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Abstract
Sum-product networks are a popular family of proba-
bilistic graphical models for which marginal inference
can be performed in polynomial time. After learning
sum-product networks from scarce data, small varia-
tions of parameters could lead to different conclusions.
We adapt the robustness measure created for categori-
cal credal sum-product networks to domains with both
continuous and categorical variables. We apply this
approach to a real-world dataset of online purchases
where the goal is to identify fraudulent cases. We em-
pirically show that such credal models can better dis-
criminate between easy and hard instances than simply
using the probability of the most probable class.
Keywords: Robustness, Sum-Product Networks,
Credal Sets, Classification, Fraud Detection.

1. Introduction

Sum-Product Networks (SPNs) are a class of probabilis-
tic graphical models that allow for the explicit representa-
tion of context-specific independence [9] while retaining
efficient marginal inference [7, 10]. An SPN encodes an
arithmetic circuit [3]: internal nodes perform (weighted)
sums and multiplications, while leaves represent variable
assignments (or marginal distributions of continuous vari-
ables). SPNs can be seen as a class of mixture of univariate
distributions with tractable inference [4, 8, 11].

SPNs learned from data may generalise poorly and
produce unreliable and overconfident conclusions. When
variables are categorical, Credal Sum-Product Networks
(CSPNs), a class of imprecise probability models, can be
used to perform a (computationally efficient) robustness
analysis of SPNs for classification [1, 2, 6, 5]. However,
often real-world data comes with both discrete and continu-
ous variables, which can be used to infer an SPN. We extend
CSPNs towards domains with continuous variables. A CSPN
is an SPN where the weights associated with sum nodes
(i.e., the numerical parameters of the model) are allowed to
vary inside a closed and convex set. Continuous variables
are represented in leaf nodes and are assumed to be nor-
mally distributed. An experimental analysis is conducted

using data from a major online retailer, where the goal is to
discriminate between fraudulent and legitimate orders. This
is a multi-million market and frauds can be very costly.

2. Continuous and Categorical CSPNs

The evaluation of an SPN (i.e., the computation of its value)
for a given configuration of variables can be performed by
a bottom-up message propagation scheme whereby each
node sends to its parent its value. Leaf nodes send a density
value (continuous variables) or the result of the indicator
function (categorical variables). The whole procedure takes
linear time and space. Conditional probabilities for categor-
ical variables can be obtained in linear time by evaluating
the network for each value of the query variable and the
given evidence (then normalising the result). For CSPNs,
more intricate algorithms have been devised to compute the
expectation of any function over a single categorical vari-
able. They can be promptly adapted to handle continuous
variables, since the propagation of density values is similar
to the propagation of probability values. In particular, SPNs
(and their inferences) do not need to be normalised, so one
needs simply to take the continuous leaf nodes and com-
pute their density values, and then to “send” these values
to their parents in the SPN. This is the only required adap-
tation, while the procedure in the internal nodes remains
the same as for categorical CSPNs and the algorithms for
credal classification work just as designed before in the
literature [6]. In fact, this result can be proven by realis-
ing that observed continuous variables act similarly to an
observed binary categorical variable, and so we obtain the
following theorem.

Theorem 1 Computing lower conditional expectations of
a function over a single categorical variable in CSPNs with
both categorical and continuous variables takes at most
polynomial time when each internal node has at most one
parent.

Because of that, credal classification (i.e., computing
the set of non-dominated classes) can be done in poly-
nomial time too. On par with previous work [6], we use
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Figure 1: Graphs show cover, that is, the percentage of the cases that were classified if one only classifies the cases with
measure (either probability or robustness value) above the given threshold, and accuracy over those cases. The
final part of the curves is non-monotonic likely due to small sample size (very low cover).

CSPNs as means to define the robustness level of an issued
classification as the most imprecise CSPN (based on the
ε-contamination of the weights) for which a single class is
non-dominated (one could also define some contamination
for the continuous leaves, for instance by placing an interval
of length ε around the precisely learned mean of the Gaus-
sian distributions). The overall procedure runs a bisection
with ε-contaminated CSPNs until converging to the (numer-
ically approximate) maximum ε such that the prediction
from the model is still unique (that is, all SPNs represented
by the CSPN yield the same class prediction) [2, 6].

3. Case Study

Currently all orders placed at a major online retailer are
evaluated through sophisticated hand-crafted business rules.
The business rules can result in three outcomes: approval,
outright cancellation, and manual review. A team of busi-
ness analysts works around the clock to approve or cancel
the orders that were flagged for manual review. For this
case study, 36707 orders were collected and analysed, each
of which was flagged for manual review by the business
rules. For each of these orders, we collected the variables

utilised by the existing expert system, the payment data
for those orders, and the customer support data. This ef-
fort resulted in a total of 109 features. From those orders,
the business analysts approved 18739 (51%), while 17968
(49%) were determined to be fraudulent and subsequently
cancelled. The orders were labelled as follows: true posi-
tive: cancelled by analyst without customer complaint; false
positive: cancelled by analyst, but the customer contacted
customer support with a reasonable explanation; true neg-
ative: approved and subsequently paid for; false negative:
approved, but not paid for (incurring loss to the company).
The analysts achieved an accuracy of approximately 94%
in this dataset. It should be noted, however, that the true
accuracy could be much lower (but hard to measure), since
not all customers might contact customer support upon can-
cellation of their order. Some of them might opt to forego
their order, or simply order from a competitor.

We selected the 24 most important features to build an
SPN: one continuous (that is, the price) and 23 Boolean vari-
ables (selection of them was based on variance, requiring at
least a 9:1 split). The SPN was learned using the procedure
of [4], with the exception that independence tests are per-
formed using one of Chi-square, Kruskal-Wallis or Kendall



(according to the variables involved), clustering is done
with the Gower distance (so as to take into account both
categorical and continuous variables), and leaves related to
continuous variables are forced to be normally distributed
(in this study, we have used a single continuous variable).
Then the robustness value is calculated per testing instance
using the same approach as in [5]. Both robustness and
probability of most probable class are used in order to dis-
criminate the quality of the predictions. Figure 1 shows the
results obtained by issuing a classification only when the
model output is deemed robust, that is, either the probabil-
ity value of the SPN (first row of graphs) or the robustness
value from the CSPN (second row of graphs) for that partic-
ular instance was above a threshold (all possible thresholds
are plotted). This is equivalent to saying that we refrain
from guessing for those cases of greater indecisiveness.
Based only on probabilities, no value of threshold would
lead to classification results as accurate as the business ana-
lyst. Note that the analyst does not know which instances
are robust or not, so they need to predict all of them. On
the other hand, using robustness from CSPNs, if we only
issued a decision when robustness is above the threshold
of 0.1, then the model achieves the same performance as
the analyst and would cover (that is, issue predictions for)
about 15% of all orders. This can potentially benefit the
company by reducing the time required to analyse orders
flagged for review. However, those instances could well be
exactly the cases for which the analyst does a very good job,
while being less effective in the others. This information
was however not certain at the time of writing (because the
accuracy of the analyst per instance is not obtained in such
a reliable manner so as to take conclusions based on them,
so we must refrain from taking any strong conclusion here).
Therefore, this study represents a promising preliminary
analysis of CSPNs with continuous and categorical vari-
ables. Such capability extends the applicability of CSPNs to
many new domains and its effectiveness will be evaluated
in future work.
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