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We consider a finite-state, discrete-time scalar linear system with a determin-
istic (known) current state Xk = xk. For all ` ∈ {k, . . . ,k1}, the dynamics of the
system is described by

X`+1 = a`X`+ b`u`+W`. (DYN)

In this expression, a` and b` are real-valued parameters and the state X` and
noise W` at time ` are real-valued random variables. The control input u` at
time ` is also real-valued.

State feedback Usually the control input u` is taken to be some real-valued
function ψ` of the previous states xk+1:` := (xk+1,xk+2, . . . ,x`), called a feedback
function. As the current state xk is known, ψk is a constant. We call a tuple of
feedback functions ψk:k1 := (ψk,ψk+1, . . . ,ψk1) a control policy. We use Ψk:k1 to
denote the set of all control policies ψk:k1.

LQ cost functional We measure the performance of a control policy ψk:k1

by means of the associated cost. For all k ∈ {k0, . . . ,k1}, all ψk:k1 ∈ Ψk:k1 and all
xk ∈R we define the linear-quadratic (LQ) cost functional η as

η
[
ψk:k1

∣∣xk
]

:=
k1

∑
`=k

r`ψ`(Xk+1:`)
2+ q`+1X2

`+1,

where q` ≥ 0 and r` > 0 are real coefficients.

Linear systems

In order to model the noise Wk:k1 := (Wk,Wk+1, . . . ,Wk1), we consider an initial
time k0, let k0 ≤ k ≤ k1, and focus on modelling Wk0:k1.

Precise noise model We model our beliefs about Wk0:k1 using conditional
probability density functions: for all k ∈ {k0, . . . ,k1} and all wk0:k−1 ∈Rk−k0, we
are given a conditional probability density function fk

(
·
∣∣wk0:k−1

)
, and we use

Pk(·|wk0:k−1) to denote the corresponding conditional linear prevision operator
(expectation operator). It then follows from the law of iterated expectation that
for any gamble g on Rk1−k+1:

Pk:k1(g|wk0:k−1) = Pk(Pk+1(· · ·Pk1(g|wk0:k−1,Wk:k1−1) · · · |wk0:k−1,Wk)|wk0:k−1).

We assume that our conditional probability density functions are sufficiently
well-behaved in order for the previsions in this expression to exist. We denote
the set of all such precise noise models P by P.

White noise model In the literature, it is often assumed that the noise is
independent. This means that all the conditional probability density functions
(and associated linear previsions) are equal to marginal ones.

Precise noise model P

Local optimality A control policy ψ̂k:k1 is locally optimal for xk ∈R and wk0:k−1 ∈Rk−k0 if

ψ̂k:k1 ∈ loc-optPk:k1

(
Ψk:k1

∣∣xk,wk0:k−1
)

:= arg min
ψk:k1∈Ψk:k1

Pk:k1(η
[
ψk:k1

∣∣xk
]
|wk0:k−1).

Optimality A control policy ψ̂k:k1 is optimal for xk ∈ R and wk0:k−1 ∈ Rk−k0 if, for all
` ∈ {k, . . . ,k1} and all xk+1:` ∈R`−k:

ψ̂k:k1(xk+1:` , ·) ∈ loc-optP`:k1

(
Ψ`:k1

∣∣x`,wk0:`−1
)

,

where wk:`−1 is derived from (DYN) and xk:`. The set of all such optimal control policies is
denoted by optPk:k1

(
Ψk:k1

∣∣xk,wk0:k−1
)
.

Precise noise solution For any current state xk ∈R and noise history wk0:k−1 ∈Rk−k0, the
set optPk:k1

(
Ψk:k1

∣∣xk,wk0:k−1
)

consists of a single optimal control policy. For any ` ∈ {k, . . . ,k1}
and xk+1:` ∈R`−k, it is given by

ψ̂`(xk+1:`) = −r̃`b`
(

m`+1a`x`+ h`|wk0:`−1

)
. (OCP)

The parameters m`+1 and r̃` are obtained from the initial condition mk1+1 := qk1+1 and the
recursive Riccati equation m` := q`+ a2

`m`+1− r̃`a2
`b

2
`m

2
`+1, with r̃` :=

(
r`+ b2

`m`+1
)−1. The

noise feedforward h`|wk0:`−1
is obtained from the initial condition hk1+1|wk0:k1

:= 0 and the
recursive expression

h`|wk0:`−1
:= P`(m`+1W`+ r̃`+1a`+1r`+1h`+1|wk0:`−1,W`

|wk0:`−1).

Calculating this feedforward is intractable!

White noise solution For white noise, the recursive feedforward relation simplifies to

h` := m`+1P`(W`)+ r̃`+1a`+1r`+1h`+1,

with initial condition hk1+1 := 0.

The precise LQ problem

Imprecise noise model Our beliefs about Wk0:k1 are modelled by a set
P ⊆ P of precise noise models. This definition allows us to use the results
obtained in the precise LQ problem.

Forward irrelevant noise model P is said to be a forward irrelevant product
if there are sets of marginal probability density functions Qk, k ∈ {k0, . . . ,k1},
such that P is the largest subset of P for which it holds that

fk
(
·
∣∣wk0:k−1

)
∈Qk

for all precise models P in P, all k in {k0, . . . ,k1} and all wk0:k−1 in Rk−k0.

Imprecise noise model P

E-admissibility A control policy ψ̂k:k1 is E-admissible for xk ∈R and wk0:k−1 ∈Rk−k0 if

ψ̂k:k1 ∈ optPk:k1

(
Ψk:k1

∣∣xk,wk0:k−1
)

:=
⋃

P∈P
optPk:k1

(
Ψk:k1

∣∣xk,wk0:k−1
)

.

Imprecise noise solution Every P ∈P corresponds to a single E-admissible control
policy ψ̂k:k1—see Equation (OCP)—that is a combination of the same state feedback and a
possibly different noise feedforward. Calculating all possible feedforwards is intractable!

Forward irrelevant noise solution If P is a forward irrelevant product, then for all
` ∈ {k0, . . . ,k1} and all wk0:`−1 ∈R`−k0

h`|wk0:`−1
∈ [h`,h`],

where hk1+1 := 0, hk1+1 := 0 and, for a`+1 ≥ 0:

h` := m`+1P`(W`)+ r̃`+1a`+1r`+1h`+1 and h` := m`+1P`(W`)+ r̃`+1a`+1r`+1h`+1,

with P`(W`) and P`(W`) the lower and upper prevision (expectation) of W`, respectively. For
a`+1 ≤ 0, h`+1 and h`+1 switch places.

Convergence For stationary linear systems (constant a`, b`, r`, q` and Q`) and large k1−k,
the parameters mk, r̃k, hk and hk converge to easily calculable limit values.

The imprecise LQ problem

How do we choose which element of [h`,h`] to apply? We propose two possible
options:
1. use the control policy that corresponds to a white noise model

2. lazily choose the h` ∈ [h`,h`] that minimises |u`|.
We ran two simulations to compare their performance

Small difference in cost, but the lazy control has more zero inputs
→ more research is definitely necessary

w` ∼N (0,1)
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w` ∼N (P`(W`),1)
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Simulations


