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Abstract 
 

The theory of imprecise previsions admits the use of a 

wide variety of statistical evidence. Nevertheless, some 

existing evidence, for example, in reliability applications, 

cannot be utilized by models developed within its 

framework. In the pursuit of reducing imprecision, any 

available evidence should become an input to modeling. It 

is suggested to take a different look at the natural 

extension, the basic constructive step in the theory. It is 

shown that natural extension can be viewed as a problem 

belonging to the realm of variational calculus, which 

opens up new perspectives for obtaining tighter intervals.  
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1   Introduction 
 

In spite of the existence of a number of risk/reliability and 

other applied models built on imprecise statistical 

reasoning, only a few of them have ever been used in 

practice – and then only hesitantly –, the rest remaining 

firmly in the academic realm. Do they lack adequate 

promotion by their practitioners, or are there other 

primary obstacles that prevent them from being widely 

applied? We believe that the main obstacle to the practical 

application of imprecise statistical models is thoroughly 

familiar to the group of experts who practise interval 

computations: it is namely the rapid growth in 

imprecision that occurs when intervals are propagated 

through mathematical models. 

 

Should this state of affairs be regarded as unalterable, or 

can this weakness in the model be remedied? If the 

growth in imprecision is due to a deficiency in the model, 

what is its basic cause in mathematical terms, and how 

can we attempt to develop a more adequate model? 

 

A cause of the large imprecision in computed previsions 

should be sought in the mechanism producing the 

previsions. It is called natural extension and it may be 

seen as the basic constructive step in statistical reasoning; 

it enables us to construct new coherent previsions from 

old ones [1]. 

 

Natural extension can appear in different forms. Four 

forms of it were described in [2]. Each of them has pros 

and cons in the context of a specific application. The use 

of a proper form can substantially facilitate inference and 

computation of the probability measures of interest. 

 

We suggest taking a different look at the natural 

extension, an approach which opens up new perspectives 

for obtaining tighter intervals. 

 

It is shown that natural extension can be viewed as the 

problem of finding an extremal of a functional, a problem 

which belongs to the realm of variational calculus. If this 

path is followed, the modeller can utilise more versatile 

information than is possible with the natural extension 

suggested by Walley [1] and Kuznetsov  [3]. For 

example, as demonstrated in this paper, bounds on 

probability density functions and their derivatives can be 

utilised by the new form of natural extension, which is an 

effective way of obtaining tighter bounds of statistical 

measures. 

 

2   Different Forms of Natural Extension 
 

Suppose there is a continuous random variable, for 

example, a lifetime X of a component or system defined 

on the sample space [0,T] and information about this 

variable is represented as a set of n interval-valued 

expectations of functions )(),...,(1 XfXf n . Denote these 

expectations )( ii fMa =  and )( ii
fMa = , ni ,...,1= , 

where ia  and 
i

a  upper and lower bounds for the 

expectations, correspondingly. For computing new 

expected values )(gM  and )(gM  of a function )( Xg  

from the available information, natural extension can be 

used in the following primal form: 
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Here the infimum and supremum are taken over the set P 

of all admissible (matching the constraints) probability 

density functions ρ(x) satisfying conditions (2). Solutions 

(1) exist if all the constraints (2) form a non-empty subset 

PP ⊆0 . If the subset 0P  is empty, this means that the set 

of evidence is conflicting. If all the evidence is interval-

valued (this is a particular case of imprecise evidence), 

then two interval-valued judgements on the same 

prevision are called conflicting if they do not intersect.  

 

It should be noted that problems (1)-(2) are linear and the 

dual optimization problems can be written for them. For 

)(gM , for example, the dual problem is the following 

[2], [3]: 
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subject to +∈∈ RR ii dcc ,  ,0 , ,,...,1 ni =  and for any 

0 Tx ≤≤ , )()()(0 xgxfdcc iii ≥−+∑  

 

Values )(gM  and )(gM  are often called upper and 

lower previsions and functions )(Xf i  and )( Xg  are 

called gambles. Note that the lower and upper previsions 

)(gM  and )(gM  can be regarded as the bounds for an 

unknown precise prevision )(gM  which is called a linear 

prevision. 

 

Natural extension is a general mathematical procedure for 

calculating new previsions from initial judgements. It 

produces a coherent overall model from a certain 

collection of imprecise probability judgements and may 

be seen as the basic constructive step in interval-valued 

statistical reasoning.  

 

The crux of optimisation problems (1)-(2) is that their 

solutions obtained as a result of solving linear programs 

are defined on the family of degenerate probability 

distributions
1
, which are included on equal footing in the 

set of all admissible probability distributions over which 

the solution is sought. As proven in [2], solving these 

optimisation problems on the set of all admissible 

probability distributions gives the same solution as that 

obtained on only the set of degenerate distributions: 
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kc and ),( kxxδ  is the Dirac 

function which has unit area concentrated in the 

immediate vicinity of point kx . 

 

By substituting the degenerate class of densities (3) into 

objective function (1) for )(gM  and constraints (2) we 

obtain 
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We refer to the natural extension (4)-(5) as the degenerate 

form.  

 

All this would simply be mathematical subtlety – that is, 

of little interest to practitioners – if it did not give us a 

clue to deriving more precise previsions of interest for 

continuous random variables. For some variables it is 

often not realistic to assume that the probability masses 

are concentrated in a few points as opposed to being 

continuously distributed over the set of possible 

outcomes. In reliability applications, probability masses 

of time to failure cannot (except in very special cases) 

concentrate in a very few points of the positive real line. 

Ignoring this evidence is one of the causes (we hold it to 

be the root cause) of high imprecision in reliability 

applications as well as in other applications. 

 

Example 1. 

 

The sample set of a continuous random variable X is an 

interval [0, T]. The only available information about X is 

point-valued probability b of finding its value within an 

                                                 
1
 The probability distribution of a continuous random variable is 

referred to as degenerate if the probability masses are concentrated in a 

finite number of points belonging to the continuous set of possible states 



interval ],[ qq ⊆[0, T]. That is, bqqx =∈ ]),[(Pr . What 

are the lower and upper bounds for the expected value of 

X?  

 

Natural extension in its primal form appears as follows: 

 

∫=
T

xxρxXM
0

Ρ

d)(min)(   subject to 

,0)( 1,d)(
0

≥=∫ xρxxρ

T

  and [ ]∫ =
T

qq
bdxxxI

0

,
,)()( ρ  

where [ ] 1)(
,

=xI
qq

 if ∈x [ qq, ] and [ ] 0)(
,

=xI
qq

 

otherwise. 

 

Its counterpart in the degenerate form, as follows from 

(4)-(5), is the optimization problem 
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From the constraints it can be concluded that 

[ ] bxIcxIc
qqqq

=+ )()( 2,21],[1
 holds only if ],,[1 qqx ∉  

],[2 qqx ∈  and bc =2 , which entails bc −= 11 . 

Plugging 1c  and 2c  into the objective function brings us 

to the simple optimisation problem 
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The infimum is attained with 01 =x  and qx =2 , that 

is, qbXM =)( . 

 

Thus, the probability distribution function delivering the 

infimum to the objective function degenerates into the 

one with probability masses concentrated in two points 

01 =x  and qx =2  with masses (1-b) and b, 

correspondingly. This case is presented in Fig. 1. 

 

 

 

3   An example Where Natural Extension 

Fails to Utilise Evidence 
 

An attempt to mitigate the influence of degenerate 

probability distributions on the solutions and to obtain 

tighter bounds was undertaken in [4]. No significant 

effect was obtained through the introduction of 

judgements on the skewness and unimodality of the 

distributions as, in this case, the peaks of degenerate 

distributions simply become repositioned and probability 

masses become redistributed among the peaks. The nature 

of the distributions defining the solutions remained 

unchanged. 

 

In the attempt to achieve tighter bounds, it seems natural 

to try to constrain the underlying probability distributions 

such that they rule out the degenerate distributions. This 

can be done through imposing a restriction on the upper 

bound of the probability density function. (This device is 

not new and was used, for example, in [5] and [6].) In 

some practical situations, such bounds can be elicited 

from experts. For example, in reliability applications, the 

expert could be asked: “What is the largest possible 

percentage of failures per year for a given component 

with a definite age?” In other cases, such bounds can be 

obtained from the statistical data or from a physical model 

of the corresponding phenomenon. 

 

Once an upper bound to the probability density function is 

known, it can be used to restrict the set of feasible 

probability distributions and rule out the degenerate ones. 

Let us introduce such an upper bound +∈ RK  on the 

values of the probability density function, i.e.,  

 

0≤ρ(x)≤K=const for ∀x.      (6) 

 

Since the overall probability over the interval [0,T] is 

equal to 1, the upper bound K satisfies the inequality 

KT≥1. 

 

By bounding the density function, the set of constraints to 

optimisation problem (1)-(2) is complemented by 

inequality (6) which, as it turns out, complicates the 

optimisation problem drastically.  

 

It is chiefly through duality theory that a linear program 

can be viewed in its proper perspective and solved. For 

primal problem (1)-(2) complemented by constraint (6), 

the dual optimisation problem has the infinite number of 

dual variables. This is because there are as many dual 

variables as primal constraints, and in our case the 

inequality ρ(x)≤K is to be regarded as denoting an infinite 

set of constraints ρ(xi)≤K i=1, …, n, n → ∞. Thus, not 

being able to employ the dual form of natural extension 

nor its degenerate form, we become devoid of the key 

))0,()1( xb δ−  ),( qxb δ  

0                  q            q                     T 

∞ ∞ 

Figure 1: Degenerate probability distribution function 

providing the infimum to the objective function 



mechanism for the construction of coherent imprecise 

models, natural extension. 

 

One would anyway arrive at this stopping point in case of 

trying to use non-linear constraints, as real-life statistical 

evidence in many cases cannot be confined to linear 

constraints. 

 

In the section below we suggest taking a different look at 

the primal form of natural extension (1)-(2), an approach 

which opens up new perspectives for obtaining tighter 

intervals. 

 

4   Natural Extension as a Problem of the 

Calculus of Variations 
 

The mathematical program (1)-(2) can be modified 

slightly to make it amenable to the calculus of variations. 

The calculus is based on the statement that we can always 

apply a small change ±δρ(x) to a function ρ(x). (Here 

δρ(x) denotes a variation of ρ(x), and the symbol δ should 

not be confused with the Dirac function). Applying 

variation ±δρ(x) to a function ρ(x) has the consequence 

that ρ(x) can become negative, which is in contradiction 

with the inequality ρ(x)≥0. 

 

The requirement ρ(x)≥0 can be satisfied differently by 

introducing another function z(x) for which 

 

).()( 2 xzxρ =        (7) 

 

We then have to replace )(xρ  by )(2 xz  in the 

expressions for the objective functions and constraints. 

 

The other inequalities in constraints (2) are turned into 

equalities by introducing yet other unknown functions 

)()1,( xu i  and )()2,( xu i , i=1,…,n, such that 
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More information on this technique can be found, for 

example, in [7]. 

 

After having made the above changes, the problem of 

finding the lower and upper bounds for M(g) now has 

z(x), )()1,( xu i and )()2,( xu i , i=1,2,…,n, as decision 

variables. Thus the original problem (1)-(2) turns into the 

following: 
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Optimization problem (10) subject to (8), (9) and (11) is 

another form of natural extension amenable to variational 

calculus. Constraints like (8), (9) and (11), which are 

integrals of some unknown functions, are called 

isoperimetric constraints [8].  

 

The conventional way of solving problem (10) subject to 

(8), (9) and (11) is to replace it with an unconstrained 

optimization problem. In this case the integrand of the 

objective function  
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is replaced by 
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where niλi 2,...0, =∈ R , are (unknown) Lagrange 

multipliers that could be derived from a system of the 

Euler-Lagrange equations (see below) complemented by 

equations-constraints (8), (9) and (11).  

 

The unconstrained optimization problem, which is to be 

solved now, appears as follows: 
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For an unconstrained optimization problem the solutions 

satisfying the necessary condition of optimality can be 

derived from the Euler-Lagrange equations [8]. For 

problem (14) these equations take the following form: 
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where ./    ,/   ;/ )2,()2,()1,()1,( dxduudxduudxdzz iiii === &&&  

 

By plugging (13) into (15) we obtain 
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Let us examine equation (16). It holds if z(x)=0 for all 

],0[ Tx ∈ . But this would be in contradiction with 

constraints (8), (9) and (11). Thus z(x)≠0, at least in some 

points or possibly inside some subintervals of [0,T]. From 

(16) for those points where z(x)≠0 it holds that 
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consider as an example [ ] )()(
1,0 xIxg x=  and all the other 

gambles nixf i ,...,2,1  ),( =  as linear functions. This case 

is depicted in Fig. 2. 

 

 
 

Figure 2: An example of )(xξ  satisfying the necessary 

condition of optimality 

 

In order to satisfy constraint (11) and to hold equation 

(16) true the probability density function delivering an 

extremum to the objective function 

∫
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0

)2,()1,( ),,,(  can only be degenerate, i.e., 

concentrated in the three points 10 , xx  and 2x . This is 
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kc  Thus, we have arrived at the case where 

optimal solutions belong to the family of degenerate 

distributions. 

 

5   Utilising Boundary Constraints with the 

Variational Form of Natural Extension 
 

Let us now turn back to the case where a boundary to the 

probability density function is known and we would like 

to utilise this knowledge to reduce, as we expect, 

imprecision in the probabilistic measures of interest. That 

is, we will seek inf and sup of the objective function (1) 

subject to constraints (2), (6). To solve this new problem, 

an approach based on the following theorem is proposed. 

 

Theorem 1. If for any interval Tβαβxα ≤<≤≤≤  0  ,  

and for any ∈nhhh ,...,, 10 R  it holds that  
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then probability density function )(xρ , on which inf and 

sup are attained in problems (1) subject to (2) and (6), is 

a step-wise function whose values are either 0 or K.  

 

Proof. In this problem we have two direct constraints on 

the density function: ρ(x)≥0 and ρ(x)≤K. To adjust the 

constraints to the calculus of variations, we introduce 

some new functions z(x) and v(x) such that )()( 2 xzxρ =  

and 

 

Kxvxz =+ )()( 22     (20) 

 

Thus, we have a new optimisation problem with objective 

function (10) subject to (8), (9), (11) and (20). 

 

With respect to noted above, newly introduced equality 

(20) should be referred to as holonomic constraint. 

 

As we did it earlier, the primal problem with holonomic 

and isoperimetric constraints is replaced by a new 

unconstrained optimization problem 

 

∫
T

ii
uuvz

dxxuuvzF
ii 0

)2,()1,(

**

,,,
),,,,(inf

)2,()1,(

, (21) 

 

where 

 

( )KxvxzxλxzxguuvzF ii −+⋅+= ∗∗∗ )()()()()(),,,( 222

)2,()1,(
 

( )∑
=

−++
n

i

iii xuxzxfλxzλ
1

2

)1,(

22

0 )()()()(

( ),)()()(
1

2

)2,(

2∑
=

+ −+
n

i

iini xuxzxfλ    (22) 

 

and nλλλxλ 210 ,...,,),(∗
 are (unknown) Lagrange 

multipliers. Note that )(xλ∗
 is to be a function of x 

because it is multiplied by a holonomic constraint, while 

nλλλ 210 ,...,,  are constants because they correspond to 

isoperimetric constraints [7]. 
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For an unconstrained optimization problem the solutions 

satisfying the necessary condition of optimality can be 

derived from the Euler-Lagrange equations [8]. By 

applying the Euler-Lagrange equations, as we did for 

(14), we arrive at the following set of equalities: 
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Let us an interval [ ] ],0[, Tβα ⊆  is that on which 

0)( ≠xz . How would )(xz  behave on this interval and 

what values would it take? 

 

According to (23), in those points x where 0)( ≠xz  it 

holds that  
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And according to (23), in those points x where 

0)( ≠∗ xλ  it holds that 0)( =xv , which in turn, 

according to (20), results in Kxzxρ == )()( 2
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From (27) it follows that if  
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rewrite 
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which was to be proven. 

 

The theorem enables us to reduce the original variational 

optimization problem to an easier problem of optimizing 

a multivariate function under algebraic constraints.  

 

Indeed, let 

),[),...,,[),,[),,[ 122543210 +mm xxxxxxxx be the 

intervals on which 0)( ≠= Kxρ , and let 

),[),...,,[),,[),,[ 12654321 Txxxxxxx m+  be the 

intervals on which .0)( =xρ  Let us denote 
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Then, problem (1) subject to constraints (2), (6) takes the 

following form:  
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If the number of intervals m is known, this optimization 

problem can be solved by using standard numerical 

techniques such as gradient methods, simplex-based 

search methods, genetic algorithms, etc. In simple cases, 

the solution can be found in an analytical form.  

 

How can we find m? One idea is to start with the smallest 

value m, corresponding to having one interval with 

nonzero density, and to solve the optimization problem 

with this m. Then, increase m by 1 and solve the problem 

again, etc. Repeat the process until when for a new m you 

get exactly the same optimising function ρ(x) as for the 

previous m – this will mean that a further subdivision of 

intervals will probably not change the value of objective 

function (1). 

 

Example 2. Utilising knowledge on the boundary of the 

density function 

 

In this example, the statistical evidence about a random 

value X we have at hand is a boundary K on the 

probability density function and, as in Example 1, 

bqqx =∈ ]),[(Pr . What are the lower, )(XM , and upper 

bounds, )(XM , for the expected value of X?  

 

It is found that increasing m step by step by 1 starting 

from 0 does not change the optimising density function 

ρ(x) after m exceeds 1. That is, the solution of problem 

(30)-(32) must be sought for m=1. (Note that m=1 

corresponds to having two intervals on which the 

probability density function is different from 0.) 



Depending on the disposition of q  within the interval 

[0,T], the probability density function delivering the 

minimum to the objective function is calculated 

differently. 
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Let us assume that 
K

b
q

−
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1
. Then it can be concluded 

that optimization problem (30)-(32) for the lower bound 

becomes as follows:  
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The next step is to plug the constraints into the objective 

function and observe that minimum is attained if qx =2 . 

After doing this, we obtain  
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It is not difficult to see that the minimum is attained if 
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The probability density function delivering the minimum 

is shown in Fig. 3. 

 

For the case when 
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 the solution is 

 

( )
K

bKqqbKqKq

K
XM

−−+⋅+−
+=

)(1)(

2

1
)( . 

 

The solution to )(XM  can be obtained in a similar way 

to that for the lower bound. 

 

 

 
 

Figure 3: Bounded probability density function providing 

the infimum to the objective function 

 

6   Bounded densities and their derivatives 
 

In attempting to achieve tighter bounds, one can impose 

constraints on the derivatives (or their absolute values) of 

probability density functions. So, now we suppose that 

one has at hand an upper bound on the value of the 

probability density function and an upper bound on its 

derivative absolute value. Any other assumptions 

concerning the actual shape of the distribution are not 

introduced. 

 

Once the additional upper bound is known, it can be used 

to restrict the set of admissible probability distributions 

and rule out the functions which derivatives take 

excessively high values. 

 

Let us denote +∈ RM  an upper bound on the value of 

the probability density absolute value, i.e., for ∀x 

 

./)( constMdxxρd =≤     (33) 

 

In the variational calculus set-up, now we seek inf and 

sup of the objective function (1) subject to constraints (2), 

(6) and (33). To solve this new problem, an approach 

based on the following theorem is proposed. 
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Theorem 2. If for any interval Tβαβxα ≤<≤≤≤  0  ,  

and for any ∈nhhh ,...,, 10 R  it holds that  
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then the probability density function )(xρ , on which inf 

and sup are attained in problems (1) subject to (2), (6) 

and (33), is a stepwise linear function 

CMxxρ +±=)( whose values are bounded by K from 

above. 

 

Proof. The logic of the proof is similar to that used to 

prove Theorem 1. The proof can be found in [9] which 

has been submitted for publication. 

 

An example of the density function satisfying Theorem 2 

is depicted in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: An example of the density function satisfying 

Theorem 2 

 

The points in Fig. 5 marked with asterisks have the 

following values:  ,/   ,/ 1

*

10

*

0 MKxxMKxx −=+=  

 /  ,/ 3

*

32

*

2 MKxxMKxx −=+=  

 

Theorem 2 enables to reduce the original variational 

optimization problem to an easier one. This can be done 

because the shape of the density function is now known. 

Unknown are the points ,...,,...,, *

1

*

010 xxxx , which 

become the parameters of the density function 

),...,,,...,,()( *

1
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010 xxxxxρxρ =  and the decision variables 

in the new optimisation problem. 

 

Let ),[),...,,[),,[),,[ 122543210 +mm xxxxxxxx  be the 

intervals on which 0)( ≠xρ . They can be interpreted as 

lower bases of the trapezoids (see Fig. 5). The upper 

bases of the trapezoids are the intervals 
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),[ 2212 ++ mm xx are the intervals on which 0)( =xρ .  

 

Now the optimisation problem appears as follows:  
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Example 3. Unbounded probability density function and 

bounded absolute values of its derivative 

 

Let us consider an example in which Mdxxd ≤/)(ρ  is 

the only restriction on ρ(x). What are the bounds on the 

expected value M(X) of the corresponding random 

variable? 

 

In this example g(x)=x, which implies that everywhere 

0)( hxg ≠  meaning that theorem 2 can be applied.  

 

Note first that as the condition Kx ≤)(ρ  is not imposed 

on the density function, the trapezoidal shape of the 

density is changed to the triangular one.  

 

Let us start with m=0 corresponding to having one 

interval ),[ 10 xx  on which the probability density function 

is different from 0 and denote 21 xxy −= .  

 

Here we have only one isoperimetric constraint: 
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The formula for the expected value M(X) takes the form: 
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And further 
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In the following we will keep in mind that 00 ≥x , 

Tx ≤1 , and hence .
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It is easy to see that the smallest value of M(X) is attained 

when ,00 =x  so .
1
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Similarly, to obtain )(XM , we take the largest possible 

value of ,0x i.e. 
M

Tx
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0 −= , which brings us to 

.
1

)(
M

TXM −=  

 

If we take m=1 and do manipulations similar to the above, 

we find that the solutions do not change. 

 

Example 4. Bounded probability density function and 

bounded absolute values of its derivative 

 

Now we have two constraints (6) and (33), i.e., 0≤ρ(x)≤K 

and Mdxxρd ≤/)( . The question to answer is still the 

same: What are the bounds on the expected value M(X)? 

 

As we keep the function g(x)=x introduced in Example 3, 

theorem 2 can be also applied for this case. 

 

Start with m=0. Here we have only one isoperimetric 

constraint (the area of the trapezoid equalised to 1): 
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The formula for the expected value M(X) takes the form: 
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And finally, 

 

( ) ( )

( )2

0

2

0

2

0

2

0
03

0

3

0

)/()/1(
2

)/(
2

)/(
3

)(

MKxKx
K

xMKx
Mx

xMKx
M

XM

+−+

+−+−−+=

( ).)/1()//1(
3

3

0

3

0 KxMKKx
M

+−++−  

( )2

0

2

0

0 )/1()//1(
2

)/1(
KxMKKx

KKxM
+−++

++
+  
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The smallest value of )( XM  is attained when 00 =x , 
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Similarly, to obtain )(XM , we take the largest possible 
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If we take m=1 and do manipulations similar to the above, 

we find that the solutions do not change. 

 

7   What is Still Dissatisfying?  
 

There are at least two remaining problems with applying 

imprecise statistical reasoning to reliability analysis. 

 

In reliability analysis, the pivotal characteristic is time to 

failure (or time between failures if a system is repairable), 

and a failure in a system can occur at any point of the 

lifetime. In contrast, the model presupposes that failures 

can take place only within some specific intervals but not 

at any point. This is because probability masses are not 

continuously distributed during the lifetime. In spite of 

bringing in more statistical evidence about time to failure, 

the situation does not seem to be remedied. 

 

The other principle obstacle to reliability applications is 

the bounding condition on gambles, which in practice 

means dealing with bounded random values. That is, 

applying the reasoning to reliability implies that time to 



failure is a bounded random value. Let us say, one must 

know the maximum time a system can survive in order to 

apply the theory. This is that what can hardly be known 

for certainty. Furthermore, as technical systems undergo 

preventive maintenance and are put out of operation 

based on volitional decisions rather than after observing 

their full inoperability, knowing the point behind which 

they become irrecoverable, and even defining what it 

means, make the bound on time to failure meaningless. 

 

8   Summary and Conclusions 
 

The usefulness of interval-valued statistical characteristics 

depends both on how tight the bounds are and on how 

easy they are to compute. The tightness of the bounds 

depends in turn on the amount of information available 

and that which can be utilised by the method, and on the 

method itself. The more relevant information the modeller 

has at hand and the greater the amounts of it that can be 

utilised by the model, the tighter the bounds are. We have 

been aiming at enhancing natural extension so that it 

could utilise a wider variety of statistical evidence, some 

of which is easy to acquire but not easy to utilise. 

 

As has been demonstrated, natural extension can be 

viewed as the problem of finding an extremal of a 

functional, a problem which belongs to the realm of 

variational calculus. If this path is followed, the modeller 

can utilise more versatile information than is possible 

with the natural extension suggested by Walley [1] and 

Kuznetsov [3]. The present paper has demonstrated that 

imposing a restriction on the upper bound of the 

probability density function of a random value is an 

effective way of obtaining tighter bounds of statistical 

measures. 

 

In some cases, common sense and intuition may suggest 

that the underlying distribution is for instance 

differentiable in any point or symmetrical without 

specifying a particular shape. Utilising this kind of 

evidence may drastically reduce imprecision in the 

resultant interval-valued statistical characteristics, and, it 

is clear, this evidence is acquired at a low cost; in some 

cases it can be gained at no effort. 

 

We have been attempting to demonstrate in relation to the 

approach based on variational calculus that there is room 

for improvement without having to use unreliable data 

and introduce debatable assumptions as a means of 

obtaining reasonably precise results.  

 

In the pursuit of robust reliability assessments, the next 

facing challenge is to update the existing reliability 

models so that they can take account of additional 

evidence, evidence that until now has not been requested 

owing to the models’ incapacity to utilise it. The fact that 

there is currently a substantial amount of alternative 

evidence at our disposal presents other challenges. For 

example, what kind of evidence is worth using in order to 

facilitate computations and make substantial headway in 

terms of tighter bounds? What constraints are most 

beneficial for what models? These are directions in 

which, we suggest, further work with the calculus of 

variations ought to proceed.  

 

Acknowledgement 
 

Participation of V. Krymsky in the work described was 

partially supported by NATO grant CBP.NR.NREV 

982410.  

 

References 
 

[1] Walley P. (1991) Statistical reasoning with imprecise 

probabilities. Chapman and Hall. New York. 

 

[2] Utkin L. and Kozine I. (2001) Different faces of the 

natural extension. In: Proceedings of the Second 

International Symposium on Imprecise Probabilities and 

Their Applications, ISIPTA '01, pp. 316-323. 

 

[3] Kuznetsov V. (1991) Interval statistical models. 

Radio and Sviaz. Moscow. (In Russian). 

 

[4] Utkin L. (2002) Imprecise calculation with the 

qualitative information about probability distributions. 

In: Proceedings of the conference on Soft Methods in 

Probability and Statistics. Eds. P. Grzegorzewski, O. 

Hryniewicz and M.A. Gil, Physica-Verlag, Heidelberg, 

New York, pp. 164-169. 

 

[5] Smith E.J. (1995) Generalized Chebychev 

inequalities: theory and applications in decision analysis. 

Operations Research, Vol. 43(5), pp. 807-825. 

 

[6] Kozine I.O., Krymsky V.G. (2003) Reducing 

uncertainty by imprecise judgements on probability 

distributions: Application to system reliability. In: 

Proceedings. 3rd International symposium on imprecise 

probabilities and their applications (ISIPTA '03), Lugano 

(CH), 14-17 July 2003. Bernard, J.-M.; Seidenfeld, T.; 

Zaffalon, M. (eds.), (Carleton Scientific, Waterloo (CA), 

2003) (Proceedings in Informatics, 18), pp. 335-344. 

 

[7] Ivanov V.A., Faldin N.V. (1981) Theory of optimal 

control systems. Nauka Publ. Moscow. (In Russian). 

 

[8] Gelfand I.M., Fomin S.V. (2000) Calculus of 

variations. Dover Publ. New York, 240 p. 
 
[9] Kozine I., and Krymsky V. (2007) Computing 

interval-valued statistical characteristics: What is the 

stumbling block for reliability applications? Submitted to 

the Journal of Reliable Computing 


