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Abstract
I prove a connection between the logical framework
for intuitive probabilistic reasoning (IPR) introduced
by Crane (2017) and sets of probabilities. More specif-
ically, this connection provides a straightforward in-
terpretation of imprecise probabilities as subjective
credal states, giving a formal semantics for Crane’s
IPR proposal.
Keywords: imprecise probability, credence, credal
state, intuitionistic logic, Martin-Löf type theory, evi-
dence, subjective belief, justified belief

1. Introduction

In traditional subjectivist approaches to probability, degrees
of belief are represented by a probability function (the
Bayesian view (de Finetti, 1937)), as a non-additive belief
function (as in the Dempster–Shafer theory (Shafer, 1976)),
or more generally as a set of probabilities (in imprecise
probability (Walley, 1990)). While the scope of imprecise
probability extends beyond mere sets of probability, I focus
here on the representation of subjective credal states by
sets of probabilities, which is sufficient to demonstrate to
core ideas of this theory while avoiding technical issues.1

In what follows, I shall refer to this paradigm of subjective
belief generically as the IP framework.

Here I show a connection between the above IP frame-
work and a new framework for subjective probability judg-
ment, which I call intuitive probabilistic reasoning (IPR).
The IPR formalism was introduced by Crane (2017), has
been previously applied in a formal logical system for the
notion of ‘typicality’ (Crane and Wilhelm, 2019), and is ex-
panded in Crane (forthcoming) as a logical framework for
intuitive reasoning under uncertainty. The IPR formalism
is independent of earlier frameworks of probability, intro-
ducing several new concepts, many of which lie beyond the
scope of this brief note. Most germane to this article is its
formal representation of subjective beliefs as mathemati-
cal objects other than conventional (imprecise) probability
functions. I provide further technical preliminaries for this
formalism in Section 2.

Within the IP paradigm above, subjective credences boil
down to one or more functions that assign to any claim a

1. The results given below can be extended with little difficulty by
interpreting every instance of ‘P’ as a Choquet capacity of order 2
instead of as a probability function.

numerical degree of belief. In IPR, by contrast, probabilities
are formalized topologically, most precisely as a homotopy
type (i.e., a topological space up to homotopy equivalence)
whose structure captures the relationships among different
pieces of evidence for a claim. I demonstrate this distinction
with the following example.

Within the Bayesian paradigm, an agent’s degree of be-
lief about a claim A reflects a disposition toward betting on
the truth of A. That is, an agent claiming P(A) = p would
pay up to $p to buy a contract that pays $1 if A is true and
$0 if A is false, or would alternatively accept as little as
$(1− p) to sell a contract which requires the agent to pay
out $1 if A is true and $0 if A is false. Within the more
general IP framework, in which the agent’s credence is
given by a set of probabilities B, a betting quotient can
be elicited by computing the lower and upper credences,
respectively:

P∗(A) = inf
P∈B

P(A) and

P∗(A) = sup
P∈B

P(A).

In the betting interpretation, the agent would be willing to
pay up to P(A) to buy a contract on A or accept payment as
low as P∗(A) to sell a contract on A, and would be unwilling
to buy or sell for a price between P(A) and P∗(A).

In the IPR paradigm, an agent’s belief about A is commu-
nicated as a judgment about evidence supporting the claim
that ‘A is probable’. IPR thus views probability as the basis
for belief in the sense that belief in a claim is justified just
in case it is deemed to be probable.2 The ‘probability of A’
in this setting is interpreted qualitatively, in the same sense
that the terms ‘probable’, ‘likely’, and such are invoked
in everyday vernacular. More formally, the perspective of
an individual agent is represented by Bel(A), a topological
space (most precisely homotopy type) whose points corre-
spond to pieces of evidence that would lead the agent to feel
justified in making the judgment that ‘A is probable’, and
whose topological structure (i.e., paths between points) rep-
resents the agent’s judgment about the relationship between
different pieces of evidence for A. The notation Bel(A) sug-
gests the interpretation of a body of evidence for A, in the
sense that the subject is justified in believing A whenever he

2. N.B. This association between justified beliefs and probability judg-
ments reflects an internal coherence of the agent rather than any claim
about what is or is not justified or probable in an objective sense.
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comes into possession of a piece of such evidence. While
possession of any evidence for A may result in the same
epistemic stance (namely belief in A), different justifica-
tions of belief a : Bel(A) and a′ : Bel(A) constitute different
beliefs, both formally and informally. Thus, instead of sum-
marizing belief in A as P(A) = p (a betting quotient), the
agent reports a judgment of the form a : Bel(A), which is
translated as ‘A is probable on the basis of evidence a’, or
alternatively ‘I believe A is probable because of a’.

More concretely, let A denote the claim that ‘it is cur-
rently raining in New York City’. In the Bayesian paradigm,
the agent who reports P(A) = 0.20 is willing to offer as
high as 4-to-1 odds for a bet that loses if it is raining, or
accept odds of 4-to-1 or greater for a bet that wins if it
is raining. In the IPR paradigm, a concrete judgment of
the form a : Bel(A) may be ‘I believe it is raining in New
York City because the weather report forecasted an 80%
chance of rain today’. A different judgment of the same
claim would be ‘I believe it is raining because I saw a
man carrying an umbrella’. In both cases, the claim (‘it
is raining’) is the same but the content of the beliefs (a
weather report versus visual confirmation) differ, and thus
the beliefs themselves also differ.

Crane (2017) proposed the latter as a logical framework
for intuitive, probabilistic reasoning because it aims to for-
malize the process by which individuals reason about un-
certain claims by justifying, explaining, or otherwise ratio-
nalizing their beliefs, not by quoting a betting quotient. In
the above statement, the agent offers a reason for believing
A, i.e., that the weather report forecasted an 80% chance of
rain. This reason is not presented as proof that it is raining
but rather as justification for why the agent feels justified
in believing that it is probably raining. The agent who saw
someone carrying an umbrella also holds the belief that it
is raining, but for a different reason. In IPR, these reasons
are the content of probability judgments.

As I have presented them here, the IP and IPR frame-
works concern probabilistic judgments of a different nature.
The former summarizes belief quantitatively in terms of a
willingness to bet, while the latter expresses belief qualita-
tively by providing the reason that an agent feels justified in
believing something. The key difference lies in the content
which is communicated by the belief: in IP, the precise odds
are stated but the reason for stating those odds is not; in
IPR, the precise reason is given but the odds are not.

Either representation may be appropriate depending on
the circumstances, and I will not discuss here which of these
representations is preferred in any given context. I only note
that statements of the latter type, which report a qualitative
reason for belief without a precise numerical quantification,
are widespread in everyday common sense reasoning as
well as in justifying scientific hypotheses, mathematical
conjectures, legal arguments, and the like. Rather than focus
on the differences between these formalisms, I instead show

a connection between them in which the syntax of IPR,
which regards Bel(A) as a body of evidence formalized
as a topological space, is interpreted semantically as a set
of probabilities, as in IP. These semantics suggest IPR as
a potential logical foundation for imprecise probability
that is autonomous from the traditional measure-theoretic
foundation of probability.

1.1. Background and Prior Work

The relationship between probability and justified belief has
a long history in epistemology, with earlier formal systems
of belief given by Dempster–Shafer theory (Shafer, 1976),
possibility theory (Zadeh, 1978; Dubois and Prade, 1988),
belief revision theory (Alchourrón et al., 1985), and several
others, e.g., Kyburg and Teng (2012). Each of these earlier
treatments has its merits, and the reader familiar with this
literature will easily see potential connections between the
model proposed below and pieces of these earlier theories.
In particular, the framework below can easily be recast
in terms of Dempster–Shafer belief functions without any
change in the final results. Further connections to these
other frameworks, most notably the AGM postulates for
belief revision, are left as a topic for future work.

Though intimately related, the treatment given below
differs substantially from these earlier treatments, most ob-
viously in its expression in terms of Martin-Löf type theory.
To my knowledge, this is the first intuitionistic formaliza-
tion of probability that is native to MLTT. There have been
earlier category theoretic treatments of probability (Giry,
1982), but such work deals primarily with a reexpression
of traditional probability within category theory. IPR, by
contrast, begins with a primitive conception of probabilistic
reasoning as a process that gives reasons for belief. This
conception leads to formal axioms and, thus, the formal
system of IPR, without any reference to the classical pic-
ture. Only after establishing the formalism of IPR does the
connection to classical probability emerge, the topic of this
paper.

Full understanding of the IPR formalism requires
considerable technical background in intuitionistic logic
(Brouwer, 1981; Heyting, 1971; Dummett, 2000), Martin-
Löf type theory (Martin-Löf, 1984, 1987, 1996), and homo-
topy type theory (Univalent Foundations Program, 2013;
Tsementzis, 2019; Kapulkin and Lumsdaine, 2011), for
which there is insufficient space in this brief note. For fur-
ther technical details about IPR, the reader is referred to the
above references and to the original article (Crane, 2017).
Before showing the connection between IP and IPR, I give
a brief introduction to necessary formal aspects of IPR in
the next section.



2. Preliminaries
I restrict here to the minimal fragment of Martin-Löf type
theory (MLTT) necessary to communicate the main idea
behind IPR. Readers unfamiliar with type-theoretic nota-
tion can safely interpret the syntax set-theoretically, reading
‘A : Type’ as ‘A ∈ Set’ (A is a set) and ‘a : A’ as ‘a ∈ A’ (a
is an element of A). More important than the formalism in
type theory is the distinction between the claim itself (de-
noted A) and an assertion of knowledge or belief regarding
the claim (denoted a : A or a : Bel(A), respectively).

In the fragment of MLTT used here, there are two prim-
itive statements, which are called judgments and which
correspond to types and terms, respectively:

judgment formal meaning interpretation
A : Type A is a Type A is a claim
a : A a is a term of type A a is evidence for A

In the example of the previous section, A is the claim ‘it
is raining in New York City’ and a term a : A is a reason
for believing A, e.g., ‘because I see through the window
that it is raining’. This interpretation of types as claims
and terms as proofs has a long history at the intersection
of logic and type theory and is called the Curry–Howard
propositions-as-types interpretation (Curry and Feys, 1959;
Howard, 1969).

In the IPR framework, we expand upon the Curry–
Howard interpretation by associating to each claim A,
whose terms are evidence that A is true, a claim Bel(A),
whose terms are evidence that A is probable. So, in our run-
ning rain example, a : A is a justification for believing that
A is true whereas a′ : Bel(A) is a justification for believing
that A is probable or likely (e.g., because the weatherman
forecasted an 80% chance of rain).

Finally, by the intuitionistic nature of MLTT, it is in-
tended that judgments are interpreted relative to the con-
text in which the agent makes it. Clearly, an agent who
has knowledge of the 80% weather forecast will be in a
different frame of mind with respect to the claim of rain
than someone without knowledge of the forecast, and so
the logic ought to reflect this difference in perspective.
When expressing logical deductions formally, we write
capital Greek letters ∆,Γ,Ξ, . . . to denote a generic con-
text in which a judgment is being made. Altogether, every
judgment in MLTT is expressed in the form:

Context ∆ ` Judgment J ,

which is interpreted to mean ‘Judgment J is justified in
Context ∆’, where the judgment has the form of one of the
two primitive judgments written above.

3. Axioms of Justified Belief
Crane (2017) suggests two core axioms of intuitive proba-
bilistic reasoning about evidence:

(i) Knowledge justifies belief: for any claim A, A →
Bel(A).3

(ii) If A implies B then justified belief in A justifies belief
in B: for any claims A and B,

(A→ B)→ (Bel(A)→ Bel(B)).

In the type-theoretic framework, the justification (i.e., the
term) is a substantive component of any judgment, making
the logical implications above insufficient for expressing
these axioms. Believing that it is raining on the basis of a
weather forecast is different than believing on the basis of
seeing someone carrying an umbrella. To this end, the treat-
ment of logical implication A→ B marks one of the main
differences between classical logic and intuitionistic type
theory. Classically, the implication A→ B is the material
conditional ¬A∨B, read as if A then B. In the construc-
tive logic of type theory, however, the implication A→ B
requires that a witness for B can be explicitly constructed
from any witness of A. Thus, in MLTT, logical implication
A→ B is formally a function f : A→ B with domain A
and codomain B which can be applied to any justification
of A (i.e., a : A) in order to obtain a justification of B (i.e.,
f (a) : B).

The formal axiomatization of IPR (with Type written as
Claim for emphasis) is expressed by the following three
logical rules:

Formation rule:

∆ ` A : Claim
∆ ` Bel(A) : Claim

(Bel-form) (1)

Semi-formal: If ‘A is true’ is a valid claim in context ∆,
then ‘Belief in A’ is a valid claim in ∆.

In the above semi-formal explanation, the description of
A as being ‘a valid claim’ in context ∆ reflects Martin-Löf’s
intuitionistic conception of meaning:

“the meaning of a proposition [...] is determined
by that which counts as a verification of it.”
(Martin-Löf, 1996, p. 27)

With this perspective, it is implicit to the assertion that ‘A
is a claim’ that the claim has meaning, in the sense that
the subject making the assertion knows what counts as a
verification of the claim. It is in this sense that a claim is

3. Though not critical to the formalism it is worth nothing again that all
claims in IPR are intuitionistic, and thus are relative to an agent’s sub-
jective disposition. In particular, I use the term ‘knowledge’ here in
its non-technical sense, as when someone claims to know something,
i.e., believes it to be true, on the basis of information. Knowledge
is not restricted, as some epistemologists insist, to ‘justified true be-
lief’, as in the formal system used here assumes neither a formal nor
informal notion of truth independently of the agent’s mental state.



considered valid. I will not belabor this point any further
here; see Martin-Löf (1996) for further discussion.4

Introduction rule:

∆ ` A : Claim
∆,a : A ` evidA(a) : Bel(A)

(Bel-intro) (2)

Semi-formal: Proof that A is true provides justification
for belief in A.

Elimination rule:

∆ ` A : Claim
∆ `C : Claim

∆,a : A ` d(a) : C
∆,x : Bel(A) ` impd(x) : Bel(C)

(Bel-elim) (3)

Semi-formal: If a proof of C can be constructed from
any proof of A in context ∆, then
justification for believing C can be
derived from any justification for believing
A in ∆.

In some applications, it may also be appropriate to add
the following axiom about belief in the logical contradic-
tion, represented by the type 0 : Type in MLTT.

0-rule:

∆ ctx
∆,x : Bel(0) ` σ(x) : 0

(Bel-0) (4)

Semi-formal: Belief in a vacuous claim is not justified
in any context.

From these axioms alone it is possible to derive a number
of intuitive results about the relationship between beliefs
about individual claims and beliefs about their conjunction,
disjunction, and negation. These results are deferred to
Crane (2017). Here we focus on a specific interpretation of
these axioms in terms of imprecise probabilities.

4. Connection to Imprecise Probabilities
For a set Ω, we let P(Ω) denote the set of all probability
spaces with base set Ω. In particular, the elements of P(Ω)
are triples (Ω,F ,P), where F is a σ -algebra on Ω and
P is a (countably additive) probability function, i.e., a set
function F → [0,1] satisfying

4. Notice that because Bel(A) : Claim for every A : Claim, it is permis-
sible to iterate the Bel operator over beliefs, to obtain Bel(Bel(A))
(beliefs about beliefs), Bel(Bel(Bel(A))) (beliefs about beliefs about
beliefs), and so on. The witnesses of these claims can be regarded as
higher-order pieces of evidence, i.e., evidence of evidence, evidence
of evidence of evidence, and so on, giving rise to a formal theory of
higher-order belief. While this is an attractive feature of IPR with
a number of potential applications, I don’t discuss this any further
here. Possible connections to Dorst’s recent work on higher-order
uncertainty (Dorst, forthcoming) are left for future research.

(I) P(Ω) = 1,

(II) P(A)≥ 0 for all A ∈F , and

(III) P(∪∞
i=1Ai) = ∑

∞
i=1 P(Ai) for mutually disjoint

A1,A2, . . . ∈F .

Condition (III) can be significantly weakened, e.g., to finite
additivity or superadditivity, without changing the main
result below.

We interpret Ω as a universe of possible states of the
world, so that each claim A about the universe is repre-
sented by a subset Ã⊆Ω consisting of all worlds at which
A holds. A particular (Ω,F ,P)∈P(Ω) can be interpreted
as a subjective disposition toward the states of universe Ω,
with Ã ∈F indicating that the subject has a disposition
about A (i.e., assigns a credence to Ã) and P(Ã) recording
the credence. The function P represents credence from a
particular frame of reference. A credal state is a set of
credences S ⊆P(Ω), and we say that an agent occupies
credal state S just in case the agent’s credence lies in S .
Singleton sets thus correspond to credal states that repre-
sent a precise credence P, but it is often possible to deduce
how an agent would reason even without precise knowledge
of their credence function. Knowing that their credences
lie within a sufficiently broad credal state is often sufficient.
Although this is an intuitive occurrence in everyday rea-
soning, formal treatments of subjective belief often require
that an agent holds beliefs (precise or imprecise) about
many more claims than necessary in a given situation. The
connection to IPR may shed some light on this disconnect
between formalism and practice.

In connecting credal states to IPR, a credal state S for
which Ã ∈F for every (Ω,F ,P) ∈S is one in which A
is a valid claim, in the sense that an agent with any one
of the dispositions in S assigns credence to A, and S for
which P(A) = 1 for every (Ω,F ,P) ∈S is a credal state
representing belief that ‘A is true’. We extend this setup to
include beliefs about the probability of A by adding a set
B̃el(A) to F for each Ã ∈F and specifying a threshold

1/2 < t ≤ 1 such that P(B̃el(A)) = 1 whenever P(Ã)≥ t. A
credal state S for which P(A)≥ t for every (Ω,F ,P)∈S
thus represents the belief that ‘A is probable’, in the sense
that an agent possessing any credence in S believes that
A is sufficiently probable. An agent whose beliefs follow
this thresholding protocol is said to obey the Lockean thesis
(Foley, 2009).

We connect the semantics of IP with the syntax of IPR
as follows. First, we write ∆ ctx to denote that ∆ is a well-
formed context according to the rules of MLTT. (For a full
list of rules of MLTT, see either Univalent Foundations Pro-
gram (2013) or the appendix of Kapulkin and Lumsdaine
(2011).) For any Ã⊆Ω, we define

FA := {(Ω,F ,P) ∈P(Ω) | Ã ∈F}



PA := {(Ω,F ,P) ∈P(Ω) | Ã ∈F and

P(Ã) = 1}
PBel(A) := {(Ω,F ,P) ∈P(Ω) | Ã ∈F and

P(Ã)≥ t},

for fixed 1/2 < t ≤ 1. When translating the syntax of IPR
into the semantics of IP, we interpret the turnstile ‘`’ as ‘⊆’
and commas on the left side of the turnstile as ∩. With this
translation, the basic judgments of MLTT are interpreted
as:

Syntax (IPR) Semantics (IP)
∆ ctx ∆⊆P(Ω)
∆ ` A : Type ∆⊆FA
∆ ` a : A ∆⊆ PA
∆ ` a′ : Bel(A) ∆⊆ PBel(A).

By this correspondence,

• a well-formed context ∆ ctx in IPR corresponds to a
credal state ∆ ⊆P(Ω). In the former, ∆ is the per-
spective from which an agent makes a judgment; and
in the latter, this perspective corresponds to the set
of credences that represents the agent’s possible cre-
dences;

• a judgment ∆ ` A : Claim in IPR is interpreted as ‘A
is a valid claim in context ∆’, which in IP corresponds
to a credence lying in a credal state ∆⊆FA for which
every member assigns credence to A;

• the assertion ∆ ` a : A in IPR is interpreted as ‘a is
evidence for A in context ∆’, which in IP corresponds
to a credence lying in a credal state ∆⊆ PA for which
every member assigns credence 1 to A; and

• the assertion a′ : Bel(A) in IPR is interpreted as ‘a′ is
evidence that A is probable in context ∆’, which in IP
corresponds to a credence lying in a credal state ∆⊆
PBel(A) for which every member assigns sufficiently
high credence to A, by the Lockean thesis.

To establish IP as a semantics for IPR, I prove soundness
of the above translation in terms of the rules for MLTT and
the type Bel defined above. The syntax of MLTT has addi-
tional type formers ×, +, and 0 corresponding to conjunc-
tion ∧, disjunction ∨, and the contradiction ⊥, respectively.
In particular, for A,B : Claim, A×B : Claim is the claim
‘A and B’, A+B : Claim is ‘A or B’, and 0 : Claim is the
vacuous claim. The full translation from MLTT into set
theory is given in the table below.

MLTT set theory
∆ ctx ∆⊆P(Ω)

A : Type FA
a : A PA
` ⊆

A×B Ã∩ B̃
A+B Ã∪ B̃

0 /0

Theorem 1 IP semantics is sound for IPR.

To prove soundness, we interpret each of the rules for the
×, +, 0, and Bel types in IPR into the semantics of sets of
probability functions and show that the rule holds. We begin
by specifying the interpretation of the rules for contexts. In
the following displays, the lefthand side shows the rules
of MLTT (see Univalent Foundations Program, 2013) and
the righthand side is the translation into IP according to the
above protocol.

• Structural rules, •-ctx:

Syntax Semantics

• ctx P(Ω)⊆P(Ω)

Holds trivially: Every set is a subset of itself.5

• Structural rules, ext-ctx

Syntax Semantics
∆ ctx

∆ ` A : Claim
∆,x : A ctx

∆⊆P(Ω)
∆⊆FA

∆∩PA ⊆P(Ω)

By assumption ∆ ⊆ P(Ω), and thus ∆∩ S ⊆ ∆ ⊆
P(Ω) for all other sets A. Instantiating S = PA gives
the result.

• Structural rules, ax-ctx

Syntax Semantics
∆,a : A,Ξ ctx

∆,a : A,Ξ ` a : A
∆∩PA∩Ξ⊆P(Ω)

∆∩PA∩Ξ⊆ PA

By assumption, ∆∩PA∩Ξ is a set, and for any sets S
and T it is always the case that S∩T ⊆ S, yielding the
result.

5. This rule states that there is an initial ‘empty’ context •. In the
semantics, the context places constraints on an agent’s credal states,
and thus this initial ‘empty’ context corresponds to a context without
constraints, i.e., ∆≡P(Ω).



It follows from these structural rules for contexts that
every context is a finite list of judgments of the form

(a1 : A1, . . . ,an : An) ctx,

which in our semantic interpretation translates to

PA1 ∩·· ·∩PAn ⊆P(Ω).

Thus, in our semantic treatment, every context ∆ can be
expressed in the form

∆≡ PA1 ∩·· ·∩PAn (5)

for some finite list A1, . . . ,An ⊆Ω. This specific represen-
tation will become useful when we prove soundness for the
coproduct and Bel-types below.

We next prove soundness for the product type.

• Product type, formation rule:

Syntax Semantics
∆ ` A : Claim
∆ ` B : Claim

∆ ` A×B : Claim

∆⊆FA
∆⊆FB

∆⊆FA×B

Let (Ω,F ,P) ∈ ∆ so that Ã, B̃ ∈ F . Then Ã×B ≡
Ã∩ B̃ ∈F because F is an algebra on Ω and thus is
closed under intersection. It follows that ∆ ⊆FA×B,
as claimed.

• Product type, introduction rule:

Syntax Semantics
∆ ` A : Claim
∆ ` B : Claim

∆,a : A,b : B ` (a,b) : A×B

∆⊆FA
∆⊆FB

∆∩PA∩PB ⊆ PA×B

By the formation rule, ∆ ⊆FA and ∆ ⊆FB implies
∆ ⊆ FA×B, so that any (Ω,F ,P) ∈ ∆ has Ã∩ B̃ ∈
F because F is an algebra. Furthermore, assume
(Ω,F ,P) ∈ ∆∩PA∩PB so that by finite additivity of
probability functions, we have

P(Ã∩ B̃) = P(Ã)+P(B̃)−P(Ã∪ B̃)

= 1+1−P(Ã∪ B̃).

Finally, since 0 ≤ P(S) ≤ 1 for all S ∈F , we must
have P(Ã∪ B̃)≤ 1, implying P(Ã∩ B̃)≥ 1, and thus
P(Ã∩ B̃) = 1, as claimed.

• Product type, elimination rule:

Syntax Semantics
∆ ` A : Claim
∆ ` B : Claim

∆,a : A,b : B `C : Claim
∆,a : A,b : B ` d(a,b) : C

∆,z : A×B ` splitd(z) : C

∆⊆FA
∆⊆FB

∆∩FA∩FB ⊆FC
∆∩PA∩PB ⊆ PC

∆∩PA×B ⊆ PC

For (Ω,F ,P) ∈ ∆∩PA×B ⊆ PA×B, we have

min(P(Ã),P(B̃))≥ P(Ã∩ B̃) = 1;

whence P(Ã) = P(B̃) = 1 and (Ω,F ,P) ∈ ∆∩PA ∩
PB. By assumption, we have ∆∩PA∩PB ⊆ PC so that
(Ω,F ,P) ∈ PC, and thus ∆∩PA×B ⊆ PC, as claimed.

Before we move on to discuss the coproduct type, we can
use the rules for product type to deduce that PA∩PB = PA×B
for all A,B : Claim. From this and the representation of
contexts in the form (5), we can equivalently express any
context as

∆≡ PA1×···×An , (6)

which can more compactly be written as

∆≡ PΦ

for some Φ̃ ∈ F , because Ã1 ∩ ·· · ∩ Ãn ∈ F whenever
Ã1, . . . , Ãn ∈ F . This representation plays a role in our
proof of soundness for the coproduct elimination rule.

• Coproduct type, formation rule:

Syntax Semantics
∆ ` A : Claim
∆ ` B : Claim

∆ ` A+B : Claim

∆⊆FA
∆⊆FB

∆⊆FA+B

Let (Ω,F ,P) ∈FA∩FB, then Ãc ∈F , B̃c ∈F , and
Ã∩ B̃∈F , because F is an algebra. Finally, by defini-
tion we have Ã+B≡ Ã∪B̃≡ (Ãc∩B̃c)c ∈F , because
F is a σ -algebra and is closed under complementation
and intersection. It follows that (Ω,F ,P) ∈FA+B.

• Coproduct type, left introduction rule:

Syntax Semantics
∆ ` A : Claim
∆ ` B : Claim

∆,a : A ` inl(a) : A+B

∆⊆FA
∆⊆FB

∆∩PA ⊆ PA+B

By assumption, ∆ ⊆ FA ∩FB implies that any
(Ω,F ,P) ∈ ∆ assigns credence to A and B. The fi-
nal premise ∆∩PA implies that P(Ã) = 1. By the pre-
ceding formation rule, we have Ã∪ B̃ ∈F , and so P



assigns credence to it, and since P is increasing we
must have P(Ã∪ B̃)≥ P(Ã) = 1; whence P∈ PA+B, as
claimed.

The same argument carries through to prove the right
introduction rule for the coproduct type.

• Coproduct type, elimination rule:

Syntax Semantics
∆ ` A : Claim
∆ ` B : Claim

∆,a : A,b : B `C : Claim
∆,a : A ` dl(a) : C
∆,b : B ` dr(b) : C

∆,z : A+B ` casedl ,dr(z) : C

∆⊆FA
∆⊆FB

∆∩PA∩PB ⊆FC
∆∩PA ⊆ PC
∆∩PB ⊆ PC

∆∩PA+B ⊆ PC

Here we use the representation in (6) to express
∆≡ PΦ for some Φ≡ A1×·· ·×An, so that the third
and fourth assumptions and the conclusion on the
righthand side, respectively, become

PΦ×A ⊆ PC, PΦ×B ⊆ PC and PΦ×(A+B) ⊆ PC.

By assumption, we have PΦ×A ⊆ PC. Thus, any P that
satisfies P(Φ̃∩ Ã) = 1 must also satisfy P(C̃) = 1,
which is possible only if Φ̃∩ Ã⊆ C̃. For suppose that
there is some ω ∈ Φ̃∩ Ã for which ω 6∈ C̃. Then there
is a measurable space (Ω,Fω ,Pω) with σ -algebra
Fω = {Ω, /0,{ω},Ω \{ω}} and Pω the atomic mea-
sure at {ω} (i.e., Pω({ω})= 1). With ω ∈ Φ̃∩Ã, it fol-
lows that Pω(Φ̃∩ Ã)≥ Pω({ω}) = 1 and Pω(C̃) = 0,
contradicting the assumption. By applying an analo-
gous argument to the fourth assumption, we must have
Φ̃∩ Ã⊆ C̃.

Finally, note that Φ̃∩ (Ã∪ B̃)≡ (Φ̃∩ Ã)∪ (Φ̃∩ B̃), so
that the conclusion reads

P(Φ×A)+(Φ×B) ⊆ PC.

Now, suppose (Ω,F ,P) ∈ P(Φ×A)+(Φ×B) so that
P((Φ̃∩ Ã)∪ (Φ̃∩ B̃)) = 1. Then by the preceding ar-
gument we have Φ̃∩ Ã ⊆ C̃ and Φ̃∩ B̃ ⊆ C̃, which
implies

(Φ̃∩ Ã)∪ (Φ̃∩ B̃)⊆ C̃.

It follows that

1 = P((Φ̃∩ Ã)∪ (Φ̃∩ B̃))≤ P(C̃);

whence, P(C̃) = 1 and (Ω,F ,P) ∈ PC, as claimed.

We next discuss the 0 type.

• 0-type, formation rule:

Syntax Semantics
∆ ctx

∆ ` 0 : Claim
∆⊆P(Ω)

∆⊆F0

As any σ -algebra contains 0̃ = /0 it is immediate that
P(Ω) =F0 = {(Ω,F ,P)∈P(Ω) | /0∈F} and the
conclusion follows.

• 0 type, elimination rule:6

Syntax Semantics
∆ ` A : Claim

∆,x : 0 ` efqA(x) : A
∆⊆FA

∆∩P0 ⊆ PA

The subset P0 ⊆P(Ω) consists of all (Ω,F ,P) that
assign credence 1 to /0. Since P( /0) = 0 for any prob-
ability function, it follows that P0 = /0 and ∆∩P0 ≡
/0⊆ PA holds trivially.

Finally, for the Bel-type.

• Belief type, formation rule:

Syntax Semantics
∆ ` A : Claim

∆ ` Bel(A) : Claim
∆⊆FA

∆⊆FBel(A)

We require that B̃el(A) is a measurable set whenever
Ã is, so that the conclusion immediately follows by
our extended definition of P(Ω).

• Belief type, introduction rule:

Syntax Semantics
∆ ` A : Claim

∆,a : A ` evidA(a) : Bel(A)
∆⊆FA

∆∩PA ⊆ PBel(A)

As any (Ω,F ,P) ∈ ∆ ∩ PA must satisfy P(A) = 1

and it is required that B̃el(A) ⊇ Ã, we must have

P(B̃el(A)) ≥ P(Ã) = 1, and (Ω,F ,P) ∈ PBel(A), as
claimed.

• Belief type, elimination rule:

Syntax Semantics
∆ ` A : Claim
∆ ` B : Claim

∆,a : A ` d(a) : B
∆,x : Bel(A) `
impd(x) : Bel(B)

∆⊆FA
∆⊆FB

∆∩PA ⊆ PB

∆∩PBel(A) ⊆ PBel(B)

6. Here efq stands for ex falso quodlibet (“from falsehood, anything
follows”). Formally, this rule says that given any A : Claim and a
proof x : 0 of the contradiction it is possible to construct a proof
efqA(x) : A.



By (6), we can express the second assumption as
PΦ∩A ⊆ PB for some Φ̃ ⊆ Ω, from which it follows
that Φ̃∩ Ã ⊆ B̃ by an argument already given above
when proving the elimination rule for the coproduct
type. Thus, we can rewrite the conclusion as

PΦ×Bel(A) ⊆ PBel(B).

Let (Ω,F ,P) ∈ PΦ×Bel(A). Then P(Φ̃∩ B̃el(A)) = 1,

and in particular P(Φ̃) = 1 and P(B̃el(A)) = 1, imply-
ing that P(Ã)≥ 1− t.

By definition we have

P(Φ̃∩ Ã) = P(Φ̃)+P(Ã)−P(Φ̃∪ Ã)

≥ P(Φ̃)+(1− t)−1
= 1− t.

By assumption, we have P(B̃)≥P(Φ̃∩ Ã)≥ 1−t, and

P(B̃el(B)) = 1 by definition.

• Belief type, 0 rule:

Syntax Semantics
∆ ctx

∆,x : Bel(0) ` σ(x) : 0
∆⊆P(Ω)

∆∩PBel(0) ⊆ P0

Every probability function assigns 0 credence to 0̃≡ /0.
Thus there does not exist any P for which P( /0)≥ 1−t,
and it follows that ∆∩PBel(0) ⊆ P0 ≡ /0, as required.

5. Additional Results and Further Concepts
The above framework facilitates a number of intuitive prob-
abilistic notions, such as independence and conditional
probability, and elicits several additional results as theo-
rems. Though proofs of these theorems are straightforward,
they require a working knowledge of MLTT and homotopy
type theory (HoTT) which I have not assumed in this semi-
expository piece. I instead state these consequences below
and discuss their significance in the broader scope of IPR
and IP. A more complete treatment of these results can be
found in Crane (2017, 2019+).

The first few theorems concern the dependence between
beliefs in conjunction and disjunction, namely

Bel(A×B)→ Bel(A)×Bel(B)→ (7)
→ Bel(A)+Bel(B)→ Bel(A+B).

In the language of justified belief this result can be under-
stood as follows. Belief in a conjunction warrants belief in
each of the conjuncts (Bel(A×B)→ Bel(A)×Bel(B)) and
(separate) beliefs in any two claims warrants belief in either

one of those claims (Bel(A)×Bel(B)→ Bel(A)+Bel(B)).
Finally, belief in either of two claims warrants belief in at
least one of the claims (Bel(A)+Bel(B)→ Bel(A+B)).

Note that the arrows do not reverse in general. To un-
derstand why, pay close attention to the interpretation of
judgments in terms of justified belief, and in particular the
role of justification as the content of belief. A claim that
one believes A and B jointly, i.e., a judgment a : Bel(A×B),
is a claim that a provides coherent evidence for A and B, in
the sense that a constitutes justification for believing both
claims. A claim that one believes A and B separately, i.e.,
a : Bel(A)×Bel(B), is weaker, as it asserts that one has
justification for believing A and justification for believing
B, but that the individual justifications may not cohere into
a single piece of evidence that justifies belief in both.

The lottery paradox is a well known instance where the
reverse implication is known to fail. To wit, consider a
lottery with 1000 equiprobable tickets and Ai : Claim de-
noting the claim that the i ticket is the winner. A Lockean
with threshold t = 0.99 is justified in believing that each
of the tickets is a loser as each has a 0.999 marginal prob-
ability of losing, but this does not warrant belief that all
tickets will lose, i.e., Bel(¬A1×·· ·×¬A1000). This result
is made formal in the following consequence for universal
and existential quantification in IPR:

Bel(∏
a:A

B(a))→∏
a:A

Bel(B(a))

∑
a:A

Bel(B(a))→ Bel(∑
a:A

B(a).

As above, the arrows to not reverse in general.

5.1. Conditional Belief

Conditional beliefs are formally defined in IPR as a de-
pendent type. For any A,B : Claim, there is a type former
Bel(B | −) : Bel(A)→ Claim that maps each reason for
believing A to a conditional claim for believing B. More
precisely, this type is defined for each a : Bel(A) by

Bel(B | a) :≡ ∑
x:Bel(A×B)

(impprA
(x) =Bel(A) a), (8)

where impprA
: Bel(A×B)→ Bel(A) is the canonical map

derived from the first implication in (7) and, in general,
a =A a′ : Claim denotes the claim that a : A and a′ : A are
identical pieces of evidence for A : Claim.

We have not covered the necessary concept of identity
types to explain this definition formally, but the concept
has the following intuitive interpretation. Each term b :
Bel(B | a) is a composite belief consisting of a justification
x : Bel(A×B) for joint belief in both A and B and a claim
that this justification is coherent with the conditioning piece
of evidence a : Bel(A), that is, the support of A implied by
x, via impprA

(x) : Bel(A), is identical to the support for



A provided by a : Bel(A). This is precisely what it means
to have a conditional belief in B given a belief a : Bel(A)
in A. By appeal to HoTT’s univalence axiom (Univalent
Foundations Program, 2013), one can prove an analog to
the classical law of total probability,

Bel(A×B)' ∑
a:Bel(A)

Bel(B | a),

where ‘'’ stands for homotopy equivalence between the
homotopy types representing the claims on left and right.

5.2. Independence

By analogy to the conventional definition of independence
for probability functions, i.e., P(A∩B) = P(A)P(B), we
define independence of claims A,B : Claim in IPR by

Bel(A×B)' Bel(A)×Bel(B). (9)

By comparison to (7), independence of A and B is a strong
assertion which implies that justified belief in each of A and
B individually warrants joint belief in A and B. Indeed, that
suits the intuitive notion of independence: as any reasons
for believing claims that are independent cannot interfere
with one another, the two separate reasons are sufficient for
believing the joint claim. Further extensions to conditional
independence and connections to other notions from tradi-
tional probability calculus are possible and left for future
work.

6. Concluding Remarks
I have outlined a new framework for intuitive probabilis-
tic reasoning (Crane, 2017, forthcoming). I believe that
Sections 2, 3, and 5 establish this system as a standalone
intuitive account for the kind of qualitative probabilistic
reasoning that individuals engage in instinctively. The proof
of soundness in Section 4 establishes a formal connection
between this new formalism and the traditional representa-
tion of degrees of belief via probability functions. Beyond
these possible connections to traditional probability and
variants of imprecise probability, IPR seems a system wor-
thy of study in its own right, and it is the route taken in
follow up work by Crane and Wilhelm (2019) and Crane
(forthcoming).

In light of the connection to traditional probabilities,
however, it is worthwhile to explore how the IPR frame-
work might be useful for studying general properties about
models in IP. In particular, IPR could be explored as a
formal foundation of imprecise probability, in the sense
that many formal statements in IP can be interpreted into
IPR. The existence of such a foundation offers at least two
potential benefits:

1. It provides a standard of rigor which allows general
theorems in IP to be established by abstracting to IPR

and proving a number of special cases all at once. The
amenability of MLTT, and thus IPR, to computerized
proof assistants, such as Coq, offers another potential
practical benefit when attempting such proofs.

2. IPR as a foundation for IP would establish imprecise
probability as autonomous from classical probability
theory, making precise the concept of what is an impre-
cise probability, without the need to refer to traditional
‘precise’ probabilities. In particular, sets of probabili-
ties are just one possible instantiation of what might
rightly be called ‘imprecise probability’, and the for-
malism of IPR provides a general abstract setting in
which to explore the boundaries of this notion.
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