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Abstract

This paper is devoted to the construction of sets
of joint probability measures for the case that the
marginal sets of probability measures are generated
by probability measures with uncertain parameters
where the uncertainty of these parameters is mod-
elled by random sets. Further we show how different
conditions on the choice of the weights of the joint
focal sets and on the probability measures associated
to these sets lead to different sets of joint probability
measures including the cases of strong independence,
random set independence and unknown interaction.
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1 Introduction

Let a mapping

g : D ⊆ Rm −→ R : (x1, . . . , xm) 7→ g(x1, . . . , xm)

be given. The variables xk are assumed to be uncer-
tain where the uncertainty is modelled by sets of prob-
ability measures for each variable separately. What
we want to know is the lower and upper probabili-
ties if the value g(x), x = (x1, . . . , xm), is lower (or
greater) than a certain value. Therefore we had to
propagate the uncertainty of the variables xk through
this multivariate model g, c.f. [1].

As a short motivation we want to mention a few appli-
cations where this problem of propagating uncertain
variables is arising:

Reliability analyis: In this case the above mapping g
is the so called failure function where g(x) ≤ 0 means
failure and g(x) > 0 means no failure of buildings like
bridges and tunnels in civil engineering; or of slopes

and dams in geotechnical engineering. The aim is to
describe the risk of failure, that means we want to
have the upper probability P ({g(x) ≤ 0}) of failure.
The variables xk are parameters as elastic modulus
E, angle of friction φ or flood heights.

Construction management: Here the values of g(x)
are costs or durations which should not exceed a cer-
tain bound a where the variables xk are costs, dura-
tions or similar parameters as above. Then we want
to have the upper probability P ({g(x) ≥ a}).

In most cases all these variables are not precisely
known, especially parameters arsing in geotechnical
engineering are only very vaguely known. In engi-
neering there are several approaches used to describe
the uncertainty of these variables: wellknown ones as
probability distributions or intervals and more modern
ones as fuzzy sets and random sets. The uncertainty
of the variables is given separately and often modelled
by different ways. So a unifying approach is needed
to combine and propagate the different models of un-
certainty trough the function g. This is provided by
the concept of sets of probability measures where these
sets are generated by random sets which are including
the other three approaches (probability distributions,
intervals and fuzzy sets).

In some applications the type of probability distri-
butions to discribe the uncertainty of a variable is
known, e.g. gaussian distributions, exponential dis-
tributions in queueing theory, etreme value distribu-
tions in flood risk analysis, but the parameters of
these probability distributions are often only vaguely
known. In these cases we have to model the uncer-
tainty of the parameters of these distributions. So
we introduce here the concept of sets of probability
measures which are generated by parameterized prob-
ability measures where these parameters are uncertain
and the uncertainty is described by random sets. All
models of uncertainty mentioned before are special
cases of this concept.



Since the uncertainty of the variables is given sepa-
rately, we have to model the joint uncertainty, that
means to construct the set of joint probability mea-
sures. There are certain ways to generate such sets,
e.g. according to strong independence [2, 11] if we
assume stochastically independence of the variables,
or according to unknown interaction [2] if we do not
know how the variables interact, or according to ran-
dom set independence [3] since random sets are in-
volved. These cases are already studied for sets of
probability measures generated by random sets in
[5, 6, 7, 8]. Here in this paper we extend this to sets
of probability measures generated by parameterized
probability measures with uncertain parameters.

To propagate the uncertainty through a multivariate
model in a computational efficient way it is essen-
tial to make use of the structure of the random sets.
We show how different conditions on the parts of this
structure (on the choice of the weights of the joint
focal sets and on the probability measures associated
to these sets) lead to different sets of joint probability
measures. But our goal is not to create new artifi-
cial types of sets of joint probability measures, but to
get sets according to strong independence or unknown
interaction by using the random set structure.

The plan of this paper is as follows:

Section 2 is devoted to random sets and the parame-
terization of probability measures by random sets in
the univariate case. In Section 3 we construct sets
of joint probability measures which are generated by
probability measures which are parameterized by or-
dinary sets as preliminary work for Sec. 5. In Sec-
tion 4 we recall from [5, 7] the general formulation
for constructing sets of joint probability measures for
the case where random sets are involved and list dif-
ferent conditions on choosing the weights of the joint
focal sets and the probability measures associated to
these sets. In Section 5 we show that some of these
cases lead to strong independence, random set inde-
pendence and unknown interaction.

2 Sets of probability measures
generated by probability measures
parameterized by random sets

We want to model the uncertainty about the value of
a variable x by a convex set K of probability measures
in the univariate case. Here in this paper we generate
such sets K by a parameterized probability measure
p θ where θ = (θ1, θ2, . . . ) are the parameters of the
probability measure. These parameters are assumed
to be uncertain. The uncertainty of θ is modelled
by random sets. So we have to recall the concept of

random sets and sets of probability measures gener-
ated by random sets. Further we need two different
measurable spaces: (Ω,A) for the uncertain variable
itself and (Θ,A) for the uncertain parameters of the
probability measures.

2.1 Random sets

First we want to model the uncertainty of a variable
x by random sets. Let a measurable space (Ω,A) be
given. A random set (F,m) [3, 4] consists of a finite
class

F = {F 1, F 2, . . . , Fn} ⊆ A

of focal sets and of a weight function

m : F −→ [0, 1] : F 7→ m(F )

with
∑|F|

i=1 m(F i) = 1 where |F| is the number of fo-
cal sets. Then the plausibility measure Pl or upper
probability P of a set A ∈ A is defined by

P (A) = Pl(A) =
∑

F i∩A 6=∅

m(F i)

and the belief measure Bel or lower probability P by

P (A) = Bel(A) =
∑

F i⊆A

m(F i).

2.2 Sets of probability measures generated
by random sets

The focal set F i has the weight m(F i), but we do not
know how this weight is distributed on the elements of
the focal set which reflects the uncertainty modelled
by a random set. Let

K(F i) := {P : P (F i) = 1} (1)

be the set of all probability measures “on” the focal
set F i. Then m(F i)K(F i) is the set of all possible
distributions of the weight on the focal set. A con-
vex set of probability measures K is generated by the
random set (F,m) as follows [5]:

K : = K(F,m) :=
|F|∑
i=1

m(F i) K(F i) := (2)

=

P : P =
|F|∑
i=1

m(F i)P i, P i ∈ K(F i)

 .

This set K(F,m) coincides with the set of probability
measures defined by

{P : ∀A ∈ A : Bel(A) ≤ P (A) ≤ Pl(A)},



c.f. [3, 4, 10].

Remark: There is a second approach of defining ran-
dom sets: using multivalued mappings and measur-
able selections [9, 10]. This approach leads to a set
M of probability measures which is a subset of K and
which is not convex in general. The set of probabil-
ity measures associated to the measurable selctions
is PΩ(Γ) = {PX : X ∈ S(Γ)}, where Γ : Ω → A

is a multivalued mapping defined on a probability
space (Ω,A, PΩ). S(Γ) is the set of measurable selec-
tions of Γ, that means the class of random variables
X : Ω → Ω with X(ω) ∈ Γ(ω).

Now let PX ∈ P (Γ), X ∈ S(Γ), be given. Then

PX(A) = PΩ(X−1(A)) =
|Ω|∑
i=1

PΩ({ωi})χA(X(ωi))

=
|F|∑
i=1

m(F i)χA(ωi) =
|F|∑
i=1

m(F i)δωi(A)

with ωi = X(ωi) ∈ Γ(ωi) = F i and PΩ({ωi}) =
m(F i) where χA is the indicator function of A.

So in our above notation the set M would be generated
by

M := M(F,m) :=
|F|∑
i=1

m(F i) M(F i)

with

M(F i) = {δω : δω(F i) = 1} = {δω : ω ∈ F i} ⊆ K(F i)
(3)

where δω is the Dirac measure at ω ∈ Ω corresponding
to the selections. The connections between M and K

are discussed in [9, 10].

2.3 Sets of parameterized probability
measures

Now we generate the set K of probability measures
by a probability measure p θ on (Ω,A) which is pa-
rameterized by an uncertain θ. For modelling the un-
certainty of the parameter θ we need the following: A
measurable space (Θ,A) where Θ is the universal set
for θ, A a σ-Algebra and K a set of probability mea-
sures µ on (Θ,A). The σ-Algebra A has to be chosen
in a way that for all A ∈ A the mapping

θ 7→ p θ(A)

is A-measurable.

The set K is defined by

K := K(K, p θ) :=

{
P =

∫
Θ

p θ(·)µ(dθ) : µ ∈ K

}
.

(4)

Then the upper and lower probabilities for a set A ∈ A

is computed as follows:

P (A) = sup{P (A) : P ∈ K} = sup
µ∈K

∫
Θ

p θ(A) µ(dθ),

P (A) = inf{P (A) : P ∈ K} = inf
µ∈K

∫
Θ

p θ(A) µ(dθ).

In the following the set K is either a set of probability
measures generated by ordinary sets or by random
sets. The usage and meaning of the symbols K and K
is summarized in the following table:

notation set of probability measures
K(F ) on (Ω,A) generated by a set F
K(F ) on (Θ,A) generated by a set F
K(F,m) on (Ω,A) gen. by a random set (F,m)
K(F,m) on (Θ,A) gen. by a random set (F,m)
K(K, p θ) on (Ω,A) gen. by K and p θ as in (4)

and where K is either a K(F ) or K(F,m)

So K is always a set of probability measures on (Ω,A)
and K a set of probability measures on the parameter
space of θ, namely Θ.

2.4 Generation of K by probability measures
µ on ordinary sets F , K := K(F )

We take the set K := K(F ) of probability measures on
F ∈ A and K := K(K(F ), p θ) for the set K of proba-
bility measures which are generated by K(F ) and the
parameterized probability measure p θ. Then the up-
per and lower probability are given by

P (A) = sup
µ∈K(F )

∫
Θ

p θ(A) µ(dθ) = (5)

= sup
θ0∈F

∫
Θ

p θ(A) δθ0(dθ) = sup
θ0∈F

p θ0(A)

and P (A) = infθ0∈F p θ0(A). Further we have for the
special case (Θ,A) := (Ω,A) and p ω := δω:

K(F ) = K(K(F ), δω), (6)

because

K(K(F ), δω) =

{
P =

∫
Ω

δω(·)µ(dω) : µ ∈ K(F )

}
=

= {µ ∈ K(F )} = K(F ) = K(F )

and ω 7→ p ω(A) = δω(A) = χA(ω) is A-measurable
for all A ∈ A. So the set of probability measures
generated by an ordinary set is integrated into the
new concept.



2.5 Generation of K by random sets,
K := K(F,m)

Here we take K := K(F,m) and K := K(K(F,m), p θ).
A probability measure P ∈ K is written as follows:

P =
∫
Θ

p θ(·) µ(dθ) =

=
∫
Θ

p θ(·)

( |F|∑
i=1

m(F i) µi(dθ)

)
=

=
|F|∑
i=1

m(F i)
∫
Θ

p θ(·) µi(dθ) =
|F|∑
i=1

m(F i)P i

where µ ∈ K(F,m). µ =
∑|F|

i=1 m(F i)µi is a de-
composition of µ according to the focal sets and
P i =

∫
Θ

p θ(·)µi(dθ) is a probability measure in
K(K(F i), p θ). So for the set K(K(F,m), p θ) we also
can write

K(K(F,m), p θ) =
|F|∑
i=1

m(F i) K(K(F i), p θ) (7)

which is formula Eq. (2) but with K(F i) replaced by
K(K(F i), p θ). The set K(F i) used in Eq. (2) is a
set of probability measures on F i, but the probability
measures in the set K(K(F i), p θ) are only associated
to F i via the parameter θ.

Similar to the section above we have for the upper
and lower probability:

P (A) =
|F|∑
i=1

m(F i) sup
µi∈K(F i)

∫
Θ

p θ(A)µi(dθ) =

=
|F|∑
i=1

m(F i) sup
θ0∈F i

p θ0(A) =
|F|∑
i=1

m(F i)P
i
(A)

and

P (A) =
|F|∑
i=1

m(F i) inf
θ0∈F i

p θ0(A) =
|F|∑
i=1

m(F i)P i(A).

2.6 An example for p θ, gaussian distribution

(Ω,A) := (R,B(R)), (Θ,A) = (R×R>0,B(R×R>0)),
θ := (µ, σ2). The function

(µ, σ2) 7→ p(µ,σ2)(A) :=
∫
R

χA(x)
1√

2πσ2
e−

(x−µ)2

2σ2 dx

is continuous and therefore A-measurable. We com-
pute the upper and lower probability of the set A =
[a,∞) using a set K(F,m) to describe the uncertainty
of µ and σ2 with F i = [µ

i
, µi]× [σ2

i , σ
2
i ], i = 1, . . . , n,

as follows:

P
i
([a,∞)) =

{
p(µi,σ

2
i
)([a,∞)) µi ≥ a,

p(µi,σ
2
i )([a,∞)) otherwise,

and

P i([a,∞)) =

{
p
(µ

i
,σ2

i
)([a,∞)) µ

i
≤ a,

p
(µ

i
,σ2

i )([a,∞)) otherwise.

Then

P ([a,∞)) =
n∑

i=1

m(F i)P
i
([a,∞))

and

P ([a,∞)) =
n∑

i=1

m(F i)P i([a,∞)).

3 Sets of joint probability measures
generated by ordinary sets

3.1 Preliminaries

In this paper we restrict ourselves to the combina-
tion of only two sets of probability measures. In
the following we always need the measurable spaces
(Ω1,A1), (Ω2,A2) and (Ω,A) with Ω = Ω1 × Ω2 and
A = A1⊗A2 for the uncertain variables and (Θ1,A1),
(Θ2,A2) and (Θ,A) with Θ = Θ1 × Θ2 for the un-
certain parameters of the probabilty measures with
σ-Algebras such that mappings like θ 7→ p θ(A) are
measurable. A set A will be always in A.

The generation of a set of joint probability measures
by two marginal sets K1 and K2 of probability mea-
sures will be written as K(K1,K2). First we recall two
general ways of combining sets K1 and K2 of proba-
bility measures.

Unknown interaction: The set of joint probabil-
ity measures according to unknown interaction [2] is
generated by

KU := {P : P (· × Ω2) ∈ K1, P (Ω1 × ·) ∈ K2}. (U)

Strong independence: The set of joint probability
measures according to strong independence [2, 11] is
generated by

KS := {P1 ⊗ P2 : P1 ∈ K1, P2 ∈ K2} ⊆ KU. (S)



Notation for the corresponding probabilities:

P S(A) := sup{PS(A) : PS ∈ KS},
P S(A) := inf{PS(A) : PS ∈ KS},
PU(A) := sup{PU(A) : PU ∈ KU},
PU(A) := inf{PU(A) : PU ∈ KU}.

In the following we are analyzing very special cases of
sets of joint probability measures which is a prelimi-
nary work for Sec. 4 and 5 for dealing with the joint
focals sets in these sections.

3.2 Kk := K(Fk) = K(K(Fk), δωk
)

Given subsets Fk ∈ Ak, k = 1, 2, we generate the sets
KU and KS of joint probability measures by the sets
K(F1) and K(F2). KU(K(F1),K(F2)) is the set of
joint probability measures generated by the two sets
K(F1) and K(F2) of probability measures according to
(U). Since the marginals of all probability measures on
F1×F2 are in the sets K(F1) and K(F2), respectively,
we have KU(K(F1),K(F2)) = K(F1×F2). To get the
upper and lower probability PU(A) and PU(A) it is
sufficient to put a Dirac measure at the appropriate
place. Since a Dirac measure is a product measure we
get

P S(A) = PU(A) and PU(A) = P S(A).

Now we make a first step towards sets of joint prob-
ability measures generated by parameterized proba-
bilities doing the same for K

(
K(Fk), δωk

)
in the more

general notation. We already know that K(Fk) =
K
(
K(Fk), δωk

)
and therefore

KU = KU

(
K(F1),K(F2)

)
= K(F1 × F2) =

= K
(
K(F1 × F2), δω1 ⊗ δω2

)
.

Further we have for strong independence

KS = KS

(
K(F1),K(F2)

)
=

= KS

(
K(K(F1), δω1),K(K(F2), δω2)

)
=

= K
(
KS(K(F1),K(F2)), δω1 ⊗ δω2

)
,

because

PS(A) =
(
P1 ⊗ P2

)
(A) =

∫
Ω1

P2(Aω1)P1(dω1) = (8)

=
∫
Ω1

(∫
Ω2

∫
Ω2

χAω1
(ω2)δω′2

(dω2)µ2(dω′2)
)
P1(dω1) =

=
∫
Ω1

∫
Ω1

(∫
Ω2

∫
Ω2

χAω1
(ω2)δω′2

(dω2)µ2(dω′2)
)
·

· δω′1
(dω1)µ1(dω′1) =

=
∫
Ω1

∫
Ω2

(∫
Ω1

∫
Ω2

χAω1
(ω2) δω′2

(dω2)δω′1
(dω1)

)
·

· µ2(dω′2)µ1(dω′1) =

=
∫
Ω1

∫
Ω2

[(
δω′1

⊗ δω′2

)
(A)
]

µ2(dω′2)µ1(dω′1) =

=
∫

Ω1×Ω2

[(
δω′1

⊗ δω′2

)
(A)
]

µ(d(ω′1, ω
′
2))

with µ1 ∈ K(F1), µ2 ∈ K(F2), µ ∈ KS(K(F1),K(F2))
and Aω1 = {ω2 ∈ Ω2 : (ω1, ω2) ∈ A}.

3.3 Kk := K(K(Fk), pθk

k )

Now we replace the Diracs by parameterized proba-
bility measures pθk

k and analyze the cases of strong
independence and unknown interaction.

3.3.1 Strong independence

Similar to Eq. (8) it holds:

PS(A) =
∫
Θ1

∫
Ω1

( ∫
Θ2

∫
Ω2

χAω1
(ω2)pθ2

2 (dω2)µ2(dθ2)

)
·

· pθ1
1 (dω1)µ1(dθ1) =

=
∫
Θ1

∫
Θ2

( ∫
Ω1

∫
Ω2

χAω1
(ω2) pθ2

2 (dω2)pθ1
1 (dω1)

)
·

· µ2(dθ2)µ1(dθ1) =

=
∫
Θ1

∫
Θ2

[(
pθ1
1 ⊗ pθ2

2

)
(A)
]

µ2(dθ2)µ1(dθ1).

So we get

KS = K
(
KS(K(F1),K(F2)), pθ1

1 ⊗ pθ2
2

)
.

3.3.2 Unknown interaction

For strong independence the joint probability mea-
sure generated by pθ1

1 and pθ2
2 was pθ1

1 ⊗ pθ2
2 , a single

probability measure. In case of unknown interaction
we would need the whole set of all possible joint prob-
ability measures on (Ω,A). Maybe on the other hand
we have more information how the joint probability
measure, say pθ, is generated by pθ1

1 and pθ2
2 than

how the parameters of the joint probability measure
interact. So we introduce the sets K(US) and K(Upθ)

of joint probability measures for which the choice of
µ is according to (U) and the choice of the joint pa-
rameterized probability measure is according to (S)
or defined by pθ.



Then it holds:

KS : = K
(
KS(K(F1),K(F2)), pθ1

1 ⊗ pθ2
2

)
⊆

⊆ K
(
KU(K(F1),K(F2)), pθ1

1 ⊗ pθ2
2

)
=

= K
(
K(F1 × F2), pθ1

1 ⊗ pθ2
2

)
=: K(US).

For the upper and lower probabilities we have

P S(A) = P (US)(A) und P S(A) = P (US)(A),

because we can obtain the upper and lower proba-
bilities from K(US) by means of Dirac measures in
K(F1 × F2) which are also in KS(K(F1),K(F2)).

4 General formulation of the
generation of sets of joint
probability measures by random
sets

Let random sets (Fk,mk), k = 1, 2, be given for mod-
elling the uncertainty of the variables x1 and x2. As a
consequence of Dempster’s rule of combination [3, 4]
the joint random set (F,m) is defined by

F = {F ij : i = 1, . . . , n1; j = 1, . . . , n2}

where
F ij := F i

1 × F j
2

and
m(F i

1 × F j
2 ) := m1(F i

1)m2(F
j
2 ) (9)

which is the case of random set independence (RS-
independence).

For our more general approach we start with the mul-
tivariate analogon of Eq. (2):

K? =
|F1|∑
i=1

|F2|∑
j=1

m(F i
1 × F j

2 )K?(Ki
1,K

j
2)

where the question mark in K?(Ki
1,K

j
2) indicates the

possibility of different choices in combining the sets
of probability measures Ki

1 and K
j
2 associated with

the marginal focal sets F i
1 and F j

2 . Further we have
to define how the joint weights m(F i

1 × F j
2 ) are com-

puted (perhaps not in the way of Eq. (9)) and to
think about possible interactions between probability
measures in the different sets K?(Ki

1,K
j
2).

The consequences of these different choices are dif-
ferent sets of joint probability measures K? and the
goal is to generate sets according to strong indepen-
dence, unknown interaction and RS-independence. In
the following we describe the different choices we have
for the above formula and discuss their consequences
for the set of joint probability measures.

4.1 The choice of the joint weights
m(F i

1 × F j
2 )

The weights m1 and m2 are discrete probability
measures on the sets of focal sets {F 1

1 , . . . , Fn1
1 },

{F 1
2 , . . . , Fn2

2 } respectively. So if we want to choose
the joint focal sets in a stochastically independent
way, then m = m1 ⊗m2 which means m(F i

1 × F j
2 ) =

m1(F i
1)m2(F

j
2 ) for all i, j. If we do not know how m1

and m2 interact, we allow all possible combinations,
that means unknown interaction.

Case (U−−): Unknown interaction, m must satisfy
the following conditions:

m1(F i
1) =

|F2|∑
j=1

m(F i
1 × F j

2 ), i = 1, . . . , |F1|,

m2(F
j
2 ) =

|F1|∑
i=1

m(F i
1 × F j

2 ), j = 1, . . . , |F2|.

In this case m is not uniquely defined and is deter-
mined later on by solving an optimization problem
for the lower or upper probabilities.

Case (S−−): Stochastic independence:

m(F i
1 × F j

2 ) := m1(F i
1)m2(F

j
2 ).

4.2 The choice of P ij, Kij, respectively

P ij ∈ Kij is a probability measure associated to the
joint focal set F i

1 × F j
2 . How a P ij looks like depends

on how Kij is constructed from Ki
1 and K

j
2.

Case (−U−): K
ij
U := KU(Ki

1,K
j
2)) which is the set

of all joint probability measures generated by the sets
Ki

1 and K
j
2 according to condition (U).

Case (−S−): K
ij
S := KS(Ki

1,K
j
2) which is the set

generated according to strong independence (S).

4.3 The choice of interactions between the
P ij

Case (−−1): Row- and columnwise equality condi-
tions on the marginals of the probability measures on
the joint focal sets:

P i
1 := P i,i1

1 = · · · = P i,in2
i , i = 1, . . . , n1,

P j
2 := P j,1j

2 = · · · = P j,n1j
i , j = 1, . . . , n2

where

P i,ik
1 = P ik

1 (· × Ω2) and P j,kj
2 = P kj

2 (Ω1 × ·).

This condition seems to be very artificial, but we need
this to get results according to strong independence
later on.



Case (−−0): No interactions, this means that we
can choose a P ij ∈ Kij on F i

1 × F j
2 irrespective of the

probability measures chosen on other joint focal sets.

Remark: It is clear that it should hold that the con-
vex sum

∑
k

1
m1(F i

1)
m(F i

1 × F j
2 )P i,ik

1

is in Ki
1. This is always true for convex sets Ki

1 of
probability measures, but for sets which are generated
by measurable selections (see Eq. (3)) it is not true
in general. In this case one should introduce a more
restrictive condition than (−−1).

4.4 The choice of the joint marginals

We emphasize that the choice of the Cartesian prod-
ucts F i

1 × F j
2 as joint focals is no restriction of gener-

ality. Joint focal sets V ⊆ F i
1 × F j

2 of arbitrary shape
can be subsumed in our approach by restricting sets of
joint probability measures on F i

1 × F j
2 to those whose

support lies in V . Such subsets would describe spe-
cific types of dependence or interaction between the
marginal focal sets F i

1 and F j
2 . But such interactions

are not investigated in this paper.

5 The different cases

Now we will discuss combinations of the above cases
which lead to random set independence, unknown in-
teraction, strong independence. The cases are indi-
cated by indices of the form (ABC) where for exam-
ple (SU0) means m according (S−−), P ij according
to (−U−) and no interaction between the P ij .

We want to stress that again, that it is not our goal
to introduce a number of eight (all possible combina-
tions) new types of joint probability measures, but to
identify the combinations which leads to the desired
types of sets joint probability measures. We do this
for RS-independence, unknown interaction and strong
independence. In this very technical part we first re-
call for each of these types the case where “pure ran-
dom sets” are used, that means the case where no pa-
rameterized probabilities are involved. Then we gen-
eralize the results to the case of parameterized prob-
abilities. So the sets Ki

k are first sets of probability
measures K(F i

k) and then in a second part replaced by
sets K(K(F i

k), p θ) associated with the marginal focal
set F i

k.

5.1 (SU0), (SS0) and RS-independence

5.1.1 General formulation

The sets KSU0 and KSS0 of joint probability measures
are generated by

KSU0 =
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )KU(Ki

1,K
j
2)

KSS0 =
|F1|∑
i=1

|F2|∑
j=1

m2(F
j
2 )m2(F

j
2 )KS(Ki

1,K
j
2).

5.1.2 Ki
1 := K(F i

1), K
j
2 := K(F j

2 )

We obtain the upper probability P SU0(A) for a set
A ∈ A by

P SU0(A) =
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )P

ij

U(A)

where

P
ij

U(A) = sup
{
P ij

U (A) : P ij
U ∈ KU(K(F i

1),K(F j
2 ))
}

and
KU(K(F i

1),K(F j
2 )) = K(F i

1 × F j
2 ).

So P
ij

U(A) is computed very easily by

P
ij

U(A) = sup{δω(A) : ω ∈ F i
1 × F j

2 } =

=

{
1 ∃ ω ∈ A ∩ F i

1 × F j
2 ,

0 else

which leads to the formula for the joint plausibility
measure

PR(A) := PSU0(A) = Pl(A) =
∑

i,j: F i
1×F j

2∩A 6=∅

m1(F i
1)m2(F

j
2 )

which is the joint upper probability in the case of RS-
independence indicated by the index R. Further we
have P SU0 = P SS0 because

δω = δ(ω1,ω2) = δω1 ⊗ δω2 .

is a product measure (case (−S−)). Similar to the
upper probability we get for the lower probability

PR := Bel = P SU0 = P SS0.

Contrary to the above equalities we have for the cor-
responding sets of joint probability measures only

KR := KSU0 ⊇ KSS0.



5.1.3 Ki
1 := K(K(F i

1), p
θ1
1 ), K

j
2 := K(K(F j

2 ), pθ2
2 )

An idea would be to define KR by KSU0 as before
[6], but then we have the same problem as in Sec.
3.3.2. So another possibility would be to define KR :=
KS(US)0 or KR := KS(Upθ)0.

We start with the case of (SS0) and get

KSS0 =
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 ) K

ij
S

⊆
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )Kij

(US) =

=
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )·

·K
(
K(F i

1 × F j
2 ), p θ1

1 ⊗ p θ2
2

)
=

= K
(
K(F,m), p θ1

1 ⊗ p θ2
2

)
=: KS(US)0 =: KR,

with K
ij
S := KS

(
K(K(F i

1), p
θ1
1 ),K(K(F j

2 ), p θ2
2 )
)

and
K

ij
(US) := K

(
K(F i

1×F j
2 ), pθ1

1 ⊗pθ2
2

)
and Eq. (7). (F,m)

is the joint random set according to RS-independence.
KS(SU)0 is the set of probability measures where
the parameterized probability measure is the prod-
uct measure, but the uncertainty of the parameters of
this poduct measure is discribed by the set K(F,m)
of joint probability measures which are generated by
the random set describing the uncertainty of θ1 and
θ2.

For the upper and lower probabilities we have P SS0 =
P S(US)0 and P SS0 = P S(US)0 by the same arguments
as in Sec. 3.3.2.

5.2 (UU0), (US0) and unknown interaction

5.2.1 Ki
1 := K(F i

1), K
j
2 := K(F j

2 )

Let KUU0 be the set of probability measures generated
according to case (UU0). A computational method for
PUU0(A) is obtained in the following way:

PUU0(A) =
|F1|∑
i=1

|F2|∑
j=1

m∗(F i
1 × F j

2 ) P
ij

U(A) =

=
∑
i,j:

F i
1×F j

2∩A 6=∅

m∗(F i
1 × F j

2 ),

where P
ij

U(A) is computed by the same Dirac mea-
sures as for PR and the weights m∗ by solving the
following linear optimization problem:∑

i,j:

F i
1×F j

2∩A 6=∅

m(F i
1 × F j

2 ) = max!

subject to condition (U−−). Minimization instead of
maximization leads to lower probability PUU0(A).

The set KUU0 is just the set of probability measures
which is generated by the least restrictive conditions
on m and P ij . It is proven in [5, 6] that KU = KUU0.

By the same arguments as in the previous cases we
get PU = PUU0 = PUS0 and PU = PUU0 = PUS0.

5.2.2 Ki
1 := K(K(F i

1), p
θ1
1 ), K

j
2 := K(K(F j

2 ), pθ2
2 )

Similar to Sec. 5.1.3 we can define sets

KUU0 =
|F1|∑
i=1

|F2|∑
j=1

m(F i
1 × F j

2 )·

·KU

(
K(K(F i

1), p
θ1
1 ),K(K(F j

2 ), p θ2
2 )
)

KUS0 =
|F1|∑
i=1

|F2|∑
j=1

m(F i
1 × F j

2 )·

·K
(
KS(K(F i

1),K(F j
2 )), p θ1

1 ⊗ p θ2
2

)
KU(US)0 =

|F1|∑
i=1

|F2|∑
j=1

m(F i
1 × F j

2 )·

·K
(
K(F i

1 × F j
2 ), p θ1

1 ⊗ p θ2
2

)
,

where in addition the joint weights can be choosen
according to (U−−); and it also holds
PUS0(A) = PU(US)0, PUS0(A) = PU(US)0 and
KUU0 ⊇ KU(US)0 ⊇ KUS0.

But unfortunately we do not have KU = KUU0 in
general what we show in the following example.

Example:

The sets K1 and K2 of probability measures are given
by

K1 = K(F1,m1) = K(K(F1,m1), δω)

and

K2 = K(K(F2,m2), pθ2
2 )

where pθ2
2 is defined by pθ2

2 ({0}) = θ2 and
pθ2
2 ({1}) = 1− θ2 and where

Ω1 = Ω2 = {0, 1}, Ω = Ω1 × Ω2

F1 = {{0}, {1}}, m1({0}) = m1({1}) = 1
2 ,

F2 = {{ 1
2}}, m2({ 1

2}) = 1.

In this very special example both marginal sets of
probability measures have only one element, namely
the discrete uniform distribution on {0, 1}:

K1 = {P 1
1 }, K2 = {P 1

2 }, P1 = P2 and

P1({0}) = P1({1}) = 1
2 .

But this uniform distribution is “generated” by two
different ways:



1. As a degenerated random set where the two focal
sets are singletons.

2. As a realization of the parameterized probability
measure pθ2

2 with a parameterization by a random
set with only one focal set.

The sets of probability measures associated with the
marginal focal sets are given by

K1
1 = {P 1

1 }, P 1
1 ({0}) = 1,

K2
1 = {P 2

1 }, P 2
1 ({1}) = 1,

K1
2 = {P 1

2 } = {P2}.

Now we determine the joint focal sets and weights:

F = {F 11, F 21} with F 11 = {(0, 1
2 )}, F 21 = {(1, 1

2 )},

m(F 11) = m(F 21) = 1
2 .

Since |F2| = 1 the joint weights are uniquely deter-
mined independent of (S−−) or (U−−).

The sets of probability measures associated with the
joint focal sets:

K11
U = KU(K1

1,K
1
2) = KU(P 1

1 , P 1
2 ) = {P 11

U } with

P 11
U ({(0, 0)}) = P 11

U ({(0, 1)}) = 1
2

and

K21
U = KU(K2

1,K
1
2) = KU(P 2

1 , P 1
2 ) = {P 21

U } with

P 21
U ({(1, 0)}) = P 21

U ({(1, 1)}) = 1
2 .

Let A = {(0, 0), (1, 1)}. Then

PUU0(A) = m(F 11)P 11
U (A) + m(F 21)P 21

U (A) =

= 1
2P 11

U ({(0, 0)}) + 1
2P 21

U ({(1, 1)}) =

= 1
2

1
2 + 1

2
1
2 = 1

2 .

But it is clear that

PU(A) = sup{PU(A) : PU ∈ KU(K1,K2)} = 1 for
PU defined by PU({(0, 0)}) = PU({(1, 1)}) = 1

2 .

5.3 The case (SS1), strong independence

5.3.1 Ki
1 := K(F i

1), K
j
2 := K(F j

2 )

We write a probability measure PSS1 ∈ KSS1 in the
following way:

PSS1(A) =
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 ) (P i

1 ⊗ P j
2 )(A) =

=

( |F1|∑
i=1

m1(F i
1)P i

1

)
⊗

( |F2|∑
j=1

m2(F
j
2 ) P j

2

)
(A) =

= (P1 ⊗ P2)(A) = PS(A)

with P1 ∈ K(F1,m1) and P2 ∈ K(F2,m2). This leads
to

KSS1 = KS =

=
{
P1 ⊗ P2 : P1 ∈ K(F1,m1), P2 ∈ K(F2,m2)

}
which is the case of strong independence.

Computational method:

Theorem 1. The upper probability P S(A) is the so-
lution of the following global optimization problem:

|F1|∑
i=1

|F2|∑
j=1

m(F i
1 × F j

2 ) χA(ωi
1, ω

j
2) = max!

subject to

ωi
1 ∈ F i

1, i = 1, . . . , |F1|,
ωj

2 ∈F j
2 , j = 1, . . . , |F2|,

where χA is the indicator function of the set A. The
lower probability P S(A) is obtained by minimization.

Proof: see [5, 8].

In general it is very hard to solve the above optimiza-
tion problem because there may be many local max-
ima (or minima) and because the objective function
is not continuous. Criteria when we have P S = PR

are given in [6]. In this case we automatically get P S

by using the computationally cheaper PR.

5.3.2 Ki
1 := K(K(F i

1), p
θ1
1 ), K

j
2 := K(K(F j

2 ), pθ2
2 )

It holds

PS(A) = PSS1(A) =
(
P1 ⊗ P2

)
(A) =

=

( |F1|∑
i=1

m1(F i
1)P

i
1

)
⊗

( |F2|∑
j=1

m2(F
j
2 )P j

2

) (A) =

=
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )
(
P i

1 ⊗ P j
2

)
(A) =

=
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )·

·
∫
Θ1

∫
Θ2

( ∫
Ω1

∫
Ω2

χAω1
(ω2) p θ2

2 (dω2)p θ1
1 (dω1)

)
·

· µj
2(dθ2)µi

1(dθ1) =



=
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )·

·
∫
Θ1

∫
Θ2

[(
p θ1
1 ⊗ p θ2

2

)
(A)
]

µj
2(dθ2)µi

1(dθ1) =

=
∫
Θ1

∫
Θ2

[(
p θ1
1 ⊗ p θ2

2

)
(A)
]

µ2(dθ2)µ1(dθ1) =

=
∫

Θ1×Θ2

[(
p θ1
1 ⊗ p θ2

2

)
(A)
]
µ(d(θ1, θ2))

with µ ∈ KS(K(F1,m1),K(F2,m2)), µi
1 ∈ K(F i

1), µj
2 ∈

K(F j
2 ), µ1 ∈ K(F1,m1) and µ2 ∈ K(F2,m2).

Computational method:

We get the following optimization problem for the
computation of P S(A) and P S(A), respectively:
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )
(
p

θi
1

1 ⊗ p
θj
2

2

)
(A) = sup! (inf!)

subject to θi
1 ∈ F i

1 and θj
2 ∈ F j

2 . Proof: see [6].

6 Summary

We summarize the results where parameterized prob-
abilities are involved: Fig. 1 depicts the relations
between the sets of joint probability measures. For
the upper probabilities see Fig. 2. There are three
differences to the results for “pure random sets” in
[5].

1. KUU0 is only a subset of KU in general.
2. New cases induced by (−(US)−) which coincide

with (−U−) for “pure random sets” because of
the Dirac measures.

3. Generalization of the computational method for
P S and P S.

KUS0⊇KU(US)0⊇KU ⊇ KUU0

⊆⊆⊆

KSS0⊇KR := KS(US)0⊇KSU0

⊆

KS = KSS1

Figure 1: Relations between the sets of probability
measures.

PUS0=PU(US)0≥PU ≥ PUU0

≤≤≤

P SS0
=PR := P S(US)0≥P SU0

≤

P S = P SS1

Figure 2: Relations between the upper probabilities.
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