional previsions.

7 Further results on total coherence

In this section we exploit the results of Section 6 to ob-
tain some related results on total coherence of suitable
sets of conditional prevision assessments. We have

Theorem 5. Given two conditional random quanti-
ties X|H,Y |K, let M1 = (m1, µ1), M2 = (m1, µ2),
M3 = (m2, µ3), M4 = (m2, µ4) be four coherent con-
ditional prevision assessments on {X|H,Y |K}. More-
over, let C1, C2 be two curves connecting, respec-
tively, M1,M2 and M3,M4, such that for every
M′ ∈ C1,M′′ ∈ C2, both M′ and M′′ are coher-
ent conditional prevision assessments on {X|H,Y |K}.
Then, the closed set S, delimited by the curves C1, C2

and by the vertical segments M1M2 and M3M4, is
totally coherent.

Proof. We need to show that, for every M ∈ S,
M is a coherent conditional prevision assessment on
{X|H,Y |K}. Without loss of generality we can as-
sume: (i) m1 ≤ m2; (ii) for every M′ = (m′, µ′) ∈
C1, M′′ = (m′′, µ′′) ∈ C2, if m′ = m′′, then µ′ ≤ µ′′.
For each m ∈ [m1,m2] we denote by Im the segment
with vertices the points M′ = (m,µ′) ∈ C1, M′′ =
(m,µ′′) ∈ C2. Then, by Corollary 2, the coherence of
M′,M′′ implies the total coherence of Im, for every
m ∈ [m1,m2]. Finally, as S =

⋃
m∈[m1,m2]

Im, S is
totally coherent.

Remark 2. A particular interesting case of Theorem
5 is obtained when µ3 = µ1 , µ4 = µ2. In this case
the interval I2 = [m1,m2]×[µ1, µ2] is totally coherent
if and only if the conditional prevision assessments
M1 = (m1, µ1), M2 = (m1, µ2), M3 = (m2, µ1),
M4 = (m2, µ2) are all coherent. Of course, the rea-
soning is the same as in the proof of Theorem 5.

More in general, we have

Theorem 6. Given a family of n conditional random
quantities Fn = {X1|H1, . . . , Xn|Hn}, let us consider
the interval In = [m1, µ1]× · · · × [mn, µn] associated
with the imprecise conditional prevision assessment
An on Fn, defined by

mi ≤ P(Xi|Hi) ≤ µi , i = 1, . . . , n . (5)

Then, defining V = {m1, µ1} × · · · × {mn, µn}, the
interval In is totally coherent if and only if each vertex
V ∈ V is coherent.

Proof. We set

V ′ = {m1, µ1} × · · · × {mn−1, µn−1} × {mn} ,

V ′′ = {m1, µ1} × · · · × {mn−1, µn−1} × {µn} .

We observe that V = V ′ ∪ V ′′; moreover, V ′ and V ′′
are, respectively, the sets of vertices of the intervals

I ′ = [m1, µ1]× · · · × [mn−1, µn−1]× [mn,mn] ,

I ′′ = [m1, µ1]× · · · × [mn−1, µn−1]× [µn, µn] .



Of course, the total coherence of In implies the
coherence of V , for every V ∈ V.
Conversely, assume that V is coherent, ∀ V ∈ V. We
proceed by the following steps:
1) m1 and µ1 are coherent, hence the interval
I1 = [m1, µ1] is totally coherent;
2) from the coherence of (m1,m2), (µ1,m2) (resp.
(m1, µ2), (µ1, µ2)) we obtain the total coherence of the
interval [m1, µ1]× [m2,m2] (resp. [m1, µ1]× [µ2, µ2]);
then, by reasoning as in Theorem 5, we obtain the
total coherence of I2;

.........................................................................

n) by induction, assume that by iterating the reason-
ing we have obtained the total coherence of the inter-
val In−1 = [m1, µ1] × · · · × [mn−1, µn−1]. The total
coherence of the sets of vertices V ′,V ′′ imply the total
coherence of the intervals I ′, I ′′; then, for each given
point (π1, . . . , πn−1) ∈ In−1, the assessments

(π1, . . . , πn−1,mn) , (π1, . . . , πn−1, µn)

are coherent. Hence, the segment

Iπn
= {(π1, . . . , πn−1, πn) : mn ≤ πn ≤ µn}

is totally coherent. Finally, as

In =
⋃

mn≤πn≤µn

Iπn ,

we conclude that In is totally coherent.

8 Conclusions

In the paper we have considered conditional prevision
assessments on random quantities with finite sets
of possible values. We have suitably extended the
notions of g-coherence and total coherence, intro-
duced in previous papers for the case of conditional
probability assessments. We have remarked that the
notion of g-coherence is equivalent to the avoiding
uniform loss property of lower previsions introduced
by Walley. We have obtained some results on total
coherence of conditional prevision assessments under
different assumptions for the conditioning events,
by first considering the case of logical incompati-
bility. Then, we have examined the case of logical
independence and the general case in which there
exist logical dependencies among the conditioning
events. We have shown that, while the property
of total coherence is generally lost, the connection
property is always valid. Such a property assures
that, given a pair of coherent conditional prevision
assessments M′,M′′ (representing for instance the

probabilistic judgements of two different experts),
we can construct (in general, in an infinite number
of ways) a curve C whose points are intermediate
coherent assessments between M′,M′′. Then, if the
assessments M′,M′′ are judged ”too extreme”, we
could use (for the decisional problem at hand) a suit-
able assessment M∈ C. By exploiting the connection
property we have obtained some theoretical results
on total coherence of suitable sets of conditional
prevision assessments. We have also obtained a
necessary and sufficient condition of total coherence
for interval-valued conditional prevision assessments.
Interesting developments of the research, which were
out of the scope of this paper, could be: (i) an
investigation of possible applications where there are
several probability assessors; (ii) a comparison with
other approaches to imprecise probabilities.
Further work should also deepen the study of impre-
cise conditional prevision assessments by extending
the results to more general random quantities.
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