Imprecise random variables, random sets, and Monte Carlo simulation Th. Fetz, M. Oberguggenberger, Unit for Engineering Mathematics, University of Innsbruck, Austria

Problem

innsbruck

Given: Expensive input-output map $g : \mathbb{R}^n \to \mathbb{R} : x \to g(x)$ and family $\{X_{\lambda}\}_{\lambda \in \Lambda}$ of random variables. Upper/lower probabilities that $g(x) \in B$ where the uncertainty of x is modelled by $\{X_{\lambda}\}_{\lambda \in \Lambda}$. Aim: **Method:** Monte-Carlo simulation of $\{g(X_{\lambda})\}_{\lambda \in \Lambda}$ or of the random set \mathcal{X} generated by $\{g(X_{\lambda})\}_{\lambda \in \Lambda}$.

Example

$$\begin{split} P(g(X_{\lambda}) \leq y) &= \int_{\Omega} \mathbb{1}_{g(X_{\lambda}(\boldsymbol{\omega})) \leq y} \, \operatorname{dm}(\boldsymbol{\omega}) \\ &\approx \sum_{k=1}^{N_{\mathsf{samp}}} \mathbb{1}_{g(X_{\lambda}(\boldsymbol{\omega}_{k})) \leq y} \cdot w_{k}(\lambda) = \sum_{k=1}^{N_{\mathsf{samp}}} \mathbb{1}_{g(x_{k}) \leq y} \cdot w_{k}(\lambda). \end{split}$$

4 Approximation of $\overline{P}(g \le y)$ and $\underline{P}(g \le y)$

For the computation of the upper/lower probabilities $\overline{P}(g \leq y)$ and $\underline{P}(g \leq y)$ we

- use a grid of representative parameter values λ_i ,
- estimate the probabilities $P(g(X_{\lambda_i}) \leq y)$ at the grid points λ_i by means of MC simulation
- and take the maximum/minimum value:

 $\overline{P}(g \le y) = \sup P(g(X_{\lambda}) \le y)$ $\lambda{\in}\Lambda$ $\approx \max_{i=1,\dots,N_{\text{grid}}}^{X \in \Lambda} P(g(X_{\lambda_i}) \leq y)$ $\approx \max_{i=1,\dots,N_{\text{grid}}} \sum_{k=1}^{N_{\text{samp}}} \mathbb{1}_{g(x_k) \leq y} \cdot w_k(\lambda_i),$ $\underline{P}(g \leq y) \approx \min_{i=1,\dots,N_{\text{grid}}} \sum_{k=1}^{N_{\text{samp}}} \mathbb{1}_{g(x_k) \leq y} \cdot w_k(\lambda_i).$ Effort: N_{grid} · N_{samp} reweightings, N_{samp} function evaluations of g.

Two levels are at hand: $\Omega \xrightarrow{X_{\lambda}} \mathbb{R}^n \xrightarrow{g} \mathbb{R}$.

in \mathbb{R}^n and N_{coll} function evaluations $y_j = g(x_j)$.

(A) Surrogate model \widetilde{g} of the map $g: \mathbb{R}^n \to \mathbb{R}$:

To obtain the lower bound ${\boldsymbol{\Im}}$ in the above algorithm we replace g by \tilde{g} through points (x_i, y_i) , $\underline{\mathfrak{G}}(\boldsymbol{\omega}_n) \approx \min_{i=1,\dots,N_{\mathsf{arid}}} \widetilde{g}(X_{\boldsymbol{\lambda}_i}(\boldsymbol{\omega}_n)).$

Effort: 1 surrogate model \tilde{g} , $N_{\text{grid}} \cdot N_{\text{samp}}$ cheap evaluations of \tilde{g} and N_{coll} evaluations of g.

B) Surrogate models \widetilde{g}_i of maps $\Omega \rightarrow g \circ X_{\lambda_i}$: Collocation points x_i are pulled back to Ω .

For each λ_i and x_i , we get a collocation point $\omega_{ij} = X_{\lambda_i}^{-1}(x_j)$ in Ω . Clearly, $y_i = g(X_{\lambda_i}(\omega_{ij})) = g(x_i)$ for every *i*.

Then $\underline{\mathcal{G}}(\omega_n) \approx \min_{i=1,\dots,N_{\text{arid}}} \widetilde{g}_i(\omega_n).$

Effort: N_{grid} surrogate models \tilde{g}_i , N_{samp} cheap evaluations of \tilde{g}_i , $i = 1, ..., N_{\text{grid}}$, and N_{coll} expensive evaluations of g.

 $w_k(\boldsymbol{\mu}, \boldsymbol{\sigma}) = \frac{f_{X_{(\boldsymbol{\mu}, \boldsymbol{\sigma})}}(x_k)}{f_{\boldsymbol{\sigma}}(x_k)} \frac{1}{1}$ $f_{X_*}(x_k) \quad N_{samp}$

• Basic sample $x_1, \ldots, x_{N_{samp}}, N_{samp} = 100000$, distributed as $X_* \sim \mathcal{N}(25, 6^2)$. • The upper probability of failure is approximated by

t_math

 $\overline{P}(g \le 0) = \sup_{(\mu, \sigma) \in \Lambda} P(g(X_{(\mu, \sigma)}) \le 0) \approx \max_{i, j} P(g(X_{(\mu_i, \sigma_j)}) \le 0) \approx 0.221$ using grid points (μ_i, σ_i) with $\mu_i = 20, 21, ..., 30$ and $\sigma_i = 0.5, 1, 1.5, ..., 3$.

• Evaluations of g: $N_{samp} = 100000$.

5 Advantage of surrogate models \tilde{g}_i on Ω

One may use orthogonal polynomials with respect to the measure m. In the Gaussian case it means Hermite expansion.