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Abstract
This paper proposes a method for fitting a two-state
imprecise Markov chain to time series data from a two-
state non-Markovian process. Such non-Markovian
processes are common in practical applications. We
focus on how to fit modelling parameters based on
data from a process where time to transition is not ex-
ponentially distributed, thereby violating the Markov
assumption. We do so by first fitting a many-state (i.e.
having more than two states) Markov chain to the
data, through its associated phase-type distribution.
Then, we lump the process to a two-state imprecise
Markov chain. In practical applications, a two-state im-
precise Markov chain might be more convenient than
a many-state Markov chain, as we have closed analytic
expressions for typical quantities of interest (including
the lower and upper expectation of any function of
the state at any point in time). A numerical example
demonstrates how the entire inference process (fitting
and prediction) can be done using Markov chain Monte
Carlo, for a given set of prior distributions on the para-
meters. In particular, we numerically identify the set
of posterior densities and posterior lower and upper
expectations on all model parameters and predictive
quantities. We compare our inferences under a range
of sample sizes and model assumptions.
Keywords: imprecise Markov chain, estimation, reli-
ability, Markov assumption, MCMC

1. Introduction

Imprecise Markov chains provide a popular model for
stochastic processes under severe uncertainty [13, 28, 7, 5,
21, 7, 6, 29, 27, 26, 18, 20, 24, 8, 10, 14, 15, 11, 16]. From a
sensitivity analysis point of view, imprecise Markov chains
model a set of stochastic processes, where only the bounds
of this set are required to satisfy the Markov and stationar-
ity conditions. Whilst one might think that computing with
such a wide range of models is difficult, it turns out that
computing expectation bounds is often extremely efficient,
and nearly as easy as working with standard Markov chains

[7]. This property makes imprecise Markov chains espe-
cially attractive for practical applications. Indeed, Markov
and stationarity assumptions are frequently made for com-
putational and conceptual ease, even in the face of clear
violations of such assumptions [31].

Two-state imprecise Markov chains are particularly at-
tractive as they allow closed analytic expressions for many
quantities of interest. For instance, they admit a closed
analytic expression for the expectation of any function of
the state at any fixed point in time. Moreover, in prac-
tical applications, very often we are interested in stochastic
processes that can be in one of two states, but where the
Markov and stationarity conditions are violated to some
extent.

In this paper, we demonstrate how imprecise two-state
continuous time Markov chains can be fitted to time series
data to model stochastic processes that violate the Markov
assumption. We do so by combining two well-known tech-
niques from the literature: the idea that arbitrary distri-
butions of transition times can be modelled using phase-
type distributions, which always have a representation as
a Markov chain with potentially many states [17], and the
idea that we can lump states together to reduce these com-
plicated models back to a simpler two-state model [11]. In
doing so, we also gain insight into what shape of processes
imprecise Markov chains can model, potentially further
opening up new applications for imprecise Markov chains.

We also manage to perform a full uncertainty quantifica-
tion on the inferences from the fitted imprecise Markov
chain, in the sense that the imprecise Markov chain is
directly part of the likelihood of the model, and sets of
distributions over the parameters of the imprecise Markov
chain are fully propagated. This stands in contrast with how
imprecise Markov chains have been fitted elsewhere in the
literature, where uncertainty in the bounds on the transition
rates is normally not propagated [25, 18, 24, 16].

We find that directly fitting a standard two-state Markov
chain (precise or imprecise) does not predict system be-
haviour as correctly as the lumped phase-type model.
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Moreover, under a standard model, the influence of the
prior will vanish as we get more data, and thereby, so will
any imprecision in the posterior. The lumped phase-type
model on the other hand will always retain some level of
imprecision, as this imprecision is a result of structural
uncertainty, and not just due to a lack of data.

The paper is organised as follows. Section 2 gives a brief
introduction to Markov chains. Section 3 details how to
reduce a many-state Markov chain to a two-state imprecise
Markov chain, using lumping. Section 4 presents a simple
model that serves as an example of this reduction method.
This simple model is also used throughout the remainder
of the paper. Section 5 explains how to fit the modelling
parameters based on time series data. Section 6 presents a
fully worked numerical example. Section 7 concludes the
paper.

2. Markov Chains

In this section, we present a minimal introduction to
Markov chains.

Let S := {1, . . . ,n} denote a state space, which we as-
sume to be finite. A stochastic process (Xt)t≥0 is said to be
a (homogeneous, continuous time) Markov chain on S if

P(Xt+δ t = j | Xt1 = i1, . . . ,Xtk = ik,Xt = i)

= P(Xδ t = j | X0 = i) (1)

for every 0 < δ t ∈ R, every 0≤ t1 < · · ·< tk < t ∈ R, and
every i1, . . . , ik, i, j ∈ S. It can be shown that a Markov chain
is uniquely determined by its rate matrix Q ∈ Rn×n:

Qi j := lim
δ t→0

P(Xδ t = j | X0 = i)−P(X0 = j | X0 = i)
δ t

(2)

The laws of probability imply that the rows of Q need to
sum to zero, the diagonal elements need to be non-positive,
and all other entries need to be non-negative. The expecta-
tion of any function f of Xt , given X0, is given by:

E( f (Xt) | X0 = i) = [Tt f ]i (3)

where
Tt := exp(Qt) = lim

n→∞

(
I +

t
n

Q
)n

(4)

For a two-state Markov chain, the rate matrix Q is de-
termined by just two parameters λ ≥ 0 and µ ≥ 0:

Q =

[
−λ λ

µ −µ

]
(5)

and we have a closed expression for Tt (see Theorem 2 in
the appendix):

Tt = I + 1−e−(λ+µ)t

λ+µ
Q. (6)

3. Induced Imprecise Markov Chain By
Lumping

Following [11, Sec. 3], we now explain how to induce
imprecise Markov chains through lumping.

Imagine that we would like to reduce the state space to
{1, . . . ,m} for some m < n. For this purpose, we define a
lumping map Λ : {1, . . . ,n} → {1, . . . ,m}, as well as the
following non-linear operator Q : Rm→ Rm [11, Sec. 3.3]:

[Q f ]k := min
i∈Λ−1(k)

[Q( f ◦Λ)]i (7)

for all f ∈ Rm and k ∈ {1, . . . ,m}.
The lumped process (Yt)t≥0, defined by Yt := Λ(Xt) then

satisfies

[T t f ]i ≤ E( f (Yt) | Y0 = i)≤ [T t f ]i (8)

where

T t := lim
r→∞

(
I +

t
r

Q
)r

(9)

and T t( f ) :=−T t(− f ) for every f ∈ Rm. Whilst the pro-
cess Yt is under normal circumstances not Markovian, the
expectation bounds in Eq. (8) do correspond to the lower
and upper expectation induced by the imprecise Markov
chain with lower transition rate operator Q.

For example, consider a situation where we leave state
1 as it is, and lump all states {2, . . . ,n} into a single
state. This corresponds to the lumping map Λ(1) := 1 and
Λ(2) = · · · = Λ(n) := 2. As this is the lumping we will
use throughout the remainder of the paper, for clarity of
exposition, we will denote state 1 of the lumped process
by α and state 2 of the lumped process by β . Equation (7)
becomes:

[Q f ]α := Q11 fα +
n

∑
j=2

Q1 j fβ =−Q11( fβ − fα) (10)

[Q f ]β :=
n

min
i=2

{
Qi1 fα +

n

∑
j=2

Qi j fβ

}
=

n
min
i=2

Qi1( fα − fβ )

(11)

Further, in this case, because the reduced state space has
only two states, we know that we have a closed analytic
expression for the lower transition operator T t .

More precisely, any two-state imprecise Markov chain
can be described by just 4 parameters, λ∗ and λ ∗ (with
0≤ λ∗ ≤ λ ∗) which bound the transition rate from state α

to state β , and µ∗ and µ∗ (with 0≤ µ∗ ≤ µ∗), which bound
the transition rate from state β to state α:

[Q f ]α = min{λ∗( fβ − fα),λ
∗( fβ − fα)}, (12)

[Q f ]β = min{µ∗( fα − fβ ),µ
∗( fα − fβ )}. (13)



Then, with the λ and µ that achieve the minimum in
Eqs. (12) and (13):

(λ f ,µ f ) :=

{
(λ∗,µ

∗) if fα ≤ fβ

(λ ∗,µ∗) if fα > fβ

(14)

and

Q f :=
[
−λ f λ f
µ f −µ f

]
(15)

it can be shown that (see [10] or Theorem 5 in the appendix
for a shorter proof)

T t f = f + 1−e−(λ f +µ f )t

λ f +µ f
Q f f . (16)

Comparing Eqs. (10) and (11) with Eqs. (12) and (13),
we see that we can interpret our lumped process as one
with a precise transition rate

λ∗ = λ
∗ =−Q11 (17)

for going from state α to state β , and lower and upper
transition rates

µ∗ =
n

min
i=2

Qi1 µ
∗ =

n
max
i=2

Qi1 (18)

for going from state β to state α .
In conclusion, provided that the bounds in Eq. (8) are

sufficiently tight for our needs, we can use an induced
two-state imprecise Markov chain to analytically bound
arbitrarily complex many-state Markov chains. In partic-
ular, this allows us to analytically bound any two-state
process where transitions between states follow far more
complex distributions, and specifically, phase-type distri-
butions, which are distributions that arise from transition
times between any two states in an arbitrary Markov chain.

4. A Simple Model

In this section, we demonstrate, on a very simple model,
how we can use the ideas explained so far. We will study
how a three-state Markov chain can be used to model a
two-state non-Markovian process, and how the lumping
of this three-state Markov chain can bound this two-state
process. The analysis presented here carries over easily
to models that incorporate many more states to capture
non-Markovian behaviour.

Before carrying on with the model, we emphasize that
with this approach we often do not have a semantics for the
additional states in the many-state model. Their existence
is only motivated by obtaining a better fit to the observed
transition times. For example, we could compute a station-
ary distribution that also includes those auxiliary states,
however this would not necessarily have any meaning to an
end user. For ease of presentation and interpretation, in the

1 2

3

λ

µ1

µ2µ3

Figure 1: Example of a Markov chain.

model that is presented next, the additional state is physic-
ally motivated (and is thereby provided with a semantics),
although such interpretation is not strictly necessary.

Consider the three-state Markov chain depicted in Fig. 1.
Here, we could imagine state 1 to correspond to a working
state, and states 2 and 3 to correspond to non-working
states. The transition from 1 to 2 represents failure. Time
to failure in this model is exponential, as is commonly
the case in applications. For repair however, we consider
two distinct situations. Either, the system can be quickly
repaired remotely with mean time 1/µ1, or, the system
needs to be serviced locally to fix the problem, at a much
slower repair time 1/µ2 +1/µ3� 1/µ1. The ratio µ1

µ1+µ2
determines how often quick remote repair is successful.

Although here, we clearly have reliability in mind, these
many-state Markov models are commonly used for mod-
elling non-exponentially distributed transition times, for
instance in human resource planning [31] and medical sci-
ences [2, 3].

Our process has the following transition rate matrix:

Q =

−λ λ 0
µ1 −µ1−µ2 µ2
µ3 0 −µ3

 (19)

Time to transition from state 2 to state 1 is no longer ex-
ponential, but follows a so-called phase-type distribution,
because the process potentially has to pass through state 3
before reaching state 1. The specific phase-type distribution
for our model here has a cumulative distribution function
equal to [17, Lemma 2.2.2]

Φ21(t) = 1−
[
1 0

]
exp
([
−µ1−µ2 µ2

0 −µ3

]
t
)[

1
1

]
(20)

and so, by Theorem 1 (see the appendix),

= 1−
(

e−(µ1+µ2)t +µ2
e−(µ1+µ2)t−e−µ3t

−µ1−µ2+µ3

)
. (21)

This distribution is depicted in Fig. 2. The corresponding
probability density function is given by

φ21(t) =
[
1 0

]
exp
([
−µ1−µ2 µ2

0 −µ3

]
t
)[

µ1
µ3

]
(22)



Figure 2: Phase-type distribution for moving from state 2
to state 1, for µ1 = µ2 = 1 and µ3 = 0.1. Expo-
nential distribution bounds, identified through
lumping, are plotted as well.

= µ1e−(µ1+µ2)t +µ2µ3
e−(µ1+µ2)t−e−µ3t

−µ1−µ2+µ3
(23)

For the lumped process, note that

Q( f ◦Λ) =

 λ ( fβ − fα)
µ1( fα − fβ )
µ3( fα − fβ )

 (24)

so,

[Q f ]α = λ ( fβ − fα) (25)

[Q f ]β = min
{

µ1( fα − fβ ),µ3( fα − fβ )
}

(26)

We can interpret this as follows: by lumping states 2 and
3, we no longer describe the transition from 2 to 3 (at rate
µ2). If µ2 is very low, then we will jump to state 1 at rate
µ1. If µ2 is very high, then we will nearly instantly jump to
state 3, to arrive back at state 1 at rate µ3. Figure 2 confirms
that µ1 and µ3 bound the possible rates at which we can go
from the lumped state back to state 1. Finally, because there
is only a single way to jump from state 1 to the lumped
state, that rate remains exactly λ .

5. Fitting Parameters
In reality, we do not know the rates λ , µ1, µ2, and µ3.
However, we may have some time to failure and time to
repair data, and these data can be used to estimate these
parameters.

For λ , if we have an i.i.d. sequence x1, . . . , xN of ob-
served times to failure, the maximum likelihood estimate

is:
λ̂ =

N

∑
N
i=1 xi

(27)

If we have a Gamma(s,sτ) prior on λ , where the hyper-
parameter s determines the strength of the prior, and 1/τ is
our prior expectation of λ before having seen the data, then
we can use the posterior expectation of λ as an estimate:

λ̂ =
s+N

sτ +∑
N
i=1 xi

(28)

For full uncertainty quantification, we can propagate the
entire posterior distribution:

λ | x1 . . .xN ∼ Gamma

(
s+N,sτ +

N

∑
i=1

xi

)
(29)

In either case, we can use intervals for the hyperparameters
(for example, as in [24]), in case we prefer to represent
our prior knowledge more robustly using a set of prior
distributions.

For µ1, µ2, and µ3, given an i.i.d. sequence y1, . . . , yM
of observed times to repair, a variety of advanced meth-
ods have been developed in the literature in order to fit
phase-type distributions [1, 22, 12, 23, 30, 19]. However,
in general, there is no closed expression for the maximum
likelihood estimate, or even for the posterior distribution.
In our case, we know that the likelihood does have a closed
form:

f (y1 . . .yM | µ1,µ2,µ3) =
M

∏
i=1

φ21(yi) (30)

where we derived φ21 in Eq. (23). Using this expression, we
can easily obtain (correlated) samples from the posterior
joint distribution of (µ1,µ2,µ3) using Markov chain Monte
Carlo, as long as the prior also has a simple analytic form
(e.g. we could also use Gamma distributions for these).
Here too, if we prefer to represent our prior knowledge
more robustly, we could use a set of Gamma distributions,
and then simply take lower and upper envelopes over dif-
ferent Markov chain Monte Carlo runs to obtain lower and
upper expectations. This allows us to do a full uncertainty
quantification.

6. Numerical Example
For reasons of confidentiality, here, we use simulated data
based on an approximate fit to data from an actual reliability
system. This ensures that our example is still somewhat
representative of a real reliability system. At the same time,
the use of simulated data allows us to explore a wider range
of sample sizes, and allows us to investigate how our fits
evolve as more data is available.

Specifically, we studied data generated from the Markov
chain depicted in Fig. 1, with λ = 0.01, µ1 = 4, µ2 = 0.6,
and µ3 = 0.2. The generated data for yi is depicted in Fig. 3.



Figure 3: Histogram of times to transition data from state
2 to state 1. The left figure depicts just the first
30 observations, whilst the right figure depicts
all 300 observations.

For convenience, all parameters (including λ ) were fit-
ted using Markov chain Monte Carlo. The model was
programmed in Stan [4] (see Appendix B). The sampler
drew 10000 samples from the posterior, of which the first
1000 samples were discarded to allow warmup. For dia-
gnostics, we checked the trace plots, effective sample sizes,
and partial auto-correlation plots. The chain was found to
mix really well, so for brevity, we have omitted these dia-
gnostics here. Stan conveniently allows direct programming
of the phase-type distribution, as well as calculating the lim-
iting lower and upper probabilities for being in state α i.e.
the working state, which are typical inferential quantities
of interest:

π := lim
t→∞

T t

[
1
0

]
=

µ∗
λ +µ∗

[
1
1

]
(31)

π := lim
t→∞

T t

[
1
0

]
=

µ∗

λ +µ∗

[
1
1

]
(32)

where

µ∗ := min{µ1,µ3} µ
∗ := max{µ1,µ3}. (33)

At this point, we emphasize that because λ , µ1, µ2, and
µ3 are now treated as uncertain quantities, so are π and
π . In particular, given a prior distribution for each of the
parameters:

λ ∼ Gamma(s,sτ0) (34)
µi ∼ Gamma(s,sτi) i ∈ {1,2,3} (35)

our aim is to derive a posterior distribution for π and π , or,
more precisely, a set of posterior distributions, as we will
use a set of priors to deal with the lack of prior information.

For our prior, we fix s = 1. This means that our para-
meters have, a priori, equal mean and standard deviation,
which seems reasonable. The τi parameter then represents
the mean of the distribution. For our specific reliability
application, we deem, a priori, that

τ0 ∈ [50,250] τ1 ∈ [0.1,1] τ2 ∈ [0.2,4] τ3 ∈ [2,40]
(36)

Due to the structure of Eqs. (31) and (32), intuitively, we
expect that the relevant extreme cases are the ones obtained
for

(τ0,τ1,τ2,τ3) ∈ {(50,1,4,40),(250,0.1,0.2,2)} (37)

so, for ease of presentation, we simply plot the results under
these two priors, as these cover the two relevant extreme
cases within our analysis.

Marginal posterior densities are depicted in Fig. 4, where
we had a relatively small sample size (N = M = 30). We
note in particular that µ2 appears to be the hardest para-
meter to estimate, compared to the other parameters, both in
terms of relative posterior variance and in terms of relative
posterior imprecision. This is interesting because, through
the lumping, our inferences from the two-state imprecise
Markov chain do not depend on µ2. The posterior distri-
butions are generally skewed. The limiting posterior lower
expectation of being in state α is around 0.87 (solid line
on bottom left), whereas the posterior upper expectation is
around 0.9975 (dashed line on bottom right).

Marginal posterior density plots for a larger sample size
(N = M = 300) are depicted in Fig. 6. Here, the posterior
distributions are less skewed, and the influence of the prior
has been reduced. The limiting posterior lower expectation
of being in state α is around 0.94, whereas the posterior
upper expectation is around 0.9976.

For comparison, we also fitted a model where, instead
of a phase-type distribution for repair, we simply as-
sumed exponential repair, with µ ∼ Gamma(s,sτ) where
τ ∈ {0.1,40} (this roughly corresponds to the range for
the parameters of the phase-type model). The marginal
posterior distributions for µ and π := µ

λ+µ
are depicted in

Figs. 5 and 7. We can see that the fit is contained within the
fit of the lumping model, as we would expect.

However, the exponential model will obviously not pre-
dict system behaviour as accurately as the lumped phase-
type model. Further, asymptotically, as we get more data,
eventually, the influence of the prior will vanish, and
thereby, under the exponential model, the imprecision in
the posterior, will vanish. The lumped phase-type model
on the other hand will never rid of all imprecision, as there
is imprecision as a result of structural uncertainty (which
will never vanish), and not just due to a lack of data.

At this point, the reader may wonder why we would
not use the three-state model directly to perform our infer-
ences, since we estimate µ2 anyway. Whilst this could be
workable in the simple three-state model, in a much more
complicated setting, working with a simpler (fewer state)
model can be advantageous, as mentioned earlier. First, the
interpretation of the two-state model may be more conveni-
ent, as the auxiliary states may not have a direct semantics.
Secondly, a two-state model has a computational advantage.
For example, in reliability, many thousands of components
may need to be considered at once, and in this case, having
a simple two-state model can be particularly attractive.



Figure 4: Posterior densities for the lumped model under
both priors (solid and dashed line), for small
sample size (N = M = 30). The vertical lines
indicate posterior expectations.

Figure 5: Posterior densities for the exponential model un-
der both priors (solid and dashed line), for small
sample size (N = M = 30). The vertical lines
indicate posterior expectations.

7. Conclusion

In this paper, we explored how to combine fitting of phase-
type distributions and lumping of Markov chains into im-
precise Markov chains, to fit two-state imprecise Markov
chains to data from a non-Markovian two-state processes.

Figure 6: Posterior densities for the lumped model under
both priors (solid and dashed line), for large
sample size (N = M = 300). The vertical lines
indicate posterior expectations.

Figure 7: Posterior densities for the exponential model un-
der both priors (solid and dashed line), for large
sample size (N = M = 300). The vertical lines
indicate posterior expectations.

Through Markov chain Monte Carlo simulation, we demon-
strated how to perform a full uncertainty quantification, de-
riving sets of posterior distributions on relevant quantities
of interest, from a set of prior distributions on all paramet-
ers. In doing so, we have shown how non-Markovian pro-



cesses can be statistically fitted, in one fell swoop, through
robust Bayesian analysis.

This analysis stands in contrast with how imprecise
Markov chains have been fitted elsewhere in the literat-
ure, which typically comprised of identifying lower and
upper bounds on the transition rates of a precise Markov
chain model, and then using those lower and upper bounds
as bounds on the rates of an imprecise Markov chain model
(see for instance [25, 18, 24, 16]). Those approaches cannot
model non-Markovian behaviour as correctly as the lumped
phase-type model. Also, in those approaches, the influence
of the prior will vanish as we get more data, and thereby,
so will any imprecision in the posterior. The lumped phase-
type model on the other hand will always retain some level
of imprecision, as this imprecision is a result of structural
uncertainty, and not just due to a lack of data.

In our numerical example, the many-state model that we
used was still quite simple. In general, to model more com-
plex phase-type distributions for transition times, we may
not have a fast closed form expression for the phase-type
density. Either, one would have to resort to direct evaluation
of a matrix exponential as part of the Markov chain Monte
Carlo run, or, one could simply sample directly from the
likelihood (which can be done quickly for any phase-type
distribution), and then use approximate Bayesian computa-
tion [9] to fit the model.

Acknowledgments
We thank all reviewers for their constructive comments
on the paper. The first two authors are supported by the
H2020 Marie Curie ITN, UTOPIAE, Grant Agreement No.
722734. Henna Bains is funded by an Offshore Renewable
Energy (ORE) Catapult Doctoral Studentship.

Appendix A. Technical Results
Throughout, we use the fact that for any matrix A:

exp(A) =
∞

∑
n=0

1
n!

An (38)

Theorem 1 For every a, b, c ∈ R such that a 6= c, we have that

exp
([

a b
0 c

])
=

[
ea b ea−ec

a−c
0 ec

]
(39)

Proof We first show by induction that, for every n ∈ N,[
a b
0 c

]n

=

[
an b an−cn

a−c
0 cn

]
(40)

Indeed, clearly, Eq. (40) holds for n = 0. Assume Eq. (40) holds
for a particular fixed value of n. Then,[

a b
0 c

]n+1

=

[
a b
0 c

]n [a b
0 c

]
(41)

=

[
an b an−cn

a−c
0 cn

][
a b
0 c

]
(42)

=

[
an+1 ban + cb an−cn

a−c
0 cn+1

]
(43)

Now note that

ban + cb an−cn

a−c = b
an(a− c)+ c(an− cn)

a− c
(44)

= b
an+1− cn+1

a− c
(45)

So, by induction, Eq. (40) must hold for all n ∈ N.
We can now prove Eq. (39). Indeed,

exp
([

a b
0 c

])
=

∞

∑
n=0

1
n!

[
a b
0 c

]n

(46)

=
∞

∑
n=0

1
n!

[
an b an−cn

a−c
0 cn

]
(47)

=

[
ea b ea−ec

a−c
0 ec

]
(48)

Theorem 2 For every a and b ∈ R such that a+b 6= 0,

exp
([
−a a
b −b

])
=

[
1 0
0 1

]
+ c
[
−a a
b −b

]
(49)

where c := 1−e−a−b

a+b .

Proof We first show by induction that, for every n ∈ N, n≥ 1,[
−a a
b −b

]n

= cn

[
−a a
b −b

]
(50)

where cn := −(−a−b)n

a+b . Indeed, clearly Eq. (50) holds for n = 1.
Assume Eq. (50) holds for a particular fixed value of n≥ 1. Then,[

−a a
b −b

]n+1

=

[
−a a
b −b

]n [−a a
b −b

]
(51)

= cn

[
−a a
b −b

][
−a a
b −b

]
(52)

= cn

[
a2 +ab −a2−ab
−ab−b2 ab+b2

]
(53)

= cn

[
−a(−a−b) a(−a−b)
b(−a−b) −b(−a−b)

]
(54)

= cn+1

[
−a a
b −b

]
(55)

So, by induction, Eq. (50) must hold for all n ∈ N, n≥ 1.
We can now prove Eq. (49). Indeed, by Eq. (38),

exp
([
−a a
b −b

])
−
[

1 0
0 1

]
(56)

=
∞

∑
n=1

1
n!

[
−a a
b −b

]n

(57)



=
∞

∑
n=1

cn

n!

[
−a a
b −b

]
(58)

=
−(e−a−b−1)

a+b

[
−a a
b −b

]
(59)

Next, we want to prove that our expression for T t in Eq. (16)
indeed corresponds to the lower transition operator. To do so,
however, we will not use the definition of Eq. (9). Instead, we will
take Eq. (16), that is (repeated here for convenience),

T t f := f + 1−e−(λ f +µ f )t

λ f +µ f
Q f f , (60)

as a definition of T t , and then prove that this operator solves a
specific differential equation. It follows then from [20, Sec. 2.6]
that the solution to this differential equation is the lower transition
operator.

Lemma 3 For every f ∈ R2, we have that

[T t f ]α − [T t f ]β = ( fα − fβ )e
−(λ f +µ f )t . (61)

Proof

[T t f ]α − [T t f ]β (62)

=
(

fα + 1−e−(λ f +µ f )t

λ f +µ f
[Q f f ]α

)
−
(

fβ + 1−e−(λ f +µ f )t

λ f +µ f
[Q f f ]β

)
(63)

=
(

fα + 1−e−(λ f +µ f )t

λ f +µ f
λ f ( fβ − fα )

)
−
(

fβ + 1−e−(λ f +µ f )t

λ f +µ f
µ f ( fα − fβ )

)
(64)

= fα − fβ +( fα − fβ )(−λ f −µ f )
1−e−(λ f +µ f )t

λ f +µ f
(65)

= ( fα − fβ )e
−(λ f +µ f )t (66)

Lemma 4 λT t f = λ f and µT t f = µ f .

Proof λ f and µ f are determined solely by the sign of fα − fβ .
Since, by Lemma 3, the sign of [T t f ]α − [T t f ]β is the same as
the sign of fα − fβ , we have that (λ f ,µ f ) = (λT t f ,µT t f ).

Theorem 5 The operator T t , as defined in Eq. (60), solves

d
dt
[T t f ] = Q[T t f ] (67)

with initial condition T 0 f = f .

Proof We see that the initial condition T 0 f = f is satisfied.
Evaluating the left-hand side of Eq. (67) we have:

d
dt
[T t f ] = e−(λ f +µ f )tQ f f (68)

Evaluating the right-hand side of Eq. (67) and using Lemma 4 we
have:

Q[T t f ] = QT t f [T t f ] (69)

= Q f [T f f ] (70)

=
(

Q f +
1−e−(λ f +µ f )t

λ f +µ f
Q2

f

)
f (71)

By Eq. (50), Q2
f =−(λ f +µ f )Q f . Therefore,

Q[T t f ] =
(

Q f − 1−e−(λ f +µ f )t

λ f +µ f
(λ f +µ f )Q f

)
f (72)

= e−(λ f +µ f )tQ f f (73)

Appendix B. Stan Model Specification
functions {
real phasetype_lpdf(

real t, real mu1, real mu2, real mu3) {
real a = -mu1-mu2;
real b = mu2;
real c = -mu3;
real expa = exp(a * t);
real expc = exp(c * t);
real pdf =
mu1 * expa
+ mu3 * b * (expa - expc) / (a - c);

return log(pdf);
}
real min2(real a, real b) {
vector[2] tmp;
tmp[1] = a;
tmp[2] = b;
return min(tmp);

}
}
data {
// data
int NX;
vector[NX] X;
int NY;
vector[NY] Y;
// hyperparameters
real S;
real T0;
real T1;
real T2;
real T3;

}
parameters {
real<lower=0> lambda;
real<lower=0> mu1;
real<lower=0> mu2;
real<lower=0> mu3;

}
model {
lambda ~ gamma(S, S * T0);
mu1 ~ gamma(S, S * T1);
mu2 ~ gamma(S, S * T2);
mu3 ~ gamma(S, S * T3);
for (n in 1:NX)
X[n] ~ exponential(lambda);

for (n in 1:NY)
Y[n] ~ phasetype(mu1, mu2, mu3);

}
generated quantities {
real lmu = min2(mu1, mu3);
real umu = -min2(-mu1, -mu3); // max
// limiting lower and upper probabilities
real lpi = lmu / (lambda + lmu);
real upi = umu / (lambda + umu);

}
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