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Given: Expensive input-output map g : R" — R : x — g(x) and family {X} }, <4 of random variables. e Probability space: (Q,X,m) = (R,B(R),m), m(B) :/ lwen L e’ 2dw.
Aim:  Upper/lower probabilities that g(x) € B where the uncertainty of x is modelled by {X; }ca- Farrily (0 - B X & N v 27;
Method: Monte-Carlo simulation of {g(X;)}1ca or of the random set X generated by {g(X3)}en- o Family {X.0)woren: Xipo)(®) =00+ = X q) ~ N(g,07).
o A= [E,ﬁ] x [o,0] =[-0.5,2] x [1,2], B=][1,2.5].
Family {X) },ea of random variables Random set X based on {X) },ca X(@) = (X, (@) : A € A} = [X(0), T(0)]
e Probability space (Q,X,m). e Set-valued map X : Q — R defined by ) co+u ®<0
Family {X f rand iabl X(w) = inf_ Xy o)(@) = =
e Family {X; }ea of random variables X(w) = {X; (@) : A € A}. uelu CO+U ©>0
X, Q= R:0— X (0) e X is a random set, if upper/lower inverses . octe] X CO+T ®<0
o Probability P(X; € B) for fixed X;: X~ (B) = {0 € Q: X(w) B £ 2}, (@) e wo) @) =\Goir 030
P(X; €B) = / Ly, (w)cs dm(®). X_(B)={weQ:X(w) C B} oelod]
Q .
e il vl v e e D ) are measurable subsets of Q. P(B) = (ulg)feAP(X(“,g) € B) = P(X(_o5,) €B)
’ =0.065457
Lower/upper probabilities for {X; },.ca Lower/upper probabilities for X P(B)= sup P(X(u.0)€B)=P(X4751) €B)
(w.o)en =0.546745
B(B) = inf P(X, € B) = inf | Ly (wep dm(@) | P(B)=m(X-(B) = | Lx(oicp dm(®) P(B) = m(X_(B)) = m(2) = 0
P(B) = - P - P(B) = m(X~(B)) = m([-1,3])
P(B) = supP(X; €B)=sup | 1 dm() P(B) = m(X (B :/ 1 dm(@
Aea renJa O (B) =m(X~(B)) = J, Lx(wpnasor dm(e) = ®(3) — B(—1) = 0.839994 10y
Example: Beam bedded on spring with uncertain spring constant x
Y Y VY YYIYYIYY

e Given: Limit state function g and {X(, )} (u,0)ea fOr spring constant x as in
the above example, but here with A = [u, 1] X [o, 7] = [20,30] % [0.5,3].

— ~ limit state function g o Goal: Upper/lower probabilities of failure.

P(g<y),P(g<y),P(g<y), P(g<y)

= ; :
Assumptions: g:R"” — R is a continuous function, % 0 Simulation of a random set )
. q ) : ‘
1}}5 aXcompact SUbS?t ofarr;e:nc sze;(izxe znd tgzmaps 15 25 35 45 e Grid points (u;,0;) with u; =20,21,...,30 and ¢;=0.5,1,1.5,...,3 on
— X, (w) are continuous for each fixed @ . spring constant x set A = [u, ] x [0, 8] = [20,30] x [0.5,3].
Simulation of a family of random variables I T e ———— § e Focal set [§(w),SG(w)] of the random set § at  is approximated by

_ ~ o) ~min g(X, (@), S(w)~ Xy o) (@)).
Goal: AppI’OXImatlon of P(g(XZ,) Sy)’ P(gSy) and Goal: AppI’OXImatlon of B(g Sy) and P(g Sy) by 2( ) Hll’;ng( (,utan)( )) 9( ) II;I’ZJIXg( (/,L,,O',)( ))

P(g < y) by means of Monte Carlo simulation using means of Monte Carlo simulation. o Approximation of the upper probability of failure of the beam by means of
only one sample for all random variables X, A € A. Monte Carlo simulation:

ﬁ(g <0)= F(O) :/]19(@)0(,&’0#@ dm(a)) :/]13(0,)50 dm(a))
R R

1 Propagation of a random set through g
1 Basic sample x, ..., XNz,

* §(0) =g(X(0)) = {g(Xy(@))) : A € A}
e We generate a sample xi,...,Xngy,, Which is e 5(0) =[$(w),5(w)] random interval Nsamp 1
distributed as a basic random variable X.. . = ~ Z 1 . —0.358.
o G(w)=ming(X(w)), S(w)=maxg(X(w SG(ax)<0
e The distribution of X, should cover a greater L (@) sX(@)). 5(@) st (@) ) k=1 Nsamp
range than a distribution of a single X, does. with standard normally distributed sample @i, . . ., Ongam, » Nsamp = 100000.
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2 Cumulative distribution functions

e Evaluations of g: Nsamp - Ngrig = 100000 (11 -6) = 6600000.

2 Nsamp function evaluations g(xx) e Fy)=P(g<y), E(y)=P(g<V)
Forall k=1,...,Nsamp We compute g(x) either o FO)=P((==IN[§ 5] #2)=P(§ <y) =F5(v)
using g directly or a cost saving surrogate model g. o F(y)=P([S,5] C (—oo,y]) =P(§ <y) =F5(y)
3 Approximation of P(g(X3) <) 3 Algorithm for computing F(y)
Probability P(g(X;) <) for fixed A is computed by e Generate @i, ..., 0Ny, distributed as m.
reweighting the original sample. e For each w,, estimate §(w,) ~ ming(X;,(,)) L )
O Llelpi 17:{0) EEEIg) C [PRIERCES 4) 1or W) IS [DRIRES o Ay I Simulation of a family of random variables X
reweighting the sample xi, ..., Xng,y,, according . Nsamp
to the distribution of X}i o 7 ° F(y)~ kgl L5 (000" Nogmp- o Failure probability P(g(X,.)) < 0) of the beam for a fixed pair (1, 0) € A:
_Jx N ,
wi(A) = Fe ) N | Effort: Ny Neamp evaluations of g. | P(g(X(u0) < 0) = /ﬂg(x(p,(,)(w))so dm(®)
where fx, and fy, are strictly positive densities. 4 Cost saving methods Neamp R Nsamp
e Approximation of P(g(X,) <) for different ran- ~ Y ]lg(X(u,g)(wk))SO'Wk(“aG) ~ ), Lgwy<o wk(1,0)
dom variables X, without additional function Approximation of g by a surrogate model 3. k=1 k=1

evaluations of g: with X, o) (@) = oy + 1 = x; and weights

Starting point: Collocation points x;, j =1,...,Neon

P(g(X;) <y) = /Q L(x, (w))<y dM(®) in R" and Nconi function evaluations y; = g(x;). we(1L, ) = fX(p,o‘) (%) 1 .
N. Nsamp X, g fX* (xk) Nsamp
S Two levels are at hand: Q —= R" — R. o
~ Y Lot @<y W) = Y Ly <y wi(A). o Basic sample x1, . ., Xngamp» Nsamp = 100000, distributed as X, ~ N(25,62).
k=1 = o A q q
N ! ) @ Surrogate model g of the map g: R” — R: e The upper probability of failure is approximated by
4 Approximation of F(g < y) and B(g < y) To obtain the lower bo~und Gin thg above algo- P(g<0)= sup P(g(X(y,0)) <0) = maxp(g(x(“mj)) <0)~0.221
: . rithm we replace g by g through points (x;,y;), (u,0)eA Y
For the computation of the upper/lower probabilities G(w,) ~ min (X, (@,)). using grid points (u;, o;) with y; = 20,21,...,30 and 6; =0.5,1,1.5,...,3.
P(g<y)and P(g <y) we =1, Nyrid e Evaluations of g: Neamp = 100000.
e use a grid of representative parameter values A;, Effort: 1 surrogate model g, Nyig - Nsamp cheap
e estimate the probabilities P(g(X;,) <y) at the evaluations of g and N,y evaluations of g. =
grid points A; by means of MC simulation ~ . V|
e and take the maximum/minimum value: Surrogate models g; of maps Q — goX;,: =
= Collocation points x; are pulled back to Q. -
P(g <) = sup P(g(X)) <) poin's x; are p = >
AcA For each A; and x;, we get a collocation point S 3
~ < _ . 30
izlr?%;\(/gﬁd P(g(X3,) <) ;) :Xxil(xj) in Q. =
Meamp Clearly, y; = g(X;.(w;;)) = g(x;) for every i.
~ max Z L)<y - Wi (Ai), Y, vj = 8(Xy, (@) = g(x;) y \ |
T ed g=1 Then §(w,) ~ lmi% gi(@,). - /
Nsamp 1=1,....[Ngrid ( B
~ mi ) : 5 Advantage of surrogate models g; on Q N
Plg<y)=~ izl?.{%gﬁd ,;1 Loty Wk (4:). Effort: Ngig surrogate models g;, Nsamp cheap
y evaluations of g;, i = 1,...,Ngid, and Neopi €x- One may use orthogonal polynomials with respect to the measure m.

Effort: Nyriq - Nsamp reweightings, Nsamp function

] pensive evaluations of g.
evaluations of g.

In the Gaussian case it means Hermite expansion.
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