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Metrology has an important role in modern science and relies on the accuracy and repeatability of a measurement.
However, these measurements are the outcomes of different expensive experiments and noisy due to the epistemic
uncertainty associated with these experiments. We express our model by y = f (µ1,µ2, · · · ,µm), where µ := (µ1, . . . ,µm)
are m different inputs. Our main goal is to obtain a confidence interval for f (µ), based on some estimates for µ .

We use the delta method [3] for uncertainty quantification, which is based on the multivariate normal approximation.
Let X̂ := (X̂1, . . . , X̂m) be an estimator of µ such that approximately X̂ ∼ N(µ,Σ) where Σ := Cov(X̂). If f is differentiable,
then by first order Taylor expansion, we have

f (X̂)≈ f (µ)+∇ f (µ)T (X̂ −µ). (1)

Now, if f is approximately linear around µ for the distributional range of X̂ , then we approximately have that f (X̂) ∼
N( f (µ),∇ f (µ)T Σ∇ f (µ)), by Eq. (1) and by the usual linear transformation rule for the covariance matrix. We can use this
approximate distribution of f (X̂) to construct a 95% confidence interval for f (µ). However, f (X̂) may not be necessarily
Gaussian especially if f is highly non-linear. Additionally, for the variance term ∇ f (µ)T Σ∇ f (µ), we may need to use the
sample standard deviation as we do not know Σ, and we may need to use ∇ f (X̂) as we do not know ∇ f (µ).

To avoid these issues, we propose using imprecise probability for uncertainty quantification in metrology, which is a
new contribution to the field. Specifically, we propose using p-boxes [1].This helps us to relax distributional assumptions
and thereby leads to more robust estimates. Additionally, uncertainty expressed as a p-box can be easily propagated through
a range of standard non-linear operators.

We illustrate our results by analysing the uncertainty associated with end gauge calibration [2]. Here, we try to
determine the length (`M) of an end gauge (M) by comparing it with length (`S) of a known standard (S) using the relation,
`M = `S(1+αSθS)+d

1+αMθM
. Here, αM and θM (αS and θS) are thermal expansion coefficient and temperature deviation of M (S)

and d is the difference between `M and `S. In practice, αM and θM (αS and θS) often have weak correlation between them.
Therefore, we use p-boxes to characterise these variables. We inspect their dependence structure for uncertainty propagation
and obtain a robust estimate. Finally, we compare our results with the delta method.
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