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Abstract
Graphoid properties attempt to capture the most impor-
tant features of abstract “independence”. We examine
which semi-graphoid properties are satisfied by vari-
ous concepts of independence for credal sets; we focus
on variants of epistemic, confirmational, and type-5
independence that are based on regular conditioning.
Keywords: Graphoid properties. Credal sets. Epis-
temic irrelevance and independence.

1. Introduction

The word “independence” is used in many fields with dif-
ferent meanings: there is independence induced by graph
separation; there is logical independence; there is stochas-
tic independence in probability theory. In an attempt to
capture the essential features of abstract “independence”,
graphoid properties have been proposed in a variety of set-
tings [9, 15, 17]. In particular, graphoid properties have
been studied in connection with concepts of independence
for lower previsions are related modeling tools [8, 6]; how-
ever, many questions remain open on which graphoid prop-
erties are satisfied by various concepts of independence.

In this paper we focus on concepts of independence
that apply to sets of Kolmogorovian probability mea-
sures. We examine regular confirmational, regular epis-
temic, regular type-5, and regular type-5 epistemic irrele-
vance/independence. Results in this paper should be useful
in comparing these concepts to each other and also in com-
paring sets of Kolmogorovian probability measures with
other modeling tools in the literature; in particular, with
approaches that deal with sets of probabilities where condi-
tioning on events of zero probability is allowed [8, 18, 19].

In Sections 2 and 3 we review needed concepts and
notation. Sections 4 and 5 respectively look at epis-
temic/confirmational irrelevance/independence and at type-
5 irrelevance/independence. Section 6 summarizes the
results and briefly comments on complete, strong, and
Kuznetsov independence.

2. Basic Concepts and Notation

We assume that the space of outcomes Ω is finite, and that
every subset of Ω is an event. If an event is nonempty, it

is a possible event. We take the topology induced by Eu-
clidean distance throughout. A random variable, or simply
a variable, is a function from Ω to the real numbers.

Some notational conventions will be used [6]. Through-
out we use W , X , Y and Z to denote random variables. We
adopt: w denotes a possible value of W , x denotes a possi-
ble value of X , y denotes a possible value of Y , z denotes a
possible value of Z. And {x} denotes the nonempty event
{ω ∈Ω : X(ω) = x}; likewise for {w}, {y} and {z}.

The letter A will always denote nonempty events in the
algebra generated by random variable X (that is, A is a set
of values of X). Similarly, the letter B will always denote
nonempty events in the algebra generated by Y .

The letter f will always denote a function of X , and the
letter g will always denote a function of Y .

The intersection of events G and H is written as G∩H,
but also as GH and as G,H. When the event {x} appears in
an intersection, we remove braces whenever possible; for
instance, xG denotes the event {x}∩G. Sometimes we add
braces to enhance clarity; for instance, we may write {y,z}
instead of simply y,z when we refer to the event {y}∩{z}.

When w, x, y, z appear in expressions, they are univer-
sally quantified unless explicitly noted (that is, the starting
expression “for all possible values w. . . ” is implicit). Like-
wise, when functions f and g appear in expressions, they
are universally quantified unless explicitly noted (that is,
the expression “for all functions f . . . ” is implicit).

A probability measure P is an additive set-function that
assigns a non-negative real number to each event, and
such that Ω has probability 1. Given two events G and
H, the conditional probability of G given H, denoted by
P(G|H), is only defined when P(H)> 0; if so, P(G|H) =
P(GH)/P(H). Conditional stochastic independence of ran-
dom variables X and Y given random variable Z obtains
when P(x,y|z) = P(x|z)P(y|z) whenever P(z)> 0.

We are interested in concepts of conditional indepen-
dence. If X and Y are conditionally independent given
a constant function Z, we have “unconditional” indepen-
dence, and in this case we simply write “independent” with-
out mentioning the “conditional” qualifier and without any
mention of Z. Often we will just write “independence” to
mean both conditional and unconditional independence.

A set of (Kolmogorovian-style) probability measures is
referred to as a credal set. We do not assume credal sets to
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be convex; we do not assume credal sets to be closed either.
A credal set can represent imprecision about probability
values, perhaps due to incomplete elicitation, perhaps due
to disagreement amongst decision-makers [1, 11, 14].

Denote by K(X) a set of probability distributions for
variable X (that is, a credal set). Given a function f (X), its
lower and upper expectations are, respectively E[ f (X)] =
infP∈KEP[ f (X)] and E[ f (X)] = supP∈KEP[ f (X)], where
EP[ f (X)] is the expectation of f (X) with respect to P.
Similarly, given an event H, its lower and upper proba-
bilities are respectively P(H) = infP∈KP(H) and P(H) =
supP∈KP(H).

The graphoid properties that may apply to a ternary
relation (·⊥⊥·| ·) are [9, 15, 17]

Symmetry: (X⊥⊥Y |Z)⇒ (Y ⊥⊥X |Z)

Redundancy: (X⊥⊥Y |X)

Decomposition: (X⊥⊥(W,Y ) |Z)⇒ (X⊥⊥Y |Z)

Weak union: (X⊥⊥(W,Y ) |Z)⇒ (X⊥⊥Y |(W,Z))

Contraction: (X⊥⊥Y |Z) ∧ (X⊥⊥W |(Y,Z)) ⇒
(X⊥⊥(W,Y ) |Z)

Intersection (X⊥⊥W |(Y,Z)) & (X⊥⊥Y |(W,Z)) ⇒
(X⊥⊥(W,Y ) |Z).

Conditional stochastic independence satisfies all graphoid
properties except Intersection; for this reason no concept of
independence in this paper satisfies Intersection, and we do
not look further at Intersection. Thus this paper is in fact
interested in the semi-graphoid properties; this is the set
consisting of the graphoid properties except Intersection.

3. Conditioning and Independence

Several concepts of independence depend on condition-
ing. Given a credal set K(X), a possible way to define a
conditional credal set is:

KB(X |H) = {P(·|H) : P ∈K(X)} whenever P(H)> 0,

with KB(X |H) undefined whenever P(H) = 0 [11]. A dif-
ferent concept of conditional credal set focuses on those
probability measures that assign positive probability to H:

K>(X |H) = {P(·|H) : P ∈K(X) and P(H)> 0}
whenever P(H)> 0,

(1)

with K>(X |H) undefined whenever P(H) = 0 [22, 23]. We
refer to this second conditioning strategy as regular con-
ditioning, as it is closely related to the concept of regular
extension [21, Appendix J]. Note that when K(X) is con-
vex, the set K>(X |H) is convex whenever it is defined, but
K>(X |H) may be open even if K(X) is closed [7].

Define E>[ f (X)|H] = infP(·|H)∈K>(X |H)EP[ f (X)|H] and
E>

[ f (X)|H] = supP(·|H)∈K>(X |H)EP[ f (X)|H], whenever
P(H)> 0. It is known [20] that, whenever P(H)> 0,

E>[ f (X)|H] = sup(α : E[( f (X)−α)IH ]≥ 0) ,

where IH denotes the indicator function of H. This can be
slightly generalized to the following result, used later (this
result mimics Lemma 1 of Ref. [4]):

Theorem 1 If P(G,H)> 0, then

E>[ f (X)|G,H] = sup
(
α : E>[( f (X)−α)IG|H]≥ 0

)
.

Proof We have:

E>[ f (X)|G,H] = inf
P∈K:P(G,H)>0

E[ f (X)IGIH ]

P(G,H)

= inf
P∈K:P(H)>0,P(G|H)>0

E[ f (X)IG|H]P(H)

P(G|H)P(H)

= inf
P(·|H)∈A

E[ f (X)IG|H]

P(G|H)

= sup
(

α :
(

inf
P(·|H)∈A

E[ f (X)IG|H]

P(G|H)

)
≥ α

)
= sup

(
α :

(
inf
P(·|H)∈A

E[ f (X)IG|H]−αP(G|H)

P(G|H)

)
≥ 0

)
= sup

(
α :

(
inf

P(·|H)∈A
E[( f (X)−α)IG|H]

)
≥ 0

)
= sup

(
α : E>[( f (X)−α)IG|H]≥ 0

)
,

where A is the set obtained by removing from K>(·|H) all
measures such that P(G|H)> 0.

Levi says that Y is confirmationally irrelevant to X when
beliefs about X are not affected by observation of Y .1 We
might take this to mean

KB(X |y,z) =KB(X |z) whenever P(y,z)> 0. (2)

(Recall our conventions: by implicit quantification, this
equality is required for all y,z). However, by using the
“B-conditioning” we may face the problem that no condi-
tioning can be applied when all values of (y,z) have zero
lower probability, a situation that is clearly possible.

A more reasonable definition of confirmational irrele-
vance employs regular conditioning: say that Y is regular-
confirmationally irrelevant to X given Z when

K>(X |y,z) =K>(X |z) whenever P(y,z)> 0. (3)

1. In Ref. [5] the concept of confirmational irrelevance (and of epistemic
irrelevance) is defined instead using the same condition employed
here to define type-5 irrelevance: that is, all events B specified by Y
may appear in conditioning, as opposed to events {Y = y}. It seems
to make sense to differentiate the condition used here to specify
confirmational irrelevance from the one used later to specify type-5
irrelevance, as they satisfy different sets of semi-graphoid properties.



Walley’s concept of epistemic irrelevance is similar to
Levi’s confirmational irrelevance: Y is epistemically irrele-
vant to X when E[ f (X)|y] = E[ f (X)] [21, Chapter 9]. Say
that Y is regular-epistemically irrelevant to X given Z when

E>[ f |y,z] = E>[ f |z] whenever P(y,z)> 0. (4)

(Recall our conventions: f is a function of X ; by implicit
quantification, this equality is required for all f , for all y,z).

Both regular-confirmational irrelevance and regular-
epistemic irrelevance fail Symmetry. Take the follow-
ing example by Couso et al. [3, Example 3]: vari-
ables X and Y binary, with P(x0) ∈ [1/2,4/5] and
P(yi|x j) ≥ 3/10 for all i ∈ {0,1} and j ∈ {0,1}; clearly
X is regular-confirmationally/epistemically irrelevant to
Y , but P(x0|y0) ∈ [3/10,28/31], hence Y is not regular-
confirmationally/epistemically irrelevant to X .

Walley’s clever response to failure of Symmetry, bor-
rowed from the work of Keynes [12], was to “symmetrize”
irrelevance to obtain independence. So, say that X and
Y are regular-epistemically independent given Z when X
is regular-epistemically irrelevant to Y given Z, and Y is
regular-epistemically irrelevant to X given Z [21].

We can apply Walley’s idea to other non-symmetric
concepts: for instance, say that X and Y are regular-
confirmationally independence given Z when both X is
regular-confirmationally irrelevant to Y given Z, and Y is
regular-confirmationally irrelevant to X given Z.

Yet another concept of independence has been pro-
posed for credal sets by de Campos and Moral [10]:
they say Y is type-5 irrelevant to X if K>(X |B) =
K(X) whenever P(B)> 0. (Recall our convention: B is an
event in the algebra generated by Y ). Accordingly, say that
Y is type-5 irrelevant to X given Z if

K>(X |B,z) =K>(X |z) whenever P(B,z)> 0.

Type-5 irrelevance is an strenghtened version of confirma-
tional irrelevance. Now we can also strenghten epistemic
irrelevance, and say that Y is type-5 epistemically irrelevant
to X given Z if

E>[ f |B,z] = E>[ f |z] whenever P(B,z)> 0.

We can symmetrize type-5 irrelevance and type-5 epistemic
irrelevance to get corresponding concepts of independence.

4. Semi-Graphoid Properties:
Epistemic/Confirmational Independence

We start with the semi-graphoid properties of regular-
epistemic irrelevance. As noted already, this concept of
irrelevance does not satisfy Symmetry, hence we can con-
template several versions of the properties. We have:

Theorem 2 If (Y IR X | Z) denotes regular-epistemic irrel-
evance of Y to X given Z, then:
• (X IRY | X) and (Y IR X | X) (“direct” and “reverse”
forms of Redundancy);
• If (X IRW,Y | Z), then (X IRY | Z) (a “direct” form of
Decomposition);
• If (X IRW,Y | Z), then (X IRY |W,Z) (a “direct” form of
Weak Union);
• If (Y IR X | Z) and (W IR X | Y,Z), then (W,Y IR X | Z) (a

“reverse” form of Contraction).

Proof Redundancy: we do have, whenever
P(X = x1,X = x2) > 0, that E>[g|X = x1,X2 = x2] =
E>[g|X = x1] (true because if x1 = x2, then trivially
{X = x1,X = x2}= {X = x1}); also, whenever P(x,y)> 0,
we have E>[ f |x,y] = f (x) = E>[ f |x].

Decomposition: if X is regular-epistemic irrelevant
to (W,Y ) given Z, then E>[g|x,z] = E>[g|z] whenever
P(x,z)> 0 as any g(Y ) is obviously a function of (W,Y ).

Weak Union: by assumption we have E>[h(W,Y )|x,z] =
E>[h(W,Y )|z] whenever P(x,z) > 0; hence, using Theo-
rem 1, if P(w,x,z)> 0,

E>[g|w,x,z] = sup
(
α : E>[(g−α)Iw|x,z]≥ 0

)
= sup

(
α : E>[(g−α)Iw|z]≥ 0

)
= E>[g|w,z] .

Contraction: if E>[ f |w,y,z] = E>[ f |y,z] whenever
P(w,y,z)> 0 and E>[ f |y,z] = E>[ f |z] whenever P(y,z)>
0, then, by transitivity, E>[ f |w,y,z] = E>[ f |z] whenever
P(w,y,z)> 0, as desired.

The graphoid properties of epistemic irrelevance have
been studied before, both ignoring the possibility of zero
lower probabilities [4] and assuming that lower probabil-
ities may be zero but adopting the framework of lower
previsions, where conditioning is allowed on events of zero
lower probability [8]. The latter study showed that, with
such conditioning, direct and reverse Redundancy, direct
Decomposition and reverse Contraction are satisfied by
epistemic irrelevance even if lower probabilities are zero,
while direct Weak Union and reverse versions of Decompo-
sition and Weak Union are satisfied when appropriate lower
probabilities are larger than zero (with positivity conditions,
these properties also hold for regular-epistemic irrelevance).
Thus Theorem 2 indicates a difference (that is, direct Weak
Union) between regular-epistemic independence and Wal-
ley’s original concept of independence.

All other forms of semi-graphoid properties one can think
of fail even with positivity conditions (that is, forms that
are not mentioned in Theorem 2). For instance, consider
Decomposition: other than the “direct” form in Theorem 2,
there are three other possibilities:
• If (X IRW,Y | Z), then (Y IR X | Z);
• If (W,Y IR X | Z), then (X IRY | Z);



w0y0 w0y1 w1y0 w1y1

x0
1−α

2
1−α

2 0 0
x1 α/2 α/2 0 0

w0y0 w0y1 w1y0 w1y1

x0 0 0 1−α

2 α/2
x1 0 0 α/2 1−α

2

w0y0 w0y1 w1y0 w1y1

x0 0 0 1−α

2 α/2
x1 0 0 1−α

2 α/2

Table 1: Tables employed in Example 1.

• If (W,Y IR X | Z), then (Y IR X | Z).
If we take W = Z = 1, then the first two of these versions
fail due to failure of Symmetry. The next example demon-
strates that the last version also fails; the example is used
later to show failure of other properties.

Example 1 Consider three binary variables W, X, and Y .
For some selected β ∈ (0,1/2), build six distributions, us-
ing the values in Table 1 both for α = β and for α = 1−β .
Take the credal set K that is the convex hull of these six joint
distributions. We have that K>(X |w,y) is the convex hull
of {[β ,1− β ], [1− β ,β ]} for every possible w, y, where
each vector denotes [P(x0|w,y) ,P(x1|w,y)]. Also, we have
that K(X) is the convex hull of {[β ,1−β ], [1−β ,β ]}, so
(W,Y ) is regular-epistemically irrelevant to X. The credal
sets K(W,Y ), K>(W,Y |x0) and K>(W,Y |x1) are identi-
cal: each of them is the convex hull of the three distri-
butions [1/2,1/2,0,0], [0,0,β ,1−β ] and [0,0,1−β ,β ],
where each vector contains probabilities for values (w0,y0),
(w0,y1), (w1,y0) and (w1,y1). Hence X and (W,Y ) are
regular-epistemically independent.

However, we have that K>(X |w0) is the convex hull
of {[β ,1− β ], [1− β ,β ]} but K>(X |w1) is the singleton
{[1/2,1/2]}. Hence W is not regular-epistemically irrele-
vant to X, a failure of Decomposition. And Y is not regular-
epistemically irrelevant to X given W, a failure of Weak
Union. �

Now consider Weak Union: other than the direct form in
Theorem 2, there are three other possibilities:
• If (X IRW,Y | Z), then (Y IR X |W,Z);
• If (W,Y IR X | Z), then (X IRY |W,Z);
• If (W,Y IR X | Z), then (Y IR X |W,Z).
If we take W = Z = 1, then the first two of these version fail
due to failure of Symmetry. The last example demonstrates
that the last version also fails.

Finally, consider Contraction: there are eight possible
versions; six of them lead to failure of Symmetry by taking
either W = Z = 1 or W = Y = 1, and a reverse version is
proved in Theorem 2. The remaining version is a direct
one:

w0y0 w0y1 w1y0 w1y1
x0 α(1−α)2 α(1−α)/2 (1−α)3 α(1−α)/2
x1 α2(1−α) α2/2 α(1−α)2 α2/2

w0y0 w0y1 w1y0 w1y1
x0 α/4 α/4 (1−α)/4 (1−α)/4
x1 (1−α)/4 α/4 α/4 (1−α)/4

Table 2: Tables employed in Example 2.

• (X IRY | Z)∧ (X IRW | (Y,Z))⇒ (X IR (W,Y ) | Z).
Ref. [4] presents a numerical example that violates this
property, while Ref. [8] goes over several constructions
that also lead to failure of direct Contraction. The next
example is hopefully simpler to grasp.

Example 2 Consider three binary variables W, X and
Y . For Table 2 top, P(x0) = P(x0|y) = P(x0|w,y) = 1−α

for each possible (w,y) and P(y0) = P(y0|x) = 1−α for
each possible x; also P(w0|x,y0) = P(w0|y0) = α and
P(w0|x,y1) = P(w0|y1) = 1/2 for each possible x. For Ta-
ble 2 bottom, P(x0) = P(x0|y) = 1/2 for each possible
y and P(y0) = P(y0|x) = 1/2 for each possible x; also
P(x0|w0,y) = α and P(x0|w1,y) = 1−α for each possi-
ble y, P(w0|x,y1) = P(w0|y1) = α for each possible x, and
P(w0|x0,y0) = α , P(w0|x1,y0) = 1−α , P(w0|y0) = 1/2.
Note also that P(w0,y0) is α(1−α) for the top table, and
is 1/4 for the bottom table. And P(w0,y0|x0) is α(1−α)
for the top table, and is α/2 for the bottom table.

Select β ∈ (0,1/2). First build a joint probability distri-
bution for (W,X ,Y ) by using the top table with α = β . Then
build a second joint probability distribution by using the
top table with α = 1−β . Finally build a third joint prob-
ability distribution by using the bottom table with α = β .
And build the joint credal set that is the convex hull of these
three joint probability distributions. For this credal set we
have that all of P(x0), P(x0|y) for each possible y, P(y0),
P(y0|x) for each possible x, P(x0|w,y) for each possible
(w,y), P(w0|x,y) for each possible (x,y), and P(w0|y) for
each posible y, vary within the interval [β ,1−β ]. Thus we
have that X is regular-epistemically irrelevant to Y , and
X is regular-epistemically irrelevant to W given Y . How-
ever, X is not regular-epistemically irrelevant to (W,Y ).
To see this, consider that P(w0,y0) = β (1−β ) (the mini-
mum between β (1−β ), obtained from the top table, and
1/4, obtained from the bottom table, as β (1−β ) < 1/4
for β < 1/2), and P(w0,y0|x0) = β/2 (the minimum be-
tween β (1− β ), obtained from the top table, and β/2,
obtained from the bottom table); as β < 1/2, we have
P(w0,y0|x0)< P(w0,y0).

As for regular-epistemic independence, Symmetry
clearly holds, and Theorem 2 implies Redundancy. As
noted in previous work [8], Decomposition and Weak
Union hold when appropriate lower probabilities are larger



than zero; this result holds here as Walley’s form of con-
ditioning is identical to regular conditioning when lower
probabilities are larger than zero. However, both Decompo-
sition and Weak Union may fail when lower probabilities
are allowed to be zero, as illustrated by Example 1. And
Contraction fails in Example 2, where lower probabilities
are even positive.

We now move to regular-confirmattional irrelevance.
We start by proving the counterpart of Theorem
2 (note the absence of assumptions concerning clo-
sure/convexity/positivity).

Theorem 3 If (Y IR X | Z) denotes regular-confirmational
irrelevance of Y to X given Z, then the same properties
listed in Theorem 2 hold for IR .

To prove direct Decomposition and direct Weak Union
we use the following fact. Suppose we have a probabil-
ity distribution for variables {W,Y}, conditional on some
event H. This distribution can be represented by a vector p,
containing values P(w,y|H). Suppose we have a function
F(·) that takes p and returns another vector q. If we have
two credal sets K1 and K2 that are equal, the elementwise
application of F(·) generates two identical sets. That is,
K1 =K2 ⇒ {F(p) : p ∈K1}= {F(p) : p ∈K2}.

Proof Redundancy: we do have, whenever
P(X = x1,X = x2) > 0, that K>(Y |X = x1,X = x2) =
K>(Y |X = x1) (true because if x1 = x2, then triv-
ially P(X = x1,X = x2) = {X = x1}); also, whenever
P(x,y)> 0, we have K>(X |X = x,Y = y) =K>(X |X = x)
as both credal sets K>(X |X = x,Y = y) and K>(X |X = x)
contain exactly the distribution that assigns probability one
to {X = x}.

For the next two paragraphs, note that any probability
distribution for {W,Y} given {x,z} can be represented by
a vector p containing the probability value of each {w,y}.
Also, suppose X is regular-confirmationally irrelevant to
(W,Y ) given Z; that is, K>(W,Y |x,z) =K>(W,Y |z) when-
ever P(x,z)> 0.

Decomposition: Define the marginalization function
F(p) that yields a vector containing, for each value y,
the value of the sum ∑wP(w,y|x,z). So, the equality
K>(W,Y |x,z) =K>(W,Y |z) whenever P(x,z)> 0 implies
K>(Y |x,z) =K>(Y |z) whenever P(x,z)> 0, as desired.

Weak Union: For every p whose encoded distribution
satisfies P(w|x,z) > 0, define the conditioning function
F(p) that yields a vector containing, for each value w,
the value of the ratio P(w,y|x,z)/∑y′ P(w,y′|x,z). So, the
equality K>(W,Y |x,z) =K>(W,Y |z) whenever P(x,z)> 0
implies the equality K>(Y |x,w,z) =K>(Y |w,z) whenever
P(x,w,z)> 0 (by applying F(·) to the relevant distributions
and discarding the others), as desired.

Contraction: We have K>(X |w,y,z) =K>(X |y,z) when-
ever P(w,y,z) > 0 and K>(X |y,z) = K>(X |z) whenever

P(y,z)> 0, hence by transitivity K>(X |w,x,z) =K>(X |z)
whenever P(w,y,z)> 0 as desired.

All other versions of Decomposition and Weak Union
fail for regular-confirmational irrelevance given Example 1
and arguments given right after that example. And all other
versions of Contraction fail for regular-confirmational irrel-
evance given Example 2 and arguments given right before
that example.

Example 1 also shows that Decomposition and Weak
Union fail for regular-confirmational independence, and
Example 2 shows that Contraction fails for regular-
confirmational independence. Hence we only have Sym-
metry and Redundancy for regular-confirmational indepen-
dence.

If all credal sets are closed and convex, and all lower
probabilities are larger than zero, then Decomposition and
Weak Union hold — in this case all credal sets are exactly
represented by their associated lower expectations, and the
same arguments used to show Decomposition and Weak
Union under positivity assumptions for regular-epistemic
independence hold.

We might also ask whether Decomposition and Weak
Union hold when credal sets are convex and probabilities
are larger than zero (even if lower probabilities may be
zero). But consider:

Example 3 Take the interior of the joint credal set in
Example 1; this is an open credal set where each dis-
tribution assigns positive probability to every possible
event. Decomposition and Weak Union still fail for regular-
confirmational independence: P(x0|w,y) belongs to the
open interval (β ,1− β ) for every possible w, y, and
also P(x0) belongs to the same open interval; similarly,
K(W,Y ), K>(W,Y |x0) and K>(W,Y |x1) are identical open
sets — but K>(X |w1) is the singleton {[1/2,1/2]}. This
means that we cannot simply require probabilities to be
larger than zero to obtain Decomposition and Weak Union
for regular-confirmational independence; we must assume
that lower probabilities are larger than zero.

Another possibility is to assume positive lower probabil-
ities but to drop convexity. Failure of Decomposition and
Weak Union has been shown before for non-convex credal
sets [5]. That example used non-connected credal sets; here
is a perhaps easier to grasp example that displays failure of
Decomposition and Weak Union in connected (non-convex)
sets. Note that all lower probabilities are positive in this
example.

Example 4 Consider three variables W, X and Y . While
W and Y are binary, X has three values. Denote by U
the point [1/3,1/3,1/3]; we will interpret such a point
as the distribution where P(x0) = 1/3, P(x1) = 1/3, and
P(x2) = 1/3. Denote by Aα the point

[α/2+(1−α)/3,α/6+(1−α)/3,1/3+α(1−α)]/k1,



where k1 = 1+α(1−α). Note that as α varies from 0 to
1 we obtain a curve in the three-dimensional simplex. Note
also that A0 =U, and A1 = [1/2,1/6,1/3]. Denote by Bα

the point

[α/6+(1−α)/3,α/2+(1−α)/3,1/3−α(1−α)]/k2,

where k2 = 1−α(1−α).
Now define a set of distributions parameterized by α ∈

[0,1] such that Pα
1 (X = x|w,y) = Aα and Pα

1 (w,y) = 1/4,
and another set of distributions such that Pα

2 (X = x|w,y) =
Bα and Pα

2 (w,y) = 1/4. Continue by defining an additional
sets of distributions parameterized by α ∈ [0,1], as follows:

Pα
3 (X = x|W = w0,Y = y0) = Aα ,

Pα
3 (X = x|W = w0,Y = y1) = Bα ,
Pα

3 (X = x|W = w1,Y = y0) =U,
Pα

3 (X = x|W = w1,Y = y1) =U,

and Pα
3 (w0,y0) = k1/4, Pα

3 (w0,y1) = k2/4, Pα
3 (w1,y0) =

1/4, Pα
3 (w1,y1) = 1/4.

By taking the union of distributions Pα
1 , Pα

2 and Pα
3 as

α ∈ [0,1], we obtain K>(X |w,y) =K>(X); consequently,
(W,Y ) is regular-confirmationally irrelevent to X. To guar-
antee that X is also regular-confirmationally irrelevant to
(W,Y ), we build four additional sets of distributions as
follows: take Pα

i (x|w,y) =U for i ∈ {4,5,6,7} and

Pα
4 (w,y) = Pα

3 (w,y);
Pα

5 (w,y) = Pα
3 (w,y|x0);

Pα
6 (w,y) = Pα

3 (w,y|x1);
Pα

7 (w,y) = Pα
3 (w,y|x2).

We then have that K>(W,Y |x) =K>(W,Y ); hence (W,Y )
and X are regular-confirmationally independent.

However,

K>(X |y) = ∪α∈[0,1]{Aα ,Bα ,(Aα +U)/2,(Bα +U)/2},

so K>(X |w,y) 6= K>(X |y) (failure of Weak Union) and
K>(X |y) 6= K>(X) (failure of Decomposition). Figure 1
depicts some of the geometry behind this example. �

Now suppose we require both convexity and positive
lower probabilities, but drop the assumption of closure. It is
an open question whether Decomposition and Weak Union
hold in this case.

These examples suggest that regular-confirmational and
regular-epistemic independence are rather weak concepts:
we cannot keep Decomposition and Weak Union when
lower probabilities may be zero.

5. Semi-Graphoid Properties: Type-5 and
Type-5 Epistemic Independence

Now consider type-5 and type-5 epistemic irrelevance. For
type-5 epistemic irrelevance we have:

P(x2)

P(x0) P(x1)

U
A1 B1

Figure 1: Credal sets from Example 4, in barycentric coor-
dinates. The marginal credal set K(X) appears as
the longer curve from A1 to B1, going through the
uniform distribution U . The credal sets K(X |y0)
and K(X |y1) include the shorter curve that goes
from (A1 +U)/2 to (B1 +U)/2.

Theorem 4 If (Y IR X | Z) denotes type-5 epistemic irrele-
vance of Y to X given Z, then:
• (X IRY | X) and (Y IR X | X) (“direct” and “reverse”
forms of Redundancy);
• If (X IRW,Y | Z), then (X IRY | Z) (a “direct” form of
Decomposition);
• If (X IRW,Y | Z), then (X IRY |W,Z) (a “direct” form of
Weak Union);
• If (W,Y IR X | Z), then (Y IR X | Z) (a “reverse” form of
Decomposition);
• If (W,Y IR X | Z), then (Y IR X |W,Z) (a “reverse” form
of Weak Union);

Proof Redundancy: we do have, whenever P(X = x,A)>
0, that E>[g|X = x,A] = E>[g|X = x] (true because if x ∈
A, then trivially {X = x,A} = {X = x}); also, whenever
P(x,B)> 0, we have E>[ f |x,B] = f (x) = E>[ f |x].

Direct Decomposition: by assumption X is type-5
epistemic irrelevant to (W,Y ) given Z; thus we have
E>[g|A,z] = E>[g|z] whenever P(A,z) > 0 by hypothesis
as any g(Y ) is obviously a function of (W,Y ).

Direct Weak Union: by assumption we have
E>[h(W,Y )|A,z] = E>[h(W,Y )|z] whenever P(A,z) > 0;
hence, using Theorem 1, if P(A,w,z)> 0,

E>[g|A,w,z] = sup
(
α : E>[(g−α)Iw|A,z]≥ 0

)
= sup

(
α : E>[(g−α)Iw|z]≥ 0

)
= E>[g|w,z] .

Reverse Decomposition: by assumption (W,Y ) is type-5
epistemic irrelevant to X given Z; thus E[ f |B,z] = E[ f |z]
because any event B in the algebra generated by Y is also
an event in the algebra generated by (W,Y ).



w0y0 w0y1 w1y0 w1y1
x0 0 α/2 α/2 0
x1 0 (1−α)/2 (1−α)/2 0

w0y0 w0y1 w1y0 w1y1
x0 α/2 0 0 (1−α)/2
x1 (1−α)/2 0 0 α/2

Table 3: Tables employed in Example 5.

Reverse Weak Union: by assumption (W,Y ) is type-5
epistemic irrelevant to X given Z; hence E>[ f |B,w,z] =
E>[ f |z] whenever P(B,w,z)> 0; also we have E>[ f |w,z] =
E>[ f |z] as a consequence of reverse Decomposition;
thus E>[ f |B,w,z] = E>[ f |z] = E>[ f |w,z] whenever
P(B,w,z)> 0 (that is, Y is type-5 epistemic irrelevant to X
given (W,Z)).

All other versions of Decomposition and Weak Union
fail for type-5 epistemic irrelevance given the “symmetry-
based” arguments given right after Example 1. The same
arguments there cover all other versions of Contraction
except direct Contraction (fails in Example 2) and reverse
Contraction. The latter property fails in the next example

Example 5 Consider three binary variables W, X and Y .
For Table 3 top, P(x0) = P(x0|y) = α for each possible y,
and P(x0|w,y) = α whenever P(w,y)> 0. For the bottom
table we have P(x0)= 1/2, P(x0|y0)=α , P(x0|y1)= 1−α ,
P(x0|w0,y0) = α and P(x0|w1,y1) = 1−α .

Select β ∈ (0,1/2). First build two joint probability dis-
tributions for (W,X ,Y ) by using the top table respectively
with α = β and α = 1− β . Then build two additional
joint probability distributions by using the bottom table
respectively with α = β and α = 1− β . Build the joint
credal set consisting of the convex hull of these four joint
probability distributions. For this credal set we have that
all of P(x0), P(x0|y) for each possible y vary within the
interval [β ,1− β ]. Moreover, if we discard the distribu-
tions for which P(w0,y0) = 0, then P(x0|w0,y0) varies
within the interval [β ,1−β ] as well. Likewise, P(x0|w0,y1),
P(x0|w1,y0) and P(x0|w1,y1) vary within the same inter-
val. Thus we have that Y is type-5 epistemically irrele-
vant to X, and W is type-5 epistemically irrelevant to X
given Y . However, (W,Y ) is not type-5 epistemically ir-
relevant to X, because K>(X |{w0,y0}∪{w1,y1}) is a sin-
gleton containing the probability distribution such that
P(x0|{w0,y0}∪{w1,y1}) = 1/2. �

For type-5 epistemic independence we get, using Theo-
rem 4:2

Theorem 5 Type-5 epistemic independence satisfies Sym-
metry, Redundancy, Decomposition and Weak Union.

2. This result corrects a mistake in Ref. [5], where it is stated that type-5
epistemic independence fails Decomposition and Weak Union.

Clearly type-5 epistemic independence fails Contraction
and Intersection.

Finally, consider type-5 irrelevance. We have the coun-
terpart of Theorem 4:

Theorem 6 If (Y IR X | Z) denotes type-5 irrelevance of Y
to X given Z, then the same properties listed in Theorem 4
hold.

Proof Redundancy: There are two equalities to prove:

K>(Y |A,x) =K>(Y |x) whenever P(A,x)> 0

(true because if {A,x} = /0, then P(A,x) = 0; otherwise
{A,x}= {x}, then trivially K>(X |A,x) =K>(X |x)), and

K>(X |B,x) =K>(X |x) whenever P(B,x)> 0

(true because both credal sets K>(X |B,x) and K>(X |x)
contain exactly the distribution that assigns probability one
to {x} whenever P(B,x)> 0).

For the next two paragraphs, note that any probability
distribution for {W,Y} given {A,z} can be represented by
a vector p containing the probability value of each {w,y}.
Also, suppose X is type-5 irrelevant to (W,Y ) given Z; that
is, K>(W,Y |A,z) =K>(W,Y |z) whenever P(A,z)> 0.

Direct Decomposition: Define the marginalization func-
tion F(p) that yields a vector containing, for each value
y, the value of the sum ∑wP(w,y|A,z). So, the equality
K>(W,Y |A,z) =K>(W,Y |z) whenever P(A,z)> 0 implies
K>(Y |A,z) =K>(Y |z) whenever P(A,z)> 0, as desired.

Direct Weak Union: For every p whose encoded distri-
bution satisfies P(w|A,z)> 0, define the conditioning func-
tion F(p) that yields a vector containing, for each value w,
the value of the ratio P(w,y|A,z)/∑y′ P(w,y′|A,z). So, the
equality K>(W,Y |A,z) =K>(W,Y |z) whenever P(A,z)>
0 implies the equality K>(Y |A,w,z) = K>(Y |w,z) when-
ever P(A,w,z)> 0 (by applying F(·) to the relevant distri-
butions and discarding the others), as desired.

Reverse Decomposition: Suppose (W,Y ) is type-5 irrele-
vant to X given Z; then K>(X |B,z) =K>(X |z) whenever
P(B,z)> 0, given that any event B in the algebra generated
by Y is also an event in the algebra generated by (W,Y ).

Reverse Weak Union: by assumption (W,Y ) is type-5
irrelevant to X given Z; hence K>(X |B,w,z) = K>(X |z)
whenever P(B,w,z) > 0; also we have K>(X |w,z) =
K>(X |z) whenever P(w,z) > 0 as a consequence of re-
verse Decomposition; hence K>(X |B,w,z) = K>(X |z) =
K>(X |w,z) whenever P(B,w,z)> 0, as desired.

All other versions of Decomposition, Weak Union and
Contraction fail for type-5 irrelevance given previous argu-
ments and examples. As for type-5 independence, we can
use previous results to state the counterpart of Theorem 5:

Theorem 7 Type-5 independence satisfies Symmetry, Re-
dundancy, Decomposition and Weak Union.



6. Conclusion
We have examined the behavior of variants of epistemic ir-
relevance and independence with respect to semi-graphoid
properties. All variants adopt regular conditioning and
thus are arguably counterparts to the standard definition
of stochastic independence. We have shown that regular-
epistemic irrelevance and regular-confirmational irrele-
vance satisfy a few versions of semi-graphoid properties
(both forms of Redundancy, “direct” forms of Decomposi-
tion and Weak Union, and a “reverse” form of Contraction).
Their corresponding concepts of independence only sat-
isfy Symmetry and Redundancy. We have also shown that
type-5 epistemic irrelevance and type-5 irrelevance in addi-
tion satisfy “reverse” forms of Decomposition and Weak
Union, and consequently type-5 epistemic independence
and type-5 independence satisfy Symmetry, Redundancy,
Decomposition and Weak Union. All of these concepts of
independence fail Contraction (and all of them fail Inter-
section).

The failure of Decomposition and Weak Union for
regular-epistemic and regular-confirmational independence
is a frustrating result, as one would expect these concepts to
deal smoothly with zero probabilities. The more stringent
conditions of the “type-5 family” may be needed.

To conclude, we note that a popular way to express the
(standard, Kolmogorovian) independence of X and Y given
Z is to require P(x,y|z) = P(x|z)P(y|z) whenever P(z)> 0.
There are several proposals in the literature to mimic this lat-
ter expression in the context of credal sets. For instance, say
that X and Y are completely independent iff each probabil-
ity distribution in K(X ,Y ) satisfy stochastic independence;
the conditional version is simply produced by conditioning
everything on some Z. And say that X and Y are strongly
independent iff K(X ,Y ) is the convex hull of a credal set
that satisfies complete independence. A natural scheme to
define conditional strong independence, suggested by Wal-
ley [20], is to say that X and Y are strongly independent
given Z iff K>(X ,Y |z) is the convex hull of a credal set
satisfying complete independence of X and Y , for all z such
that P(z)> 0. The last notable concept of independence we
mention for credal sets is due to Kuznetsov [13]: X and Y
are Kuznetsov-independent if

E[ f (X)g(Y )] = E[ f (X)]�E[g(Y )]

for all functions f (X) and g(Y ), where E[·] denotes the
interval from lower to upper expectations, and � denotes
interval multiplication.

Complete independence satisfies all semi-graphoid prop-
erties. As for strong independence, one might suspect that
it satisfies all semi-graphoid properties. However, as shown
by the next example, strong independence fails Contrac-
tion.3

3. This corrects a statement in Ref. [5] concerning strong independence
and Contraction.

w0y0 w0y1 w1y0 w1y1
x0 2 3 6 1
x1 4 6 12 2

w0y0 w0y1 w1y0 w1y1
x0 17 39 51 13
x1 25 51 75 17

Table 4: Example 6. Top: the values of 36×P2. Bottom:
the values of 288×P3.

Example 6 Consider three binary variables W, X and
Y , and a joint credal set that is the convex hull of
three distributions P1, P2 and P3. Take P1(w,x,y) =
1/8 (that is, the uniform distribution) and P2(w,x,y) =
P2(w|y)P2(x)P2(y) where P2(x0) = 1/3, P2(y0) = 2/3,
P2(w0|y0) = 1/4 and P2(w0|y1) = 3/4. Finally, take
P3(w,x,y) = P2(w|y)(P1(x)P1(y)/2+P2(x)P2(y)/2). The
distributions P2 and P3 are shown in Table 4. Note that
P3 is not a convex combination of P1 and P2 as there
is no α ∈ [0,1] such that P3 = αP1 +(1−α)P2 (for in-
stance, there is no α ∈ [0,1] such that α/8+4(1−α)/36=
25/288). However, P3(x,y) is the convex combination
P1(x)P1(y)/2+P2(x)P2(y)/2, so the marginal credal set
K(X ,Y ) is the convex hull of two product distributions that
factorize as P1(x)P1(y) and P2(x)P2(y). Also, the credal
set K(W,X |y) is the convex hull of three distributions;
one satisfies P(w,x|y) = P1(w)P1(x); another satisfies
P(w,x|y) = P2(w|y)P2(x); the third satisfies P(w,x|y) =
P2(w|y)P3(x|y). Hence X and Y are strongly independent,
and X and W are strongly independent given Y . However,
we do not have strong independence of X and (W,Y ): for
instance, P3(x0|w0,y0) = 17/42 6= 5/12 = P3(x0). �

Finally, Kuznetsov-independence satisfies Symmetry,
Redundancy and Decomposition; it fails Contraction even
when all probabilities are positive [7], and it is an open
question whether it satisfies Weak Union or not.
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