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Abstract
Suppose that a risk-averse expected utility maximizer
with a precise probability distribution p bets opti-
mally against a risk neutral opponent (or equiva-
lently invests in an incomplete market for contingent
claims) whose beliefs (or prices) are described by a
convex setQ of probability distributions. This utility-
maximization problem is the dual of the problem of
�nding the distribution q in Q that minimizes a gen-
eralized divergence (relative entropy) with respect to
p. A special case is that of logarithmic utility, in
which the corresponding divergence is the Kullback-
Leibler divergence, but we present a closed-form so-
lution for the entire family of linear-risk-tolerance
(a.k.a. HARA) utility functions and show that this
corresponds to a particular parametric family of gen-
eralized divergences, which is derived from an entropy
measure originally proposed by Arimoto and which
is also related to a generalization of pseudospherical
scoring rule originally proposed by I.J. Good. A vari-
ant of this decision problem, in which the decision
maker has quasilinear utility for consumption over
two periods, leads to the family of power divergences,
which is related to a generalization of the power fam-
ily of scoring rules.

Keywords. entropy, divergence, scoring rules, port-
folio optimization, incomplete markets

1 Introduction

There are many applications in which it is of interest
to measure the di¤erence between a precise probabil-
ity distribution p and another precise probability q,
or between a precise probability and the nearest or
farthest point in some set of imprecise probabilities,
in terms of the gain or loss that a decision maker expe-
riences as a result of that di¤erence. For example, q
might be a prior probability distribution over some set
of events, which is later updated to a posterior distrib-
ution p based on new information, and the magnitude

of the di¤erence between p and qmight determine the
quantity or value of that information for purposes of
signal transmission or decision making. Or, p might
be the precise probability of a decision maker who has
the opportunity to bet or trade against an opponent
whose beliefs are described by a precise probability q
or by a set of imprecise probabilities Q, in which case
the decision maker can obtain a greater expected pay-
o¤ or expected utility the farther that p is from q or
from the nearest point in Q. Or, the decision maker�s
probability p might itself be imprecise, known only to
lie within some set P, and it might be of interest to
�nd the distribution that is nearest to the center of P
in the sense of minimizing the maximum loss that the
decision maker could su¤er by acting upon the wrong
probability.

The considerable literature on this topic includes (at
least) three distinct but intertwined strands: scor-
ing rules, entropy, and decision analysis. Scoring
rules are reward functions for eliciting and evaluating
probability forecasts, and the expected score associ-
ated with a forecast can be interpreted as a measure of
the value of the forecaster�s information. Entropy is
a measure of the channel capacity required to commu-
nicate a stream of signals generated by a stationary
process, and relative entropy measures the reduction
in channel capacity that is possible when new informa-
tion yields an updated signal distribution. Decision
analysis provides a general framework for measuring
information in terms of gains in expected utility, as
well for determining how to optimally use informa-
tion to choose portfolios of �nancial assets.

These information-theoretic tools have been used for
many decades, but new applications and theoreti-
cal developments have emerged during the last few
years on several fronts, including experimental eco-
nomics, robust Bayesian statistics, and �nancial engi-
neering. The objective of this paper is to add to this
recent stream of interdisciplinary literature by broad-
ening the concept of a scoring rule to include a not-



necessarily-uniform baseline distribution and to show
that this leads immediately to tight connections with
some well-known measures of divergence (relative en-
tropy) as well as with models of utility maximization
in markets under uncertainty. In the setting where
some probabilities are imprecise, we focus on the prob-
lem in which p is outside the set Q and the quantity
of interest is the divergence between p and its nearest
neighbor in Q. More details and proofs of the main
results are given in Jose et al. (2007)

2 Scoring rules

Scoring rules are reward functions for eliciting and
evaluating probabilities, and they have played an im-
portant role in the foundations of subjective probabil-
ity theory (de Finetti 1937 & 1974, Good 1952, Win-
kler 1967 & 1996, Savage 1971, Lindley 1982) as well
as practical applications such as incentive schemes for
paying weather forecasters (Brier 1950) and subjects
in economic experiments (Selten 1998) and for eval-
uating the quality of forecasts used in risk analysis
(Cooke 1991). Consider an individual (the �fore-
caster�) who is asked to assess a probability distri-
bution over a set of n mutually exclusive and col-
lectively exhaustive events. Let p denote the fore-
caster�s true distribution, let r = (r1; :::; rn) denote
her reported distribution (if di¤erent from p), and
let ei denote the probability distribution that assigns
probability 1 to event i and zero to all other events,
i.e., the indicator vector for event i. A scoring rule is
conventionally expressed as a function S(r;p), linear
in its second argument, such that the score obtained
if event i occurs is S(r; ei), and the forecaster�s ex-
pected score for reporting r when her true distribution
is p is S(r;p) =

P
i piS(r; ei). It is assumed that

the forecaster�s objective is to maximize her expected
score, which means that either she is risk neutral and
S(r; ei) is measured in units of money or else she is
non-risk neutral and S(r; ei) is measured in units of
utility.

The scoring rule is de�ned to be [strictly ] proper
if it encourages honest reporting in the sense that
S(p;p) � S(r;p) for every r and p [with equality only
when r = p], so that the forecaster whose true distrib-
ution is p maximizes her expected score by truthfully
reporting p rather than some other distribution. The
forecaster�s optimal expected score that is obtained
when her distribution is p will be denoted by merely
suppressing the �rst argument: S(p) � S(p;p). A
proper scoring rule has a canonical representation in
terms of its optimal-expected-score function, as noted
by McCarthy (1956) and further elaborated by Hen-
drickson and Buehler (1971) and Savage (1971). In
particular, if S(:) is a di¤erentiable function, then

S(�; �) is uniquely determined by the formula

S(r;p) = S(r) +rS(r) � (p� r): (1)

where rS(r) denotes the gradient of S(�) evaluated
at r, and conversely every function S that is [strictly]
convex and di¤erentiable uniquely de�nes a [strictly]
proper scoring rule. Written in this form, the
expected score yielded by a proper scoring rule is
seen to be closely related to a particular measure
of divergence between probability distributions that
is known as a Brègman divergence (Brègman 1967),
a connection that has been discussed by Grünwald
and Dawid (2004), Dawid (2006), and Gneiting and
Raftery (2007). Any strictly convex function F de-
�nes a Brègman divergence BF (pkr) as follows:

BF (pkr) = F (p)� F (r)�rF (r) � (p� r):

Letting F (p) = S(p), it follows that for any strictly
proper scoring rule, the function S(p)�S(r;p), which
represents the forecaster�s expected loss for reporting
r when her true distribution is p, is a Brègman di-
vergence, and vice versa. Thus, there is a one-to-one
correspondence between strictly proper scoring rules
and Brègman divergences.

The literature of scoring rules has mainly focused
on a few strictly proper rules with particularly
convenient parametric forms, axiomatic representa-
tions, and/or geometrical interpretations, namely the
quadratic, logarithmic, and spherical scoring rules.
The quadratic rule (a.k.a. �Brier score�) is S(p; ei) =
� (kei � pk2)

2. Thus, under the quadratic rule, the
forecast p is treated as an estimate of the indicator
vector of the uncertain event ei, and the forecaster
is ultimately penalized in proportion to the squared
Euclidean distance between p and the realized value of
ei, in the tradition of least squares estimation. The
logarithmic scoring rule is S(p; ei) = ln(pi), whose
optimal expected score function is the negative en-
tropy of the forecaster�s true distribution, an issue to
which we return below. (Some prescient comments
on the potential connection between scoring rules and
entropy were made by Good (1971).) The spherical
scoring rule is S(p; ei) = pi= kpk2, and it is obtained
by letting the set of feasible score vectors be the sim-
plest strictly convex object in Rn, namely the unit
sphere.

The quadratic and spherical rules can be generalized
into parametric families by replacing the 2-norm with

the vector �-norm, kpk� �
�Pn

j=1 p
�
j

�1=�
. The gen-

eralized spherical rule is the pseudospherical scoring
rule, pi=(kpk�)��1, which was �rst proposed by Good
(1971). The generalized quadratic rule is the power

scoring rule, �p��1i �(��1)
�
kpk�

��
. Written in this



conventional fashion, these families of rules are well-
de�ned and proper only for � > 1 and the correspond-
ing optimal-expected-score functions that generate

them via McCarthy�s formula are simply
�
kpk�

��
and kpk� , respectively. The logarithmic scoring rule
is the limiting case of both the pseudospherical and
power scores as � �! 1, but otherwise the two fami-
lies do not intersect.

3 Weighted score rules and
divergence measures

A key property of the aforementioned scoring rules
is that they treat events symmetrically in the sense
that if pi = [>] pj , then the score in event i is equal
to [greater than] the score in event j, regardless of
the descriptions of the events, and the forecaster�s ex-
pected score is smallest when p is the uniform distrib-
ution. Thus, they implicitly reward the forecaster in
proportion to some measure of the di¤erence of p from
a uniform distribution. However, in most real (and
even hypothetical) applications, the relevant reference
point is not a uniform distribution. For example, in
weather forecasting the events that are of interest are
often known to have widely varying a priori proba-
bilities, and �baseline�values for those probabilities,
upon which the forecaster is supposed to improve, are
obtainable from historical records (Winkler 1994) or
alternative forecasting models. In predicting the out-
comes of sporting events or movements of �nancial
markets, there are public betting lines or posted prices
for contingent claims that implicitly assign probabil-
ities to events. Therefore, we propose that scoring
rules should be generalized so as to reward the fore-
caster in proportion to some measure of the di¤erence
between p and an appropriate baseline distribution q.
Such a scoring rule will be henceforth referred to as
weighted scoring rule; it will be expressed as a func-
tion of three arguments, S(r;pkq), and its associated
optimal expected score will be expressed as a function
of two arguments, S(pkq).

There are various functional forms through which the
dependence of the score on the baseline distribution
could be modeled, and the one we that we �nd most
compelling, for both practical and theoretical reasons,
is that for �xed p and q the score in state i should
depend on the ratio pi=qi, so that if pi=qi = [>] pj=qj ,
then the score in event i should be equal to [greater
than] the score in event j. One simple rationale for
this desideratum is that when bets may be placed on
outcomes of events, relative rather than absolute dif-
ferences in probabilities are what matter, insofar as a
$1 bet on state i has an expected payo¤of $pi=qi when
the bettor�s probability is pi and the posted odds are

based on qi. Another rationale can be illustrated
by a simple example: suppose that the state space
consists of 4 states formed by the Cartesian product
of two binary events E and F , and suppose it hap-
pens that the forecaster and client both agree on the
probability of F and they also agree that E and F
are probabilistically independent. Then it seems rea-
sonable that the forecaster�s payment should depend
only on the outcome of E, not F , and this requires
the payo¤ in each of the four states to depend only
on the ratio of p to q, which is the relative change in
the evaluation of the probability of E.

The measurement of di¤erences between probabilities
in terms of ratios has a long history in statistics and
information theory. It was noted above that under a
strictly proper scoring rule, the forecaster�s expected
loss for reporting a distribution r that is other than
her true distribution p is a particular kind of diver-
gence between r and p, namely a Brègman divergence.
Under a weighted strictly proper scoring rule that
bases the score on the ratio pi=qi the forecaster�s ex-
pected gain for possessing a distribution p that di¤ers
from q is a second kind of divergence, which is not a
Brègman divergence. Rather, it turns out to be a spe-
cial case (or a simple transformation) of another kind
of generalized divergence known as an f -divergence
(Csiszár 1967). If f is a strictly convex function, the
corresponding f -divergence is de�ned as

Df (pkq) = Ep[f(p=q)]: (2)

Divergences of this general form have been widely
used in statistics for many years as �utility-free�mea-
sures of the value of the information - e.g., Goel
(1983) uses f -divergence to de�ne a �conditional
amount of sample information� for measuring prior-
to-posterior information gains in Bayesian hierarchi-
cal models. More recently it has been recognized
that f -divergences are interpretable as measures of
expected utility gains that are available to decision
makers who have opportunities to bet against less-
well-informed opponents or to invest in �nancial mar-
kets, as will be more fully discussed in later sections
of this paper.

When the ratio pi=qi is substituted for pi in the
pseudospherical and power scoring rules, and they are
a¢ nely transformed so as to yield scores of zero when
p = q, we obtain the weighted pseudospherical score,
denoted SS� , and the weighted power score, denoted



by SP� , with the following parametric forms:

SS� (p; eikq) � (3)

1

� � 1

0@ pi=qi

(Ep[(p=q)��1])
1=�

!��1
� 1

1A ;
SP� (p; eikq) � (4)

(pi=qi)
��1 � 1

� � 1 � Ep[(p=q)
��1]� 1
�

:

Note that for any �xed values of p, q;
and �, the pseudospherical score vector
(SS� (p; e1kq); :::; SS� (p; enkq)) is a positive
a¢ ne transformation of the power score vector
(SP� (p; e1kq); :::; SP� (p; enkq)), since both vectors
are a¢ ne transformations of (p=q)��1, although the
origins and scale factors of the transformations vary
with p, q; and �. Thus, although the two rules
yield di¤erent expected payo¤s as a function of p
(for the same q and �), and they create di¤erent
incentives for information-gathering and di¤erent
penalties for dishonest reporting, they nevertheless
present the same relative risk pro�le to a truthful
forecaster whose p is already �xed. At � = 1 both
rules converge to the weighted logarithmic score
ln(pi=qi). At � = 2, weighted forms of the quadratic
and spherical scoring rules are obtained. The cases
� = 0 and � = 1

2 have not received much (if any)
attention in the antecedent literature, but it will be
shown later that � = 0 corresponds to a decision
model involving exponential utility, which is the
utility function most commonly used in applied
decision analysis, while � = 1

2 arises from a decision
model involving reciprocal utility, which has some
appealing symmetry properties and is closely related
to the Hellinger distance between p and q. These
special cases will be further explored in the next two
sections.

The corresponding optimal-expected-score functions
for the two families of weighted scoring rules are:

SS� (pkq) =

�
Ep[(p=q)

��1]
�1=� � 1

� � 1 ; (5)

SP� (pkq) =
Ep[(p=q)

��1]� 1
�(� � 1) ; (6)

and one is a monotonically increasing function of the
other for any �xed �. Our �rst result is to point
out that these expected score functions correspond
exactly to two parametric families of generalized di-
vergence (cross-entropy) between probability distrib-
utions. In particular the weighted power expected
score SP� (pkq) is precisely the directed divergence of
order � between p and q proposed by Havrda and

Chavrát (1967), variants of which have been discussed
by Rathie and Kannappan (1972), Cressie and Read
(1984), and Haussler and Opper (1997). Cressie and
Read refer to this quantity as the power divergence,
which we shall also do here.

The weighted pseudospherical score SS� (pkq) is the
cross-entropy measure that arises from a general-
ized entropy introduced by Arimoto (1971) and fur-
ther elaborated by Sharma and Mittal (1975), Boe-
kee and Van der Lubbe (1980) and Lavenda and
Dunning-Davies (2003). Arimoto�s generalized en-
tropy of order � is de�ned for � > 0 by �=(� �
1)
�
Ep[p

��1]1=� � 1
�
: The factor of � in the nu-

merator plays no essential role when � is restricted
to be positive, and without it the measure is ac-
tually valid for all real �, and when p��1 is re-
placed by (p=q)��1 so as to de�ne a cross-entropy,
the weighted pseudospherical expected score is ob-
tained. It is therefore appropriate to refer to the
latter quantity as the pseudospherical divergence of
order � between p and q. Both of these general-
ized divergences reduce to the Kullback-Leibler di-
vergence Ep[ln(p=q)] at � = 1, and for other spe-
cial cases of � they are related to two other well
known divergences, namely the Chi-square divergence
�2(qkp) = Ep[p=q] � 1 and the Hellinger distance

DH(pkq) �
�Pn

j=1

�p
pj �

p
qj
�2�1=2

as shown in

the following table:

Table 1. Power & pseudospherical divergences

� SP� (pkq) SS� (pkq)
�1 1

2�
2(qkp) 1

2

�
1� (�2(qkp) + 1)�1

�
0 DKL(qkp) 1� exp(�DKL(qkp))
1
2 2DH(pkq)2 2

�
1�

�
1� 1

2DH(pkq)
2
�2�

1 DKL(pkq) DKL(pkq)
2 1

2�
2(pkq)

p
�2(pkq) + 1� 1

Note that the power divergence is symmetric around
� = 1

2 in the sense that S
P
� (pkq) = SP1��(qkp), i.e.,

the roles of p and q are merely reversed when � is
replaced by 1� �.

4 Decision models and information
measures

Our second result is to show that the same two fam-
ilies of generalized divergence arise naturally as the
solutions of two canonical expected-utility maximiza-
tion problems, involving the most widely-used para-
metric family of utility functions, in which a risk
averse decision maker with subjective probability dis-



tribution p bets against a non-strategic risk-neutral
opponent with distribution q, or equivalently, invests
in a contingent claims market where prices are de-
termined by taking expectations with respect to q.
A contingent claim is a claim to monetary payments
that are contingent on states of the world, and it can
be represented as an n-vector of payo¤s y that has
some market price p(y) at which it can be purchased
in arbitrary positive multiples. (In a �nancial mar-
ket, the relevant states of the world might be possible
values of a stock price or stock index on a particular
future date, and a contingent claim might be a share
of stock or an option to buy a share of that stock
at a pre-speci�ed strike price.). A decision maker
who buys � units of y at its market price receives a
net payo¤ of �(yi � p(y)) in state i, hence the vec-
tor �(y � p(y)1) is a feasible net payo¤ vector for
the decision maker for all positive �. The market is
complete if every contingent claim has a unique price
at which it can be both bought and sold, in which
case �(y � p(y)1) is a feasible payo¤ vector for all
real �, positive or negative. If the market prices are
also arbitrage-free (�coherent�), then there exists a
unique probability distribution q that prices all con-
tingent claims according to their expected payo¤s, so
that p(y) = Eq[y] for all y 2 Rn; and any x 2 Rn
that satis�es Eq[x] = 0 is a feasible net payo¤ vector.
In Bayesian theory this existence result is known as de
Finetti�s �fundamental theorem of probability,�with
p(y) referred to as the �prevision�of y, and in �nance
theory it is known as the �fundamental theorem of
asset pricing,� with q referred to as a �risk neutral
distribution� because assets are priced �as if� by a
risk neutral opponent whose probability distribution
is q.

In the �rst canonical problem (�S�), there is a single
time period in which consumption occurs and the de-
cision maker has a single-attribute vNM utility func-
tion u(x). The decision maker�s optimal expected
utility, denoted US(pkq), is determined by:

Problem S : (7)

US(pkq) � max
x2Rn

Ep[u(x)] s.t: Eq[x] = 0;

where u(x) � (u(x1); :::; u(xn)) denotes the vector
of utilities that u yields when applied to x. In
the second problem (�P�), there are two periods in
which consumption occurs and the decision maker
with probability distribution p has a quasilinear vNM
utility function u(a; b) = a + u(b) where a is money
consumed at time 0 and b is money consumed at time
1. The decision maker�s objective is to choose a vec-
tor x of time-1 payo¤s to be purchased from time-0
funds at market prices so as to maximize the expected
utility of consumption in both periods. The time-0

cost of purchasing x is Eq[x], so the optimal expected
utility, denoted UP(pkq); is the solution of:

Problem P : (8)

UP(pkq) � max
x2Rn

Ep[u(x)]� Eq[x]:

Next, let u be a utility function from the general expo-
nential/logarithmic/power family, which will be para-
meterized here as:

u�(x) �
1

� � 1((1 + �x)
(��1)=� � 1) (9)

for �x > �1. This parameterization has two key
properties. First, u�(0) = 0 and u0�(0) = 1; so
that for any � the marginal rate of substitution be-
tween time-0 consumption and time-1 consumption is
unity at x = 0 for the decision maker in Problem
P. Second, the corresponding risk tolerance func-
tion ��(x), which is the reciprocal of the Pratt-Arrow
risk aversion measure, is the following linear func-
tion of wealth: ��(x) � �u0�(x)=u00�(x) = 1 + �x.
Thus, the risk tolerance as well as the marginal util-
ity is normalized to a value of 1 at x = 0, and � is
the coe¢ cient of risk tolerance, i.e., the increase in
risk tolerance per unit of increase in wealth. The
linear-risk-tolerance utility functions are also known
as hyperbolic-absolute-risk-aversion (HARA) utility
functions in the literature of �nancial economics, al-
though parameterizing them in terms of their risk tol-
erance coe¢ cients rather than their risk aversion co-
e¢ cients is more useful for our purposes. Some im-
portant special cases of u� are given in Table 2:

Table 2. Linear-risk-tolerance utility functions

� u�(x) Functional form
�1 u�1(x) = � 1

2 ((1� x)
2 � 1) Quadratic

0 u0(x) = 1� exp(�x) Exponential
1
2 u1=2(x) = 2

�
1� 1

1+x=2

�
Reciprocal

1 u1(x) = ln(1 + x) Logarithmic
2 u2(x) =

p
1 + 2x� 1 Square-root

The utility functions fu�g also exhibit a symmetry
around � = 1

2 , namely that u1��(x) = �u�(�x), or
equivalently u�(�u1��(�x)) = x. In other words,
the graph of u1�� is obtained from the graph of
u� by merely re�ecting it around the line y = �x.
Note that the power (exponent) in u� is the term
(��1)=�, which has the property that ((��1)=�)�1 =
((1 � �) � 1)=(1 � �), so that swapping � for 1 � �
results in another power utility function whose power
is the reciprocal of the original. Thus, up to a¢ ne
scaling, the reciprocal utility function (� = 1

2 ) is self-
symmetric, the exponential and logarithmic utility



functions (� = 0 and � = 1) are symmetric to each
other, and the power utility function with exponent �
is symmetric to the power utility function with expo-
nent 1=� for any positive or negative � other than 0
or 1.

Let xS�(pkq) and xP� (pkq) denote the solutions of
Problems S and P when u = u� , with ith ele-
ments xS�;i(pkq) and xP�;i(pkq), respectively, and let
US� (pkq) and UP� (pkq) denote their corresponding ex-
pected utilities. In these terms, we have:

THEOREM 1:

(a) SS� (p; eikq) = u�(xS�;i(pkq)),

and SS� (pkq) = US� (pkq)

(b) SP� (p; eikq) = u�(xP�;i(pkq))� Eq[xP� (pkq)],

and SP� (pkq) = UP� (pkq)

(c) SP� (pkq) � SS� (pkq) for all p, q, and �.

Thus, the statewise utility gains to the decision
maker under problems S and P are precisely the
pseudospherical and power scores for the same p, q,
and �, and the expected utilities are the correspond-
ing divergences.

5 Utility/entropy duality in
incomplete markets

We now extend the preceding results to a setting in
which the decision maker�s risk neutral betting oppo-
nent has imprecise probabilities, which is equivalent to
an incomplete market where a contingent claim may
have a �bid-ask spread�rather than a single price at
which it can be both bought and sold. The bid-
ask spreads generally do not su¢ ce to determine a
unique risk neutral distribution; rather, they only de-
termine a convex set Q of risk-neutral distributions
such that x is a feasible net payo¤ vector for the de-
cision maker if and only if Eq[x] � 0 for all q 2 Q.
(The payo¤ to the opponent is �x, hence the con-
straint Eq[x] � 0 for all q 2 Q means that the oppo-
nent with imprecise probabilities Q will accept only
those bets yielding non-negative expected payo¤s for
all q 2 Q.) The problem of expected-utility maxi-
mization in incomplete markets has been widely stud-
ied in the mathematical �nance literature in recent
years, and it has been shown that there is a duality
relationship between maximization of expected utility
and minimization of an appropriate measure of rela-
tive entropy or divergence (e.g., Frittelli 2000, Rouge
and El Karoui 2000, Goll and Rüschendorf 2001, Del-
baen et al. 2002, Slomczyński and Zastawniak 2004,
Ilhan et al. 2004, Samperi 2005). Most of this lit-

erature has focused on the case of exponential utility,
for which the dual problem is the minimization of the
reverse KL divergence DKL(q;p), as well as on issues
that arise in multi-period or continuous-time markets.
In this section we will show that in a single-period or
two-period market, the duality relationship applies to
the entire spectrum of linear-risk-tolerance utility and
pseudospherical divergence or power divergence.

An incomplete, single-period market can be parame-
terized in either of two ways. One is in terms of an
m � n matrix A whose rows are feasible net payo¤
vectors, i.e., A = faijg where aij is the net payo¤
that the decision maker receives in the jth state of
the world for purchasing one unit of the ithcontingent
claim at its asking price. (It su¢ ces to consider only
purchases at asking prices, rather than sales at bid
prices, since a bid price of p for a contingent claim y
is equivalent to an asking price of �p for �y.) Alter-
natively, the market can be parameterized in terms of
a k � n matrix Q whose rows are risk neutral proba-
bility distributions that support the contingent claim
prices, i.e., Q = fqijg where qij is the probability
of the jth state of the world under the ith risk neu-
tral distribution. The rows of Q are the extremal
risk-neutral probability distributions assigning non-
positive expectation to all the rows ofA, i.e., the rows
of �Q are the dual cone of the rows of A. The sec-
ond parameterization will be adopted here, in terms
of which Q is the convex hull of the rows of Q, so that
a generic element of Q can be expressed as q = zTQ
where z is an element of 4k, the unit simplex in Rk,
and the feasibility requirement that Eq[x] � 0 for all
q 2 Q can be expressed as Qx � 0.

In the incomplete-market generalization of Problem
S, the problem of �nding the maximum expected util-
ity, which will be denoted as US� (pkQ), is dual to the
problem of �nding the minimum pseudospherical di-
vergence of order � between p and all q in the con-
vex hull of the rows of Q, which will be denoted as
SS� (pkQ):

Primal Problem S :

US� (pkQ) � max
x2Rn

Ep[u�(x)]; Qx � 0

Dual Problem S :

SS� (pkQ) � min
z24k

SS� (pkz
T
Q):

In the incomplete-market generalization of Problem
P, the decision maker�s objective is to determine an
amount w to be spent at time 0 to �nance consump-
tion in period 1. For the period-1 payo¤ vector x
that the decision maker wishes to purchase, the risk-
neutral expected value of x needs to be less than or
equal to w for all the extremal risk neutral distribu-
tions. The corresponding primal and dual problems



are:

Primal Problem P :

UP� (pkQ) � max
x2Rn

Ep[u�(x)]� w; Qx � w1

Dual Problem P :

SP� (pkQ) � min
z24k

SP� (pkz
T
Q):

The special case � = 1 corresponds to logarithmic
utility in the primal problem and KL divergence in
the dual problem, while � = 0 corresponds to expo-
nential utility in the primal problem and reverse KL
divergence in the dual problem, and the cases � = 1=2
and � = �2 are related to the squared Hellinger dis-
tance and the Chi-square divergence as shown in Ta-
ble 1. These duality relationships are formalized in:

THEOREM 2:
(a) In an incomplete, single-period market, maximiza-
tion of expected linear-risk-tolerance utility with risk
tolerance coe¢ cient � (Primal Problem S) is equiva-
lent to minimization of the pseudospherical divergence
of order � between the decision maker�s subjective dis-
tribution p and a risk neutral distribution q consis-
tent with contingent claim prices (Dual Problem S).
Their optimal objective values are the same and the
optimal values of the decision variables in one prob-
lem are equal to the normalized optimal values of the
Lagrange multipliers in the other.
(b) In an incomplete, two-period market, maximiza-
tion of quasi-linear expected linear-risk-tolerance util-
ity with second-period risk tolerance coe¢ cient �
(Primal Problem P) is equivalent to minimization of
the power divergence of order � between the decision
maker�s subjective distribution p and a risk neutral
distribution q consistent with contingent claim prices
(Dual Problem P). Their optimal objective values are
the same and the optimal values of the decision vari-
ables in one problem are equal to the normalized op-
timal values of the Lagrange multipliers in the other.

Note that because the pseudospherical divergence is
a monotonic transformation of the power divergence,
the distribution q (= zTQ) that solves Dual Prob-
lem S is the same one that solves Dual Problem P,
although the objective values and the primal payo¤
vectors are generally di¤erent. The geometry of the
dual solutions is illustrated in Figure 1.

Grünwald and Dawid (2004) have explored dual-
ity relationships among strictly proper scoring rules,
generalized entropies and divergences, and expected-
utility-maximization (or in their terms, expected-loss-
minimization) in the context of robust Bayesian in-
ference, where the decision maker does not know the
true probability distribution and her opponent is �Na-
ture�who chooses the true distribution p from some

Figure 1: Geometry of minimizing the divergence be-
tween p and the nearest element of Q (n = 3)

convex set P, such as the set of distributions satis-
fying a mean-value constraint. The robust Bayes
problem for the decision maker is to determine the
distribution r that minimizes her maximum expected
loss over all p 2 P, where the expected loss (in our
terms) is the negative expected score �S(r;p). Grün-
wald and Dawid show that the optimal-expected-loss
function, �S(p), is interpretable as a generalized en-
tropy, and minimizing the maximum expected loss is
equivalent to maximizing this entropy on the set P.
This scoring-rule entropy uniquely determines a cor-
responding Brègman divergence BS(pkr) � S(p) �
S(r;p), as noted earlier, and Grünwald and Dawid go
on to show that the distribution r that minimizes the
maximum expected loss on P is also the distribution
that minimizes this divergence with respect to an un-
informative �reference�distribution p0 at which the
entropy �S(p) is maximized. For typical symmet-
ric scoring rules, the reference distribution is the uni-
form distribution, but any scoring rule entropy can
be transformed so as to shift the reference point to
any other distribution p�0 by the addition of a linear
function of p, namely S(p�0;p). The reference distri-
bution p0 in their model therefore plays an analogous
role to the baseline distribution q in our model, in-
sofar as �S(pkr) is maximized in the uninformative
case where p = q. Grünwald and Dawid also discuss
scoring rules for continuous probability distributions
drawn from the generalized exponential family, focus-
ing in particular on the logarithmic and quadratic
scoring rules.



6 Summary and Conclusions

We have shown that when a risk averse decision maker
with a precise probability distribution p bets against
a risk neutral opponent with a convex set Q of im-
precise probabilities, or equivalently invests in an in-
complete market for contingent claims where Q is the
set of risk neutral distributions determined by market
prices, there is a natural duality between maximizing
LRT utility and minimizing pseudospherical or power
divergence with the same value of �. In particu-
lar, maximization of logarithmic utility (� = 1) cor-
responds to �nding the distribution q in Q that min-
imizes the KL divergence DKL(pkq), maximization
of exponential utility (� = 0) corresponds to min-
imizing the reverse KL divergence DKL(qkp), and
maximization of reciprocal utility (� = 1

2 ) or square-
root utility (� = 2) correspond to minimization of the
Hellinger distance DH(pkq) or the Chi-square diver-
gence �2(pkq), respectively.
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