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Abstract
In this paper we prove a new probability inequality that
can be used to construct p-boxes in a non-parametric
fashion, using the sample mean and sample standard
deviation instead of the true mean and true standard de-
viation. The inequality relies only on exchangeability
and boundedness.
Keywords: probability inequality, p-box, exchange-
ability, Cantelli, Chebyshev

1. Introduction
Probability boxes (or p-boxes) [3, 4] provide a well known
method for modelling uncertainty where the probability dis-
tribution cannot be fully identified. They do so by bounding
probabilities through a lower and upper cumulative distribu-
tion function. More precisely, consider a random variable
X , and let F denote the set of all cumulative distribution
functions on R. Instead of using a single cumulative distri-
bution function to model our information about X , a p-box
specifies two cumulative distribution functions, F and F ,
and then considers the set of all cumulative distribution
functions that lie in between these two functions:

{F ∈F : (∀x ∈ R)(F(x)≤ F(x)≤ F(x)}. (1)

Combining p-boxes, under a variety of assumptions and
binary operations, can be done extremely efficiently, as was
demonstrated by Williamson and Downs [10]. The work
of Destercke et al. [2], Troffaes and Destercke [9] general-
ized p-boxes to arbitrary pre-ordered spaces. Montes and
Miranda [7] specifically introduced bivariate p-boxes.

In case we only know the mean µ and variance σ2 of
a random variable X , but we have no further information,
a p-box can be constructed [3] using Cantelli’s inequality
[1, 5]:

0≤ P
(

X−µ

σ
≤ λ

)
≤ 1

1+λ 2 if λ ≤ 0, (2a)

λ 2

1+λ 2 ≤ P
(

X−µ

σ
≤ λ

)
≤ 1 if λ ≥ 0, (2b)

or, equivalently,

0≤ P(X ≤ x)≤ σ2

σ2+(x−µ)2 if x≤ µ, (3a)

(x−µ)2

σ2+(x−µ)2 ≤ P(X ≤ x)≤ 1 if x≥ µ. (3b)

Often, we may not know the mean µ and variance σ2. In
many situations however, we may have access to a sample
mean X and a sample standard deviation S2. Saw et al.
[8] derived a version of Chebyshev’s inequality (which is
closely related to Cantelli’s inequality) based on the sample
mean and sample variance, assuming just exchangeability.
On an abstract level, Saw et al. [8] identified a function f
such that

P
(
|Xn+1−X |

S
≥ λ

)
≤ f (λ ,n) (4)

where X and S are the sample mean and sample standard
deviation of X1, . . . , Xn. The only assumption made is that
X1, . . . , Xn, Xn+1 are exchangeable.

The goal of this paper is to prove a Cantelli-like version
of this inequality. In particular, we will find functions f∗
and f ∗ such that

f∗(λ ,n)≤ P
(

Xn+1−X
S+ εn

≤ λ

)
≤ f ∗(λ ,n) (5)

where εn > 0 goes to zero as n goes to infinity (obviously
we wish we could avoid this εn but unfortunately we have
not found a way to do so). To identify these functions,
we closely follow the work of Saw et al. [8]. This allows
us to construct a p-box purely based on boundedness and
exchangeability, with no further assumptions on the form
of the distribution.

Currently, unfortunately, we have not identified better
uses for this p-box besides the unlikely case where one
would be directly interested in the random variable

Xn+1−X
S+ εn

, (6)

or where one would use it to produce a random one-sided
prediction interval based on the sample mean and sample
standard deviation only. We will explain and discuss these
issues at the end of the paper.

In Section 2, we introduce basic definitions and notation.
In Section 3, we provide a proof of the inequality by Saw
et al. [8]. In Section 4, we prove our inequality, which
is a one-sided version of the inequality of Saw et al. [8].
Section 5 concludes the paper with a brief discussion.
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2. Definitions and Notation
For any set A, #{A} denotes the number of elements of A.

For any x ∈ R, bxc denotes the largest integer that is less
than or equal to x:

bxc := max{n ∈ Z : n≤ x} (7)

and dxe denotes the smallest integer that is greater than or
equal to x:

dxe := min{n ∈ Z : n≥ x} (8)

Similarly, bxc∗ denotes the largest integer that is strictly
less than x:

bxc∗ := max{n ∈ Z : n < x}. (9)

For any n ∈ N, n≥ 1, let Σn denote the set of all permu-
tations of {1,2, . . . ,n}.

For convenience, all random variables considered will
be assumed to be discrete, and will be assumed to take only
a finite number of values. For brevity, we will not repeat
this latter finite assumption each time, and we will simply
call them discrete random variables. The results can be
generalised to more general random variables.

Definition 1 (Exchangeability) A finite sequence X1,
X2,. . . ,Xn of discrete random variables is said to be ex-
changeable if, for all σ ∈ Σn and all x1, . . . , xn ∈ R,

P(X1 = x1, . . . ,Xn = xn) = P(X1 = xσ(1), . . . ,Xn = xσ(n)).
(10)

For example, independent and identically distributed ran-
dom variables are exchangeable. However, exchangeability
is weaker.

For any n ∈ N and V ⊆ Rn, let V≤ denote the set of all
ordered vectors in V , i.e.

V≤ := {v ∈V : v1 ≤ v2 ≤ ·· · ≤ vn}. (11)

3. Proof of the Inequality of Saw et al.
Before we prove our inequality, we provide our own proof
of the inequality of Saw et al. [8], as the proof in [8] lacks
many tricky details. This also allows the reader to fully
compare both proofs. Note that, for ease of presentation
and comparison to our inequality, here we only provide a
slightly weaker bound (also provided in [8, Eq. (2.5)]. For
the original (and rather complicated) bound we refer to [8].

Theorem 2 Let X1, . . . ,Xn, Xn+1 be a sequence of discrete
exchangeable random variables. Define X := 1

n ∑
n
j=1 X j,

S2 := 1
n−1 ∑

n
j=1(X j−X)2 and Q2 := n+1

n S2. Then for every
λ ≥ 1

P
(∣∣Xn+1−X

∣∣> λQ
)
≤ 1

n+1

⌊
n+1
λ 2

n

⌋
∗

(12)

where λn :=
√

nλ 2

(n−1+λ 2)
.

Note that limn→∞ λn = λ , and corresponds to what Saw
et al. [8] define as k.
Proof We define,

X∗ :=
1

n+1

n+1

∑
j=1

X j (13)

and

L2 :=
1

n+1

n+1

∑
j=1

(X j−X∗)2. (14)

Then we have,

P
(∣∣Xn+1−X

∣∣> λQ
)

(15)

= P
(
(Xn+1−X)2 > λ

2Q2) (16)

and because λ 2 = (n−1)λ 2
n

n−λ 2
n

,

= P
(
(Xn+1−X)2 >

λ 2
n (n−1)
(n−λ 2

n )
Q2
)

(17)

= P
(
(Xn+1−X)2 >

λ 2
n (n

2−1)
(n2−λ 2

n n)
S2
)

(18)

= P
(
(n2−λ

2
n n)(Xn+1−X)2 > λ

2
n (n

2−1)S2) (19)

= P
(
n2(Xn+1−X)2 > λ

2
n (n

2−1)S2 +λ
2
n n(Xn+1−X)2)

(20)

so by Eq. (58) in Lemma 5,

= P
(
n2(Xn+1−X)2 > λ

2
n (n+1)2L2) (21)

and now by Eq. (57) in Lemma 5,

= P
(
(Xn+1−X∗)2 > λ

2
n L2) (22)

= P
(∣∣∣∣Xn+1−X∗

L

∣∣∣∣> λn

)
. (23)

Now, for each j ∈ {1,2, . . . ,n+1}, define

U j := (X j−X∗)/L. (24)

Note that,

n+1

∑
j=1

U j = 0,
n+1

∑
j=1

U2
j = n+1. (25)

Also, note that the U1, . . . , Un+1 are exchangeable (but not
independent!), by Lemma 4(i). We have so far shown that

P
(∣∣Xn+1−X

∣∣> λQ
)
= P(|Un+1|> λn) . (26)

Now, let V be the finite set of values in Rn+1 that the
random variables (U1, . . . ,Un+1) can jointly take. Note that
∑

n+1
j=1 v j = 0 and ∑

n+1
j=1 v2

j = 1 for every v ∈V , by Eq. (25).
For every v ∈V≤, define

A(v) :=
⋃

σ∈Σn+1

{
U1 = vσ(1), . . . ,Un+1 = vσ(n+1)

}
. (27)



Then, by Lemma 4(ii), we know that {A(v) : v ∈V≤} is a
partition. We now apply the partition theorem to the right-
hand side of Eq. (26):

P
(∣∣Xn+1−X

∣∣> λQ
)

(28)

= ∑
v∈V≤

P(|Un+1|> λn | A(v))P(A(v)) (29)

and so, by Lemma 4(i),

= ∑
v∈V≤

n+1

∑
j=1

I|v j |>λn

n+1
P(A(v)) (30)

= ∑
v∈V≤

#{ j : |v j|> λn}
n+1

P(A(v)) (31)

and so, finally, by Lemma 3,

≤ 1
n+1

⌊
n+1
λ 2

n

⌋
∗

∑
v∈V≤

P(A(v)) (32)

=
1

n+1

⌊
n+1
λ 2

n

⌋
∗

(33)

where once more we used the fact that the A(v) form a
partition.

Lemma 3 For every m ∈ N, every u ∈ Rm such that
∑

m
i=1 ui = 0 and ∑

n
i=1 u2

i = m, and every k ≥ 1, we have
that

#{ j : |u j|> k} ≤
⌊m

k2

⌋
∗
. (34)

Proof Immediate, from [8, Lemma 2]. Note that the bound
in [8, Lemma 2] is tighter than Eq. (34). Here, we consider
the simplified bound for ease of presentation; this simplified
bound is also mentioned in [8, Eq. (2.5)].

Lemma 4 Let m ∈ N, let U1, U2, . . . , Um be any finite
sequence of discrete exchangeable random variables. Let
V denote the finite set of values in Rm that the (U1, . . . ,Um)
can jointly take, and for every v ∈V≤, we define

A(v) :=
⋃

σ∈Σm

{
U1 = vσ(1), . . . ,Um = vσ(m)

}
. (35)

Then, the following statements hold.

(i) For every v ∈V≤, and every function f , we have that

E( f (Um) | A(v)) =
1
m

m

∑
j=1

f (v j). (36)

(ii) {A(v) : v ∈V≤} is a partition.

Note that a proof of the first statement can also be found in
[6, Eq. (2.1)].
Proof (i). First note that

∑
u∈A(v)

f (um)P(U = u) (37)

= ∑
u∈A(v)

f (um)P(U1 = u1, . . . ,U j = u j, . . . ,Um = um)

(38)

and now, by exchangeability (see Theorem 1),

= ∑
u∈A(v)

f (um)P(U1 = u1, . . . ,U j = um, . . . ,Um = u j)

(39)

and now, swapping um and u j,

= ∑
u∈A(v)

f (u j)P(U1 = u1, . . . ,U j = u j, . . . ,Um = um)

(40)

= ∑
u∈A(v)

f (u j)P(U = u) (41)

Therefore,

E( f (Um) | A(v)) (42)

= ∑
u∈V

f (um)P(U = u | A(v)) (43)

=
1

P(A(v)) ∑
u∈V

f (um)P({U = u}∩A(v)) (44)

and because {U = u}∩A(v) = {U = u}whenever u∈A(v),
and /0 otherwise,

=
1

P(A(v)) ∑
u∈A(v)

f (um)P(U = u) (45)

and now because of what we proved earlier,

=
1

P(A(v)) ∑
u∈A(v)

f (u j)P(U = u) (46)

= E( f (U j) | A(v)) (47)

Taking the sum over all j of the above equality, and using
linearity of expectation, we find that

mE( f (Um) | A(v)) = E

(
m

∑
j=1

f (U j) | A(v)

)
(48)

and because if we know that A(v) has obtained, we know
the values of the U j but not their order, so consequently we
do know the value of the sum, and thereby,

=
m

∑
j=1

f (v j). (49)



This establishes the desired equality.
(ii). We have to show that⋃

v∈V≤

A(v) = Ω (50)

and that for all v and u ∈V≤ such that v 6= u, we have that

A(v)∩A(u) = /0. (51)

Consider any ω ∈ Ω, Then there is a u ∈ V such that
ω ∈ {U = u}. But obviously, {U = u} ⊆ A(v) where v is u
but with components rearranged in order. Consequently, for
every ω , there is a v ∈V≤ such that ω ∈ A(v). Therefore,⋃

v∈V≤

A(v)⊇Ω. (52)

Clearly, also A(v) ⊆ Ω for all v ∈ V≤, so both sides must
be equal.

We will prove the final part by contraposition. Consider
any v and u ∈V≤ such that

A(v)∩A(u) 6= /0. (53)

Then, there is at least one w ∈V such that

{U = w} ⊆ A(v)∩A(u). (54)

But this implies that both v and u are equal to w with
components rearranged in order. Consequently, it must hold
that v = u.

Lemma 5 Let X1, X2, . . . , Xn, Xn+1 be any sequence of
random variables. Define

X :=
1
n

n

∑
j=1

X j S2 :=
1

n−1

n

∑
j=1

(X j−X)2 (55)

and

X∗ :=
1

n+1

n+1

∑
j=1

X j L2 :=
1

n+1

n+1

∑
j=1

(X j−X∗)2. (56)

Then,

Xn+1−X∗ =
n

n+1
(Xn+1−X) (57)

(n+1)2L2 = (n2−1)S2 +n(Xn+1−X)2 (58)

and

L−
√

n−1
n+1

S≤ |Xn+1−X∗|√
n

. (59)

Equations (57) and (58) are also stated in [8], and are
used to prove Theorem 2. Equation (59) is a new result
which we will use to prove Theorem 6 further.

Proof By definition of X∗,

(n+1)(Xn+1−X∗) = (n+1)Xn+1−
n+1

∑
j=1

X j (60)

= nXn+1−
n

∑
j=1

X j (61)

and so, by definition of X ,

= n(Xn+1−X). (62)

This proves Eq. (57).
To prove Eq. (58), we will repeatedly use that, for any

sequence a1, . . . , am,

m

∑
j=1

(a j−a)2 =

(
m

∑
j=1

a2
j

)
−ma2 (63)

where a := 1
m ∑

m
j=1 a j.

Starting at the right-hand side of Eq. (58), we get

(n2−1)S2 +n(Xn+1−X)2 (64)

= (n+1)

(
n

∑
j=1

X2
j −nX2

)
+nX2

n+1−2nXn+1X +nX2 (65)

where we applied the definition of S as well as Eq. (63),
and we also expanded the square. So, expanding all terms,
we see that the term nX2 cancels out, to obtain

= (n+1)
n

∑
j=1

X2
j −n2X2

+nX2
n+1−2nXn+1X (66)

so, after rearranging the terms,

= (n+1)
n

∑
j=1

X2
j +nX2

n+1−2nXn+1X−n2X2 (67)

and now, absorbing nX2
n+1 into the sum,

= (n+1)
n+1

∑
j=1

X2
j −X2

n+1−2nXn+1X−n2X2 (68)

= (n+1)
n+1

∑
j=1

X2
j − (Xn+1 +nX)2 (69)

and now, after noting that Xn+1 +nX = (n+1)X∗,

= (n+1)
n+1

∑
j=1

X2
j − (n+1)2X2

∗ (70)

= (n+1)

(
n+1

∑
j=1

X2
j − (n+1)X2

∗

)
(71)



and now, applying the definition of L as well as Eq. (63),

= (n+1)2L2. (72)

This proves Eq. (58).
For any non-negative A and B, the following inequality

holds: √
A+
√

B≥
√

A+B. (73)

Taking A = (n2−1)S2 and B = n(Xn+1−X)2, we get, after
applying Eq. (58),√

n2−1S+
√

n|Xn+1−X | ≥ (n+1)L. (74)

Consequently, after dividing both sides by n+1 and rear-
ranging terms,

L−
√

n−1
n+1

S≤
√

n
n+1

|Xn+1−X | (75)

=
1√
n

n
n+1

|Xn+1−X | (76)

and so, by Eq. (57),

=
1√
n
|Xn+1−X∗|. (77)

This proves Eq. (59).

4. Main Result
Theorem 6 Let, X1,. . . ,Xn, Xn+1 be a finite sequence of
discrete exchangeable random variables. Let ∆ ∈ R de-
note the range of the X j i.e. ∆ := maxX j−minX j where
maxX j is the maximum value that can be attained by X j,
and minX j is the minimum value. Let X := ∑

n
j=1 X j/n, and

S2 := ∑
n
j=1(X j−X)2/(n−1). Then for every λ ≥ 0,

1
n+1

⌈
(n+1)λ 2

n

λ 2
n +1

⌉
≤ P

(
Xn+1−X

S+ ∆n√
n

< λ

)
≤ 1 (78)

where λn := n√
n2−1

λ and ∆n :=
√

n+1
n−1 ∆. Similarly, for λ ≤

0,

0≤ P

(
Xn+1−X

S+ ∆n√
n

≤ λ

)
≤ 1

n+1

⌊
n+1

λ 2
n +1

⌋
. (79)

Note that limn→∞ λn = λ , and limn→∞ ∆n = ∆.
Proof We define X∗ and L2 as before (see Eqs. (13)
and (14)).

First, recall Eq. (59):

L−
√

n−1
n+1

S≤ |Xn+1−X∗|√
n

. (80)

By definition of ∆, it follows also that |Xn+1−X∗| ≤ ∆. So,

L≤
√

n−1
n+1

S+
∆√
n
=

√
n−1
n+1

(
S+

∆n√
n

)
(81)

and consequently,√
n+1
n−1

L≤ S+
∆n√

n
. (82)

We can now start with proving the desired inequality.
First, note that, by Eq. (82),

P
(

Xn+1−X < λ

(
S+ ∆n√

n

))
(83)

≥ P

(
Xn+1−X < λL

√
n+1
n−1

)
(84)

and now applying Eq. (57) and moving L to the other side
of the inequality,

= P

(
n+1

n
Xn+1−X∗

L
< λ

√
n+1
n−1

)
(85)

= P
(

Xn+1−X∗
L

<
nλ√
n2−1

)
(86)

and, with U j := (X j−X∗)/L and λn := nλ√
n2−1

,

= P(Un+1 < λn) (87)

and, as before, applying the partition theorem,

= ∑
v∈V≤

P(Un+1 < λn | A(v))P(A(v)) (88)

and so, by Lemma 4(i),

= ∑
v∈V≤

n+1

∑
j=1

Iv j<λn

n+1
P(A(v)) (89)

= ∑
v∈V≤

#{ j : v j < λn}
n+1

P(A(v)) (90)

and so, finally, by Lemma 7,

≥ 1
n+1

⌈
(n+1)λ 2

n

λ 2
n +1

⌉
∑

v∈V≤

P(A(v)) (91)

=
1

n+1

⌈
(n+1)λ 2

n

λ 2
n +1

⌉
. (92)

For the other part when λ ≤ 0, note that

P
(

Xn+1−X ≤ λ

(
S+ ∆n√

n

))
(93)

= 1−P
(

Xn+1−X > λ

(
S+ ∆n√

n

))
(94)



= 1−P
(
−Xn+1 +X <−λ

(
S+ ∆n√

n

))
(95)

and therefore, now applying the previous result on the ran-
dom variables −X1, . . . , −Xn+1,

≤ 1− 1
n+1

⌈
(n+1)λ 2

n

λ 2
n +1

⌉
(96)

=
1

n+1

(
n+1−

⌈
(n+1)λ 2

n

λ 2
n +1

⌉)
(97)

=
1

n+1

(
n+1+

⌊
−(n+1)λ 2

n

λ 2
n +1

⌋)
(98)

=
1

n+1

(⌊
n+1+

−(n+1)λ 2
n

λ 2
n +1

⌋)
(99)

=
1

n+1

⌊
(n+1)
λ 2

n +1

⌋
. (100)

Lemma 7 For every m ∈ N, every u ∈ Rm such that
∑

m
i=1 ui = 0 and ∑

n
i=1 u2

i = m, and every k ≥ 0, we have
that

#{ j : u j < k} ≥
⌈

mk2

k2 +1

⌉
. (101)

Proof The condition holds trivially for k = 0, so without
loss of generality, we can assume that k > 0.

Consider any u ∈ Rm satisfying the conditions of the
lemma. Let J := { j : u j < k}. Note that J must be non-
empty, because at least one u j must be strictly negative,
because the u j sum to zero, and they cannot all be zero
because their squares sum to m. Let p := #J. Because J is
non-empty, we know that p≥ 1. We also use the notation
Jc = {1, . . . ,m}\ J.

Since p ∈ N, it suffices to show that

p≥ mk2

k2 +1
. (102)

First, by Jensen’s inequality, we have that

1
p ∑

j∈J
u2

j ≥

(
1
p ∑

j∈J
u j

)2

=
1
p2

(
∑
j∈J

u j

)2

(103)

and because ∑
m
j=1 u j = 0,

=
1
p2

(
∑
j∈Jc

u j

)2

≥ 1
p2

(
∑
j∈Jc

k

)2

(104)

=
1
p2 (m− p)2k. (105)

Also,
∑
i∈Jc

u2
i ≥ ∑

i∈Jc
k2 = (m− p)k2. (106)

Therefore, combining Eqs. (105) and (106), and using the
fact that ∑

m
j=1 u2

j = m,

m = p

(
1
p ∑

j∈J
u2

j

)
+ ∑

i∈Jc
u2

i (107)

≥ p
1
p2 (m− p)2k2 +(m− p)k2 (108)

=

(
m− p

p
+1
)
(m− p)k2 (109)

=
m(m− p)k2

p
. (110)

Therefore, after rearranging the terms, we find that

p≥ (m− p)k2 (111)

which implies
p(1+ k2)≥ mk2 (112)

which then evidently proves Eq. (102).

5. Discussion and Conclusion
As noted in the introduction, Cantelli’s inequality can be
used to construct a p-box [3, 4] on a random variable, pro-
vided we know its expectation and variance. Our main
result, Theorem 6, allows us to construct a p-box directly
on the quantity

Zn+1 :=
Xn+1−X

S+ ∆n√
n

. (113)

Figure 1 shows how the p-box bounds given by Theo-
rem 6 compare to the bounds from Cantelli’s inequality
given by Eq. (2). We can see that with higher number of
samples, our bounds converge to Cantelli’s bounds, as ex-
pected.

A critical difference between our bounds and the bounds
by Saw et al. [8] is that we need to add a constant offset
of ∆n√

n to the sample standard deviation. Fortunately, this
offset converges to zero as n goes to infinity. So far, we
have not found a way to avoid this offset.

Note that the bounds are achieved from the inside, i.e.
we have tighter p-boxes for smaller sample sizes. This
seems counter-intuititive at first. The reason why there is no
contradiction here is the correction term in the denominator
∆n√

n is larger for smaller sample sizes. For example, for
n = 4 this correction is approximately 0.645×∆, whereas
for n = 256 it is only 0.063×∆ (where ∆ denotes the range
of Xn).

We do note that this p-box cannot be turned into a p-
box directly on Xn+1, that is, one cannot simply substitute
observed values for X and S into this equation, as our p-box



Figure 1: Comparison of our bounds with Cantelli’s
bounds.

is fully unconditional, and does not condition on X and S.
Finding bounds on the cumulative distribution function of
Xn+1, conditional on X and S, using exchangeability only,
remains an open problem.

However, we still can use Theorem 6 to construct asym-
metric prediction intervals. From Eqs. (78) and (79) for any
`1 < `2, we can find values p1, p1, p2, and p2 such that

p1 ≤ P(Zn+1 ≤ `1)≤ p1, (114)

p2 ≤ P(Zn+1 ≤ `2)≤ p2. (115)

So, because

P(`1 < Zn+1 ≤ `2) = P(Zn+1 ≤ `2)−P(Zn+1 ≤ `1) (116)

we find the following bounds:

p2− p1 ≤ P(X + `1Sn < Xn+1 ≤ X + `2Sn)≤ p2− p1
(117)

where Sn := S+ ∆n√
n . This gives us a prediction interval on

Xn+1 with an imprecise coverage probability.
Typically, we would be interested in `1 < 0 and `2 > 0.

In that case p1 = 0 and p2 = 1, so we obtain:

p2− p1 ≤ P(X + `1Sn < Xn+1 ≤ X + `2Sn)≤ 1 (118)

so we obtain a prediction interval with guaranteed minimal
coverage probability of p2− p1.

If `2 =−`1, because of symmetry,

p2 = 1− p1 (119)

and we obtain

2p2−1≤ P
(
X− `2Sn < Xn+1 ≤ X + `2Sn

)
. (120)

In this case, however, Saw et al. [8] (i.e. Eq. (12)) provides
a tighter bound. This is similar to how the classical Cantelli
inequality compares to the classical Chebyshev inequality.
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