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Given: Expensive input-output map g : Rn →R : x → g(x) and family {Xλ}λ∈Λ of random variables.

Aim: Upper/lower probabilities that g(x) ∈ B where the uncertainty of x is modelled by {Xλ}λ∈Λ.

Method: Monte-Carlo simulation of {g(Xλ )}λ∈Λ or of the random set X generated by {g(Xλ )}λ∈Λ.

Problem

• Probability space (Ω,Σ,m).

• Family {Xλ}λ∈Λ of random variables

Xλ : Ω → R : ω → Xλ (ω).

• Probability P(Xλ ∈ B) for fixed Xλ :

P(Xλ ∈ B) =

∫

Ω
1Xλ (ω)∈B dm(ω).

(for initial analysis we drop the map g)

Family {Xλ}λ∈Λ of random variables

• Set-valued map X : Ω →R defined by

X(ω) = {Xλ (ω) : λ ∈ Λ}.
• X is a random set, if upper/lower inverses

X−(B) = {ω ∈ Ω : X(ω)∩B 6=∅},
X−(B) = {ω ∈ Ω : X(ω)⊆ B}

are measurable subsets of Ω.

Random set X based on {Xλ}λ∈Λ

P(B) = inf
λ∈Λ

P(Xλ ∈ B) = inf
λ∈Λ

∫

Ω
1Xλ (ω)∈B dm(ω)

P(B) = sup
λ∈Λ

P(Xλ ∈ B) = sup
λ∈Λ

∫

Ω
1Xλ (ω)∈B dm(ω)

Lower/upper probabilities for {Xλ}λ∈Λ

P
˜
(B) =m(X−(B)) =

∫

Ω
1X(ω)⊆B dm(ω)

P̃(B) =m(X−(B)) =
∫

Ω
1X(ω)∩B 6=∅ dm(ω)

Lower/upper probabilities for X

P
˜

≤ P ≤ P ≤ P̃

Theorem

Assumptions: g : Rn → R is a continuous function,

Λ is a compact subset of a metric space and the maps

λ → Xλ (ω) are continuous for each fixed ω ∈ Ω.

P
˜
(g ≤ y), P(g ≤ y), P(g ≤ y), P̃(g ≤ y)

Goal: Approximation of P(g(Xλ ) ≤ y), P(g ≤ y) and

P(g ≤ y) by means of Monte Carlo simulation using

only one sample for all random variables Xλ , λ ∈ Λ.

Simulation of a family of random variables

• We generate a sample x1, . . . ,xNsamp which is

distributed as a basic random variable X∗.

• The distribution of X∗ should cover a greater

range than a distribution of a single Xλ does.

1 Basic sample x1, . . . ,xNsamp

For all k = 1, . . . ,Nsamp we compute g(xk) either

using g directly or a cost saving surrogate model g̃.

2 Nsamp function evaluations g(xk)

Probability P(g(Xλ )≤ y) for fixed λ is computed by

reweighting the original sample.

• Weights wk(λ ) depending on parameters λ for

reweighting the sample x1, . . . ,xNsamp according

to the distribution of Xλ :

wk(λ ) =
fXλ

(xk)

fX∗(xk)

1

Nsamp

where fXλ
and fX∗ are strictly positive densities.

• Approximation of P(g(Xλ ) ≤ y) for different ran-

dom variables Xλ without additional function

evaluations of g:

P(g(Xλ )≤ y) =
∫

Ω
1g(Xλ (ω))≤y dm(ω)

≈
Nsamp

∑
k=1

1g(Xλ (ωk))≤y ·wk(λ )=
Nsamp

∑
k=1

1g(xk)≤y ·wk(λ ).

3 Approximation of P(g(Xλ)≤ y)

For the computation of the upper/lower probabilities

P(g ≤ y) and P(g ≤ y) we

• use a grid of representative parameter values λi,

• estimate the probabilities P(g(Xλi
) ≤ y) at the

grid points λi by means of MC simulation

• and take the maximum/minimum value:

P(g ≤ y) = sup
λ∈Λ

P(g(Xλ )≤ y)

≈ max
i=1,...,Ngrid

P(g(Xλi
)≤ y)

≈ max
i=1,...,Ngrid

Nsamp

∑
k=1

1g(xk)≤y ·wk(λi),

P(g ≤ y)≈ min
i=1,...,Ngrid

Nsamp

∑
k=1

1g(xk)≤y ·wk(λi).

Effort: Ngrid ·Nsamp reweightings, Nsamp function

evaluations of g.

4 Approximation of P(g ≤ y) and P(g ≤ y)

Goal: Approximation of P
˜
(g ≤ y) and P̃(g ≤ y) by

means of Monte Carlo simulation.

Simulation of a random set

• G(ω) = g(X(ω)) = {g(Xλ (ω))) : λ ∈ Λ}
• G(ω) = [G(ω),G(ω)] random interval

• G(ω) = ming(X(ω)), G(ω) = maxg(X(ω))

1 Propagation of a random set through g

• F(y) = P̃(g ≤ y), F(y) = P
˜
(g ≤ y)

• F(y)=P
(
(−∞,y]∩[G,G] 6=∅

)
=P

(
G≤ y

)
=FG(y)

• F(y)=P
(
[G,G]⊂ (−∞,y]

)
=P

(
G≤ y

)
=F

G
(y)

2 Cumulative distribution functions

• Generate ω1, . . . ,ωNsamp distributed as m.

• For each ωn, estimate G(ωn) ≈ min
i

g(Xλi
(ωn))

using grid points λ1, . . . ,λNgrid
on Λ.

• F(y)≈
Nsamp

∑
k=1

1G(ωk)≤0 · 1
Nsamp

.

Effort: Ngrid ·Nsamp evaluations of g.

3 Algorithm for computing F(y)

Approximation of g by a surrogate model g̃.

Starting point: Collocation points x j, j = 1, . . . ,Ncoll

in R
n and Ncoll function evaluations y j = g(x j).

Two levels are at hand: Ω
Xλ−→R

n g−→ R.

A Surrogate model g̃ of the map g : Rn →R:

To obtain the lower bound G in the above algo-

rithm we replace g by g̃ through points (x j,y j),

G(ωn)≈ min
i=1,...,Ngrid

g̃(Xλi
(ωn)).

Effort: 1 surrogate model g̃, Ngrid ·Nsamp cheap

evaluations of g̃ and Ncoll evaluations of g.

B Surrogate models g̃i of maps Ω → g ◦Xλi
:

Collocation points x j are pulled back to Ω.

For each λi and x j, we get a collocation point

ωi j = X−1
λi

(x j) in Ω.

Clearly, y j = g(Xλi
(ωi j)) = g(x j) for every i.

Then G(ωn)≈ min
i=1,...,Ngrid

g̃i(ωn).

Effort: Ngrid surrogate models g̃i, Nsamp cheap

evaluations of g̃i, i = 1, . . . ,Ngrid, and Ncoll ex-

pensive evaluations of g.

4 Cost saving methods

One may use orthogonal polynomials with respect to the measure m.

In the Gaussian case it means Hermite expansion.

5 Advantage of surrogate models g̃i on Ω

• Probability space: (Ω,Σ,m) = (R,B(R),m), m(B)=

∫

R

1ω∈B

1√
2π

e−ω2/2 dω .

• Family {X(µ,σ)}(µ,σ)∈Λ: X(µ,σ)(ω) = σω + µ =⇒ X(µ,σ) ∼N(µ ,σ2).

• Λ = [µ ,µ ]× [σ ,σ ] = [−0.5,2]× [1,2], B = [1,2.5].

X(ω) = {Xλ (ω) : λ ∈ Λ}= [X(ω),X(ω)]

X(ω) = inf
µ∈[µ,µ]
σ∈[σ ,σ ]

X(µ,σ)(ω) =

{
σω + µ ω < 0

σω + µ ω ≥ 0

X(ω) = sup
µ∈[µ,µ]
σ∈[σ ,σ ]

X(µ,σ)(ω) =

{
σω + µ ω < 0

σω + µ ω ≥ 0

P(B) = inf
(µ,σ)∈Λ

P(X(µ,σ) ∈ B) = P(X(−0.5,1) ∈ B)

= 0.065457

P(B) = sup
(µ,σ)∈Λ

P(X(µ,σ) ∈ B) = P(X(1.75,1) ∈ B)

= 0.546745

P
˜
(B) =m(X−(B)) =m(∅) = 0

P̃(B) =m(X−(B)) =m([−1,3])

= Φ(3)−Φ(−1) = 0.839994
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Example

limit state function g

g
(x
)

spring constant x
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• Given: Limit state function g and {X(µ,σ)}(µ,σ)∈Λ for spring constant x as in

the above example, but here with Λ = [µ,µ ]× [σ ,σ ] = [20,30]× [0.5,3].

• Goal: Upper/lower probabilities of failure.

Example: Beam bedded on spring with uncertain spring constant x

• Grid points (µi,σ j) with µi = 20,21, . . . ,30 and σ j = 0.5,1,1.5, . . . ,3 on

set Λ = [µ ,µ ]× [σ ,σ ] = [20,30]× [0.5,3].

• Focal set [G(ω),G(ω)] of the random set G at ω is approximated by

G(ω)≈ min
i, j

g(X(µi,σ j)(ω)), G(ω)≈ max
i, j

g(X(µi,σ j)(ω)).

• Approximation of the upper probability of failure of the beam by means of

Monte Carlo simulation:

P̃(g ≤ 0) = F (0) =

∫

R

1G(ω)∩(−∞,0]6=∅ dm(ω) =

∫

R

1G(ω)≤0 dm(ω)

≈
Nsamp

∑
k=1

1G(ωk)≤0 ·
1

Nsamp
= 0.358.

with standard normally distributed sample ω1, . . . ,ωNsamp , Nsamp = 100000.

• Evaluations of g: Nsamp ·Ngrid = 100000 · (11 ·6)= 6600000.
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Simulation of a random set

• Failure probability P(g(X(µ,σ))≤ 0) of the beam for a fixed pair (µ ,σ) ∈ Λ:

P(g(X(µ,σ))≤ 0) =

∫

R

1g(X(µ ,σ)(ω))≤0 dm(ω)

≈
Nsamp

∑
k=1

1g(X(µ ,σ)(ωk))≤0 ·wk(µ ,σ)≈
Nsamp

∑
k=1

1g(xk)≤0 ·wk(µ ,σ)

with X(µ,σ)(ωk) = σωk + µ = xk and weights

wk(µ ,σ) =
fX(µ ,σ)

(xk)

fX∗(xk)

1

Nsamp
.

• Basic sample x1, . . . ,xNsamp , Nsamp=100000, distributed as X∗∼N(25,62).

• The upper probability of failure is approximated by

P(g ≤ 0) = sup
(µ,σ)∈Λ

P(g(X(µ,σ))≤ 0)≈ max
i, j

P(g(X(µi,σ j))≤ 0)≈ 0.221

using grid points (µi,σ j) with µi = 20,21, . . . ,30 and σ j = 0.5,1,1.5, . . . ,3.

• Evaluations of g: Nsamp = 100000.

P(g ≤ 0)≈ 0.221
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Simulation of a family of random variables


