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Abstract
In this paper, we consider continuous-time Markov
chains with a finite state space under nonlinear expecta-
tions. We define so-called Q-operators as an extension
of Q-matrices to a nonlinear setup, where the nonlin-
earity is due to parameter uncertainty. The main result
gives a full characterization of convex Q-operators in
terms of a positive maximum principle, a dual repre-
sentation by means of Q-matrices, continuous-time
Markov chains under convex expectations and fully
nonlinear ODEs. This extends a well-known characteri-
zation of Q-matrices. Moreover, the convex semigroup
arising from a Markov process under a convex expec-
tation is being described via the Fenchel-Legendre
Transform of the generator.
Keywords: Nonlinear expectations, imprecise Markov
chains, generators of nonlinear semigroups

1. Introduction and Main Result
We consider a finite non-empty state space S with cardinal-
ity d := |S| ∈ N. We endow S with the discrete topology 2S

and w.l.o.g. assume that S = {1, . . . ,d}. The space of all
bounded measurable functions S→R can therefore be iden-
tified by Rd . A bounded random variable u thus will always
be denoted as a vector of the form u = (u1, . . . ,ud)

T ∈ Rd

identifying u(i) = ui for i ∈ {1, . . . ,d}. On Rd we will al-
ways consider the norm

‖u‖∞ := max
i=1,...,d

|ui|

for a vector u ∈ Rd . Moreover, for α ∈ R we denote by
α ∈ Rd the constant vector u ∈ Rd with ui = α for all
i ∈ {1, . . . ,d}. For a matrix a = (ai j)1≤i, j≤d ∈ Rd×d , we
denote by ‖a‖ the operator norm of a : Rd → Rd w.r.t. the
norm ‖ · ‖∞, i.e.

‖a‖= sup
v∈Rd\{0}

‖av‖∞

‖v‖∞

= max
i=1,...,d

( d

∑
j=1
|ai j|

)
.

Inequalities of vectors are always understood component-
wise, i.e. for u,v ∈ Rd

u≤ v ⇐⇒ ∀i ∈ {1, . . . ,d} : ui ≤ vi.

All concepts in Rd that include inequalities are to be under-
stood w.r.t. the latter partial ordering. For example, a vector

field F : Rd → Rd is called convex if

Fi
(
λu+(1−λ )v

)
≤ λFi(u)+(1−λ )Fi(v)

for all i ∈ {1, . . . ,d}, u,v ∈ Rd and λ ∈ [0,1]. A vector
field F is called sublinear if it is convex and positive
homogeneous of degree 1. Moreover, for a set M ⊂ Rd

of vectors, we write u = supM if ui = supv∈M vi for all
i ∈ {1, . . . ,d}.

A matrix q = (qi j)1≤i, j≤d ∈ Rd×d is called a Q-matrix if
it satisfies the following conditions:

(i) qii ≤ 0 for all i ∈ {1, . . . ,d},

(ii) qi j ≥ 0 for all i, j ∈ {1, . . . ,d} with i 6= j,

(iii) ∑
d
j=1 qi j = 0 for all i ∈ {1, . . . ,d}.

It is well known that every continuous-time Markov chain
with certain regularity properties at time t = 0 can be related
to a Q-matrix and vice versa. More precisely, for a matrix
q ∈ Rd×d the following statements are equivalent:

(i) q is a Q-matrix.

(ii) There is a Markov chain
(
Ω,F ,(P1, . . . ,Pd),(Xt)t≥0

)
such that

qu0 = lim
h↘0

E
(
u0(Xh)

)
−u0

h

for all u0 ∈ Rd , where u0(i) is the i-th component
of u0 for i ∈ {1, . . . ,d}, Pi stands for the probability
measure under which the Markov chain (Xt)t≥0 sat-
isfies Pi(X0 = i) = 1 for i ∈ {1, . . . ,d} and E(Y ) :=
(EP1(Y ), . . .EPd (Y ))

T ∈ Rd for any bounded random
variable Y : Ω→ R.

In this case, for each vector u0 ∈ Rd , the function
u : [0,∞)→ Rd , t 7→ E

(
u0(Xt)

)
is the unique classical so-

lution u ∈C1
(
[0,∞);Rd

)
of the initial value problem

u′(t) = qu(t), t ≥ 0,
u(0) = u0,

i.e. u(t) = etqu0 for all t ≥ 0, where etq is the matrix
exponential of tq. We refer to Norris [16] for a detailed
illustration of this relation.
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Here and throughout this paper, we say that a (possibly
nonlinear) operator Q : Rd → Rd satisfies the positive
maximum principle if for u = (u1, . . . ,ud)

T ∈ Rd and
i ∈ {1, . . . ,d} it holds (Qu)i ≤ 0 whenever ui ≥ u j for all
j ∈ {1, . . . ,d}. This notion is motivated by the positive
maximum priciple for generators of Feller processes, see
e.g. [12, Equation (0.8)]. Notice that a matrix q ∈ Rd×d

is a Q-matrix if and only if it satisfies the positive maxi-
mum principle and q1 = 0, where 1 := (1, . . . ,1)T ∈ Rd

denotes the constant 1 vector. Indeed, property (iii) in
the definition of a Q-matrix is just a reformulation of
q1 = 0. Moreover, if q satisfies the positive maximum
principle, then qii = (qei)i ≤ 0 for all i ∈ {1, . . . ,d} and
−qi j = (q(−ei)) j ≤ 0 for all i, j ∈ {1, . . . ,d}with i 6= j. On
the other hand, if q is a Q-matrix, u = (u1, . . . ,ud)

T ∈ Rd

and i ∈ {1, . . . ,d} with ui ≥ u j for all j ∈ {1, . . . ,d}. Then,
(qu)i = ∑

d
j=1 qi ju j ≤ ui ∑

d
j=1 qi j = 0, which shows that q

satisfies the positive maximum principle.

The notion of a nonlinear expectation was introduced
by Peng [19]. Since then, nonlinear expectations have
been widely used in order to describe model uncertainty
in a probabilistic framework. Prominent examples of
nonlinear expectations are the g-expectation, see Coquet
et al. [2], and the G-expectation introduced by Peng
[20],[21]. Given a measurable space (Ω,F ), we consider
the space L ∞(Ω,F ) of all bounded measurable func-
tions Ω→ R. A nonlinear expectation is then a functional
E : L ∞(Ω,F )→ R which satisfies E (X) ≤ E (Y ) when-
ever X(ω) ≤ Y (ω) for all ω ∈ Ω, and E (α1Ω) = α for
all α ∈ R. If E is additionally convex, we say that E is a
convex expectation. It is well known, see e.g. [8] or [10],
that every convex expectation E admits a dual represen-
tation in terms of finitely additive probability measures.
If E , however, even admits a dual representation in terms
of (countably additive) probability measures, we say that
(Ω,F ,E ) is a convex expectation space. More precisely,
we say that (Ω,F ,E ) is a convex expectation space if there
exists a set P of probability measures on (Ω,F ) and a
family (αP)P∈P ⊂ [0,∞) with infP∈P αP = 0 such that

E (X) = sup
P∈P

(
EP(X)−αP

)
for all X ∈L ∞(Ω,F ), where EP denotes the expectation
w.r.t. a probability measure P on (Ω,F ). If αP = 0 for all
P ∈P , we say that (Ω,F ,E ) is a sublinear expectation
space. Here, the set P represents the set of all possible
models that are relevant for E . In the case of a sublinear
expectation space, the functional E is the best case among
all plausible models P . In the case of a convex expectation
space, the functional E is a weighted best case among all
plausible models P with an additional penalization term
αP for every P ∈P . Intuitively, αP can be seen as a mea-
sure for how much importance we give to the prior P ∈P
under the expectation E . For example, a low penalization,

i.e. αP close or equal to 0, gives a lot of importance to the
model P ∈P .

If a nonlinear expectation E is sublinear, then
ρ(X) := E (−X) defines a coherent monetary risk measure
as introduced by Artzner et al. [1] and Delbaen [4],[5], see
also Föllmer and Schied [10] for an overview of convex
monetary risk measures. Moreover, if E is a sublinear
expectation, then E is a coherent upper prevision cf. Walley
[24] and vice versa. We would further like to mention that
there is a one to one relation between the following three
concepts: convex expectations, convex upper previsions
cf. [17],[18] and convex risk measures cf. [10]. Another
related concept are so-called (Choquet) capacites (see e.g.
Dellacherie-Meyer [6]). However, in many applications
the functional approach, using nonlinear expectations,
has certain advantages, in particular regarding extension
theorems or the existence of stochastic processes under
model uncertainty, see e.g. Denk et al. [8].

In [19], Peng introduces a first notion of Markov chains
under nonlinear expectations. However, the existence of
stochastic processes under nonlinear expectations has only
been considered in terms of finite dimensional nonlinear
marginal distributions, whereas completely path-dependent
functionals could not be regarded. Markov chains under
model uncertainty have been considered amongst others by
Hartfiel [11], Škulj [22] and De Cooman et al. [3]. In [11],
Hartfiel considers so-called Markov set-chains in discrete
time, using matrix intervals in order to describe model
uncertainty in the transition matrices. Later, Škulj [22]
approached Markov chains under model uncertainty using
Choquet capacities, which results in higher-dimensional
matrices on the power set, while De Cooman et al. [3]
considered imprecise Markov chains using an operator
theoretic approach with upper and lower expectations.
In [8, Example 5.3], model uncertainty in the transition
matrix is being described by a transition operator, which
allows the construction of discrete-time Markov chains on
the canonical path space. In continuous time, in particular
computational aspects of sublinear imprecise Markov
chains, have been studied amongst others by Škulj [23] or
Krak et al. [13].

In this paper, we consider continuous-time Markov
chains under convex expectations and extend the above
relation between Markov chains, Q-matrices and ordinary
differential equations to the convex case. This is done using
convex duality, so-called Nisio semigroups (cf. Nisio [15])
and a convex version of Kolmogorov’s extension theorem,
see Denk et. al. [8], which provides an extension to the
whole path space. A similar approach has been used by
Denk et al. [7] in order to construct Lévy processes un-
der nonlinear expectations via solutions to fully nonlinear
PDEs using Nisio semigroups. Restricting the time parame-



ter in the present work to the set of natural numbers leads to
a discrete-time Markov chain, in the sense of [8, Example
5.3]. In order to state the main result, we need the following
definitions:

Definition 1 A (possibly nonlinear) map Q : Rd → Rd is
called a Q-operator if the following conditions are satis-
fied:

(i) (Qλei)i ≤ 0 for all λ > 0 and all i ∈ {1, . . . ,d},

(ii)
(
Q(−λe j)

)
i ≤ 0 for all λ > 0 and all i, j ∈ {1, . . . ,d}

with i 6= j,

(iii) Qα = 0 for all α ∈ R, where we identify α with
(α, . . . ,α)T ∈ Rd .

Definition 2 A convex Markov chain is a quadruple(
Ω,F ,E ,(Xt)t≥0

)
, where

(i) (Ω,F ) is a measurable space.

(ii) Xt : Ω→{1, . . . ,d} is F -measurable for all t ≥ 0.

(iii) E = (E1, . . . ,Ed)
T , where (Ω,F ,Ei) is a con-

vex expectation space for all i ∈ {1, . . . ,d} and
E
(
u0(X0)

)
= u0. Here and in the following we make

use of the notation

E (Y ) :=
(
E1(Y ), . . . ,Ed(Y )

)T ∈ Rd

for Y ∈L ∞(Ω,F ).

(iv) The following version of the Markov property is satis-
fied: For all s, t ≥ 0, n ∈ N, 0≤ t1 < .. . < tn ≤ s and
v0 ∈

(
Rd
)(n+1) we have that

E
(
v0(Y,Xs+t)

)
= E

[
EXs,t

(
v0(Y, ·)

)]
with Y := (Xt1 , . . . ,Xtn) and Ei,t(u0) := Ei

(
u0(Xt)

)
for

all u0 ∈ Rd and i ∈ {1, . . . ,d}.

We say that the Markov chain
(
Ω,F ,E ,(Xt)t≥0

)
is linear

or sublinear if the mapping E : L ∞(Ω,F )→ Rd is addi-
tionally linear or sublinear, respectively.

The Markov property given in (iv) of the previous def-
inition is the nonlinear analogon of the classical Markov
property without using conditional expectations. Notice
that due to the nonlinearity of the expectation, the definition
and, in particular, the existence of a conditional (nonlinear)
expectation is quite involved, which is why we avoid to
introduce this concept.

Definition 3 A family S =
(
S (t)

)
t≥0 of (possibly non-

linear) operators S (t) : Rd → Rd is called a semigroup
if

(i) S (0) = I, where I = Id is the d-dimensional identity
matrix,

(ii) S (s+ t) = S (s)S (t) for all s, t ≥ 0.

(iii) The mapping [0,∞)→ Rd , t 7→S (t)u0 is continuous
for all u0 ∈ Rd .

Here and throughout, we make use of the notation
S (s)S (t) := S (s)◦S (t). We call S Markovian if

(iv) S (t)u0 ≤S (t)v0 for all t ≥ 0 and u0,v0 ∈ Rd with
u0 ≤ v0,

(v) S (t)α = α for all t ≥ 0 and α ∈ R, where we again
use the notation α := (α, . . . ,α)T ∈ Rd .

We say that S is linear, sublinear or convex if S (t) is
linear, sublinear or convex for all t ≥ 0, respectively.

Definition 4 Let P ⊂ Rd×d be a set of Q-matrices and
f = ( fq)q∈P a family of vectors with supq∈P fq = fq0 = 0
for some q0 ∈P . We denote by

Sq(t)u0 := eqtu0 +
∫ t

0
eqs fq ds = u0 +

∫ t

0
esq(qu0 + fq

)
ds

for t ≥ 0, u0 ∈ Rd and q ∈P . Then Sq =
(
Sq(t)

)
t≥0 is an

affine linear semigroup. We call a semigroup S the Nisio
semigroup or the semigroup envelope of (P, f ) if

(i) S (t)u0 ≥ Sq(t)u0 for all t ≥ 0, u0 ∈ Rd and q ∈P ,

(ii) For any other semigroup S̃ satisfying (i) we have that
S (t)u0 ≤ S̃ (t)u0 for all t ≥ 0 and u0 ∈ Rd .

That is, the Nisio semigroup S is the smallest semigroup
that dominates all semigroups (Sq)q∈P .

The following main theorem gives a full characterization
of convex Q-operators.

Theorem 5 Let Q : Rd → Rd be a mapping. Then the
following statements are equivalent:

(i) Q is a convex Q-operator.

(ii) Q is convex, satisfies the positive maximum principle
and Qα = 0 for all α ∈R, where α := (α, . . . ,α)T ∈
Rd .

(iii) There exists a set P ⊂ Rd×d of Q-matrices and a
family f = ( fq)q∈P ⊂Rd of vectors with supq∈P fq =
fq0 = 0 for some q0 ∈P such that

Qu0 = sup
q∈P

(
qu0 + fq

)
(1)

for all u0 ∈ Rd , where the suprema are to be under-
stood componentwise.

(iv) There exists a convex Markovian semigroup S with

Qu0 = lim
h↘0

S (h)u0−u0

h

for all u0 ∈ Rd .



(v) There is a convex Markov chain
(
Ω,F ,E ,(Xt)t≥0

)
such that

Qu0 = lim
h↘0

E
(
u0(Xh)

)
−u0

h

for all u0 ∈ Rd .

In this case, for each initial value u0 ∈ Rd , the function
u : [0,∞)→ Rd , t 7→ E

(
u0(Xt)

)
is the unique classical so-

lution u ∈C1
(
[0,∞);Rd

)
of the initial value problem

u′(t) = Qu(t) = sup
q∈P

(
qu(t)+ fq

)
, t ≥ 0, (2)

u(0) = u0.

Moreover, u(t) = S (t)u0 for all t ≥ 0 and S is the Nisio
semigroup w.r.t. (P, f ).

Remark 6 Consider the situation of Theorem 5.

a) The dual representation in (iii) gives a model un-
certainty interpretation to Q-operators. The set P
can be seen as the set of all plausible rate matrices,
when considering the Q-operator Q. For q ∈P the
vector fq ≤ 0 can be interpreted as a penalization,
which measures how much importance we give to
each rate matrix q. The requirement that there exists
some q0 ∈P with fq0 = 0 can be interpreted in the
following way: There has to exist at least one rate
matrix q0 within the set of all plausible rate matrices
P to which we assign the maximal importance, that
is minimal penalization.

b) The Nisio semigroup S w.r.t. (P, f ) can be con-
structed more explicitly. For details, we refer to Sec-
tion 2. Moreover, notice that the Nisio semigroup
S can be constructed w.r.t. any dual representation
(P, f ) as in (iii) and results in the unique classical
solution of (2) independent of the choice of the repre-
sentation (P, f ).

c) The same equivalence as in Theorem 5 holds if con-
vexity is replaced by sublinearity in (i), (ii), (iv) and
(v) and fq = 0 for all q ∈P in (iii). In this case, the
set P in (iii) can be chosen to be compact as we will
see in the proof of Theorem 5.

d) Theorem 5 extends and includes the well-known rela-
tion between (linear) Markov chains, Q-matrices and
ordinary differential equations.

e) A consequence of Theorem 5 is that every convex
Markovian semigroup, which is differentiable at 0,
is the Nisio semigroup with respect to the Fenchel-
Legendre transform (or any other dual representation
as in (iii)) of its generator.

f) Although Q has an unbounded convex conjugate, the
convex initial value problem

u′(t) = Qu(t) for all t ≥ 0, u(0) = u0. (3)

has a unique global solution.

g) Solutions to (3) remain bounded. Therefore, a Picard
iteration or Runge-Kutta methods can be used for
numerical computations and the convergence rate (de-
pending on the size of the initial value u0) can be
explicitly computed.

h) As in the linear case, by solving the differential equa-
tion (3) one can compute expressions of the form

u(t) = E (u0(Xt)).

under model uncertainty.

2. Proof of Theorem 5
Here, we only provide a proof of (v)⇒ (ii)⇒ (i)⇒ (iii)
and indicate the construction of the Nisio semigroup S .
For the remaining implications (iii) ⇒ (iv) ⇒ (v) and
more details concerning the Nisio semigroup S , we refer
to [14] and [8].

We say that a set P ⊂ Rd×d of matrices is row-convex
if for any diagonal matrix λ ∈ Rd×d with λi := λii ∈ [0,1]
for all i ∈ {1, . . . ,d} and all p,q ∈P we have that

λ p+(I−λ )q ∈P,

where I = Id is the d-dimensional identity matrix. Note that
for all i ∈ {1, . . . ,d} the i-th row of the matrix λ p+(I−
λ )q is the convex combination of the i-th row of p and q
with λi. Therefore, a set P is row-convex if for all p,q∈P
the convex combination with different λ ∈ [0,1] in every
row is again an element of P . Note that for example the
set of all Q-matrices is row-convex.

Remark 7 Let Q be a convex Q-operator. For every ma-
trix q ∈ Rd×d let

Q∗(q) := sup
u∈Rd

(
qu−Q(u)

)
∈ [0,∞]d

be the conjugate function of Q. Notice that 0≤Q∗(q) for
all q ∈ Rd×d since Q(0) = 0. Let

P := {q ∈ Rd×d |Q∗(q)< ∞}

and fq :=−Q∗(q) for all q ∈P . Then, the following facts
are well-known results from convex duality theory in Rd .
We refer to [9] or [10, Appendix A.1] for more details.

a) The set P is row-convex and the mapping P →
R, q 7→ fq is continuous.



b) Let M > 0 and PM := {q∈Rd×d |Q∗(q)≤M}. Then,
PM ⊂ Rd×d is compact and row-convex. Therefore,

QM : Rd → Rd , u 7→ max
q∈PM

(
qu+ fq

)
(4)

defines a convex operator which is Lipschitz contin-
uous. Notice that the maximum in (4) is to be un-
derstood componentwise. However, for fixed u ∈ Rd

the maximum can be attained by a single element si-
multaneously in every component of PM since PM
is row-convex, i.e. for all u ∈ Rd there exists some
q0 ∈PM with

QMu = q0u+ fq0 .

c) Let R > 0. Then, there exists some M > 0 such that

Qu = max
q∈PM

(
qu+ fq

)
= QMu

for all u ∈ Rd with ‖u‖∞ ≤ R. In particular, Q is lo-
cally Lipschitz continuous and admits a representation
of the form

Qu = max
q∈P

(
qu+ fq

)
for all u ∈ Rd , where for fixed u ∈ Rd the maximum
can be attained by a single element simultaneously
in every component of P . In particular, there exists
some q0 ∈P with fq0 = supq∈P fq = Q(0) = 0.

Proof
(v) ⇒ (ii): As Ei is a convex expectation for all i ∈
{1, . . . ,d}, it follows that the operator Q is convex with
Qα = 0 for all α ∈R. Now, let u0 ∈Rd and i ∈ {1, . . . ,d}
with u0,i ≥ u0, j for all j ∈ {1, . . . ,d}. Let α > 0 be such
that

‖u0 +α‖∞ =
(
u0 +α

)
i = u0,i +α

and v0 := u0 +α . Then,

Qv0 = lim
h↘0

E
(
u0(Xh)+α

)
− v0

h

= lim
h↘0

E
(
u0(Xh)

)
−u0

h
= Qu0.

Assume that
(
Qu0

)
i > 0. Then, there exists some h > 0

such that
Ei
(
v0(Xh)

)
− v0,i > 0,

i.e. ∥∥E (v0(Xh)
)∥∥

∞
≥ Ei

(
v0(Xh)

)
> v0,i = ‖v0‖∞,

which is a contradiction to∥∥E (v0(Xh)
)∥∥

∞
≤ ‖v0‖∞.

This shows that Q satisfies the positive maximum principle.
(ii)⇒ (i): This follows directly from the positive maximum
principle, considering the vectors λei and −λei for all
λ > 0 and i ∈ {1, . . . ,d}.
(i)⇒ (iii): Let Q be a convex Q-operator. Moreover, let
P and f = ( fq)q∈P as in Remark 7. Then, by Remark 7
c), it only remains to show that every q ∈P is a Q-matrix.
To this end, fix an arbitrary q ∈P . Then, for all α ∈ R it
holds

qα =
1
λ

q(λα)≤ 1
λ

(
Q(λα)+Q∗(q)

)
=

1
λ

Q∗(q)→ 0,

as λ → ∞, where we used Remark 7 c) in the second in-
equality. Therefore, qα ≤ 0 for all α ∈R. Since, q is linear,
it follows q1 = 0. Now, let i ∈ {1, . . . ,d}. Then, by Remark
7 c) and the definition of a Q-operator, we obtain that

qii ≤
1
λ

(
Q(λei)+Q∗(q)

)
i ≤

1
λ

(
Q∗(q)

)
i→ 0

as λ → ∞, i.e. qii ≤ 0. Now, let i, j ∈ {1, . . . ,d} with i 6= j.
Again by Remark 7 c) and the definition of a Q-operator, it
follows that

−qi j ≤
1
λ

(
Q(−λei)+Q∗(q)

)
j ≤

1
λ

(
Q∗(q)

)
j→ 0

as λ → ∞, i.e. qi j ≥ 0. Therefore, q is a Q-matrix.

We conclude by constructing the Nisio semigroup S
w.r.t. the dual representation (P, f ) from the previous
proof. For every q ∈P , we consider the linear ODE

u′(t) = qu(t)+ fq, t ≥ 0 (5)

with u(0) = u0 ∈ Rd . Then, by variation of constant, the
solution of (5) is given by

Sq(t)u0 := eqtu0 +
∫ t

0
eqs fq ds = u0 +

∫ t

0
esq(qu0 + fq

)
ds

(6)
for t ≥ 0, where etq ∈ Rd×d is the matrix exponential of
tq for all t ≥ 0. Then, the family Sq =

(
Sq(t)

)
t≥0 defines a

uniformly continuous semigroup of affine linear operators,
i.e.

(i) Sq(0) = I, where I = Id is the d-dimensional identity
matrix,

(ii) Sq(s+ t) = Sq(s)Sq(t) for all s, t ≥ 0,

(iii) ‖Sq(t)− I‖→ 0 as t↘ 0.

Remark 8

a) Note that for all q ∈P and t ≥ 0 the matrix exponen-
tial etq ∈ Rd×d is a stochastic matrix, i.e.



(i)
(
etq
)

i j ≥ 0 for all i, j ∈ {1, . . . ,d},

(ii) etq1 = 1.

In particular, etqu≤ etqv for all u,v ∈ Rd with u≤ v
and therefore, the semigroup Sq is monotone (see part
b) below for a definition).

b) In line with [8, Definition 5.1], we say that a (pos-
sibly nonlinear) map E : Rd → Rd is a kernel, if E
is monotone, i.e. E (u) ≤ E (v) for all u,v ∈ Rd with
u≤ v, and E preserves constants, i.e. E (α) = α for
all α ∈ R. By part a), it is clear that etq ∈ Rd×d is a
linear kernel for all q ∈P and t ≥ 0.

We consider the set of finite partitions

P :=
{

π ⊂ [0,∞)
∣∣0 ∈ π, |π|< ∞

}
.

The set of partitions with end-point t will be denoted by Pt ,
i.e. Pt := {π ∈ P |maxπ = t}. Note that

P =
⋃
t≥0

Pt .

For all h≥ 0 and u ∈ Rd we define

Ehu := sup
q∈P

Sq(h)u,

where the supremum is taken componentwise. Note that Eh
is well-defined since

Sq(h)u = ehqu+
∫ h

0
esq fq ds≤ ehqu≤ ‖u‖∞

for all q ∈P , where we used the fact that ehq is stochastic.
Moreover, Eh is a convex kernel as it is monotone and

Ehα = α + sup
q∈P

∫ h

0
esq fq ds = α

since there is some q0 ∈P with fq0 = 0. For a partition
π = {t0, t1, . . . , tm} ∈ P with m ∈N and 0 = t0 < t1 < .. . <
tm, we set

Eπ := Et1−t0 . . .Etm−tm−1 .

Moreover, we set E{0} := E0. Then, Eπ is a convex kernel
for all π ∈ P being a concatenation of convex kernels.

Proposition 9 The Nisio semigroup S =
(
S (t)

)
t≥0 w.r.t.

(P, f ) is given by

S (t)u := sup
π∈Pt

Eπ u

for all u ∈ Rd and t ≥ 0.

Note that S (t) : Rd → Rd is well-defined and a convex
kernel for all t ≥ 0 since Eπ is a convex kernel for all π ∈ P.
For a proof of Proposition 9, we refer to [14].
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