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Abstract
The Bayesian Dirichlet equivalent uniform (BDeu)
function is a popular score to evaluate the goodness
of a Bayesian network structure given complete cat-
egorical data. Despite its interesting properties, such
as likelihood equivalence, it does require a prior ex-
pressed via a user-defined parameter known as Equi-
valent Sample Size (ESS), which significantly affects
the final structure. We study conditions to obtain prior
independence in BDeu-based structure learning. We
show in experiments that the amount of data needed
to render the learning robust to different ESS values is
prohibitively large, even in big data times.
Keywords: Robustness, Bayesian Networks, Structure
Learning, BDeu

1. Introduction

Bayesian networks are a class of probabilistic graphical
models based on a Directed Acyclic Graph (DAG) G that
defines a factorisation of the joint probability distribution
over a set of variables X = {x1, ...,xi, ...,xn}. One can learn
the DAG (also called structure) G from complete categor-
ical data D via the popular Bayesian Dirichlet equivalent
uniform (BDeu) score function [3, 5], which aims at finding
a maximum a posteriori (MAP) G that maximises P(G|D)
(under uniform prior for G). Under these assumptions, the
BDeu score for G is defined by the marginal likelihood of
the data D given G and the ESS (denoted here by α > 0):

BDeu(G,α) =
n

∏
i=1

qi

∏
j=1

Γ(αi j)

Γ(αi j +Ni j)

ri

∏
k=1

Γ(αi jk +Ni jk)

Γ(αi jk)
,

where for a variable i, ri is its arity, qi is the number of
joint instantiations of its parents, Ni jk is the number of
observations with instantiation jk of its parents and itself,
and Ni j = ∑k Ni jk. Finally, αi jk = α/(riqi) and αi j = α/qi.

Structure learning with BDeu requires the definition of
the Dirichlet parameters, which is done through α > 0,
roughly expressing the strength of our prior belief. How-
ever, there is no consensus on what value an ‘uninformative’
α should take and several studies have focused on measur-
ing the influence of α on the final structure [8, 9, 11], ana-

lysing the asymptotic behaviour of the BDeu for α→ 0 and
α → ∞ [13, 14, 16, 17], or finding the optimal α [11, 13].

Nonetheless, to the best of our knowledge, no work has
directly addressed the robustness of BDeu-based structure
learning to variations of the ESS. By robustness we mean
prior-independence, i.e., for large enough data, one should
expect the structure learning algorithm to produce the same
network regardless of the prior knowledge expressed via the
ESS. As we show in the experiments, even for a small num-
ber of variables the amount of data required to achieve such
robustness is prohibitively large. That suggests the prior on
the BDeu function might be too strong for some real-world
applications, where other scores (or some variation of the
BDeu score) might be more adequate.

2. Experiments

We conducted experiments with three known Bayesian
networks [2, 7, 12] and 16 datasets from the UCI Machine
Learning repository [6] to study the influence of the ESS.
In all experiments, we assumed complete categorical data
(we discretised continuous variables into two categories by
their median values, when needed). As we wanted to study
the intrinsic behaviour of BDeu-based structure learning,
and not the particularities of a given approximate solver,
we focused on exact solutions. For that, there are multiple
exact solvers [4, 10, 18], and we used GOBNILP [1], which
finds the optimal graph via integer linear programming.

In the experiments in Figure 1 and 2, we assumed a
given ordering of the variables, i.e., for any nodes X and
Y , if X precedes Y in the ordering, then an arc between
X and Y (if it exists) must be directed from X to Y . That
restriction considerably reduces the search space and allows
us to consider larger sample sizes, while still guaranteeing
an exact solution. Conversely, the UCI datasets are small
enough that we could gather exact results both with and
without order constraints.

Graph Complexity. The ESS can be interpreted as a
regularizer on the structure of the Bayesian network. Hence,
we start by investigating how it affects the total number of
arcs (parents) in the network. In particular, we are interested
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Figure 1: Average number of arcs as a function of the ESS
for different N. Scale of the graphs varies.

in the interplay between the sample size (N) and the ESS
in determining the complexity of the network.

We sampled data from three known networks, Sachs
(n= 11) [7], Child (n= 20) [12] and Alarm (n= 37) [2] and
learned the structure while varying the sample size (N) and
the ESS. We repeated that process for 30 different orderings
and reported the average number of arcs (across orderings)
in Figure 1. The results indicate the graph increases in
complexity with the ESS. Indeed, the number of arcs is
expected to grow almost monotonically to the maximum
(complete graph) for large values of α [11, 13, 14, 16, 17].

A more interesting analysis that received little attention
in the literature is how the complexity of the graph var-
ies with the sample size. Naturally, one would expect that,
for large datasets, the prior would have little effect on the
learned network. That is what we observe for the Sachs
network in Figure 1: the number of arcs remains constant
across all ESS values for N ≥ 105. However, considering
Sachs contains only 11 variables, that is an extremely high
number of data points to guarantee robustness over a relat-
ively small range of ESS values. For the other networks, no
amount of data ensured prior-independence. The number
of arcs increased with the ESS, and providing more data
points did not alleviate this trend significantly.

In a statistical sense, the ESS is not a typical Dirichlet
prior because it also defines the number of parameters in the
model. It expresses a trade-off between regularisation and
complexity [14], which increases with the ESS and with
N, as shown in the experiments. That trade-off partially
explains why it is hard to avoid prior-dependence in BDeu-
based structure learning.

Robustness To study prior-independence in BDeu-based
structure learning, one needs a metric that captures the
influence of the ESS on the final structure.

Definition 1 (Robust Interval) is defined by the largest
range of ESS values for which all obtained optimal struc-
tures (for each ESS) are Markov equivalent.

RI := argmax
[α1,α2]

{|α2−α1| :

G∗(α ′)≡ G∗(α ′′),∀α ′,α ′′ ∈ [α1,α2]},
where G∗(α) = argmaxG BDeu(G,α) is the optimal graph
for a given ESS, and ≡ denotes Markov equivalence.

Intuitively, the larger the Robust Interval (RI), the more
prior-independent the learning algorithm (for a given data-
set). We do not distinguish structures representing the same
set of conditional independence statements (Markov equi-
valent), as they encode the same ‘information’ and have the
same BDeu score [5]. The advantage of the RI against other
metrics, such as structural Hamming distance (SHD) [15],
is that it does not require a gold standard network and also
signals a safe range of ESS values over which the influence
of the prior is mitigated.

Note that the RI is only meaningful if reported for non-
complete graphs. For α→ ∞, the learned structure tends to
a complete graph [16], and it follows that, for large enough
α , the structure is ‘infinitely’ robust but overfitted, which
is an uninteresting result. In the experiments, we computed
the RI by finding the optimal structure with α covering the
range (0.1,4.0) in increments of 0.1. By using increments
we do not obtain the true RI but a conservative estimate:
the true RI is either smaller (due to unobserved variations
in-between increments) or at most 0.2 larger.

We report the results in Figure 2, where for each data-
set and for each pair (α,N), we see the average RI of 30
randomly sampled orderings.

Figure 2: Robust Interval for Sachs [7], Child [12] and
Alarm [2] in function of the sample size (N).

In a Bayesian framework, we want the prior to become
less relevant in determining the final structure of the net-
work as we gather more data. This in turn should result



in larger robust intervals. In Figure 2, we see the BDeu
does comply with that requirement to some extent, as the
robust interval does increase with N. However, the amount
of data required to cover the small ESS range we analysed
is already prohibitively large even for a small number of
variables. That supports recent studies that claim the BDeu
is not fit for sparse data [8, 9], but also alerts us that almost
every real-world dataset might be too sparse for the BDeu.

Table 1: Largest ESS range yielding the same structure
(RI) for UCI datasets. N and n are the number of
samples and variables, RIo the average RI of 10
orderings, and RIf the RI without order constraint.

Dataset n N RIo RIf

car 7 1728 (0.1, 4.0) (0.4, 4.0)
glass 8 214 (1.3, 2.3) (0.3, 4.0)

spambase 8 4601 (1.2, 4.0) (1.7, 4.0)
diabetes 9 768 (0.2, 1.7) (1.6, 4.0)
nursery 9 12960 (1.4, 2.9) (1.4, 4.0)

breast-cancer 10 286 (1.9, 4.0) (2.2, 4.0)
tic-tac-toe 10 958 (1.8, 2.1) (1.7, 2.2)

cmc 10 1473 (1.7, 2.9) (0.8, 2.8)
heart-h 12 294 (0.8, 1.6) (2.2, 2.9)
vowel 14 990 (0.6, 1.8) (1.9, 4.0)
zoo 17 101 (0.6, 1.3) (0.9, 2.1)
vote 17 435 (0.8, 1.8) (2.3, 3.1)

segment 17 2310 (1.5, 2.9) (2.3, 4.0)
primary-tumor 18 339 (1.1, 1.5) (3.1, 3.5)

vehicle 19 846 (0.9, 1.7) (3.3, 4.0)

We did the same analysis for 16 UCI datasets [6]. In
these experiments, we computed both the average RI of 10
different orderings (RIo) and the RI with no constraint on
the ordering (RIf). Again, in Table 1, we see that except for
the car dataset, none of them had enough data to guaran-
tee robustness of the BDeu-based structure learning with
α ∈ (0.1,4.0). Interestingly, the size of the interval did not
change significantly between solutions with and without
a order constraint, but the RI stabilised at slightly higher
ESS values when no ordering was given.

The RI can also be seen as an indication of a safe interval
at which the influence of the prior is minimal. However, for
more than half of the datasets, the robust interval did not
includes the canonical α = 1. That contrasts with previous
studies suggesting the influence of the ESS on the learned
structure is minimised when it is set to one [16].

All in all, the results support previous research in con-
firming the BDeu is highly sensitive to the ESS. That is
crucial when one wants to study the graph per se but may
also impact the predictive power of the models. Therefore,
one must be aware and accept the large influence the prior
may have when using BDeu, since the amount of data
will likely be insufficient to avoid prior dependence. Fu-
ture work will extend the analysis to parameter learning
to investigate further the overall impact of the ESS on the
learned models.
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