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Abstract
The Poisson process is the most elementary
continuous-time stochastic process that models a
stream of repeating events. It is uniquely character-
ised by a single parameter called the rate. Instead of a
single value for this rate, we here consider a rate inter-
val and let it characterise two nested sets of stochastic
processes. We call these two sets of stochastic process
imprecise Poisson processes, explain why this is jus-
tified, and study the corresponding lower and upper
(conditional) expectations. Besides a general theoret-
ical framework, we also provide practical methods to
compute lower and upper (conditional) expectations
of functions that depend on the number of events at a
single point in time.
Keywords: Poisson process, counting process,
continuous-time Markov chain, imprecision

1. Introduction

The Poisson process is arguably one of the most basic
stochastic processes. At the core of this model is our sub-
ject, who is interested in something specific that occurs
repeatedly over time, where time is assumed to be continu-
ous. For instance, our subject could be interested in the
arrival of a customer to a queue, to give an example from
queueing theory. For the sake of brevity, we will call such a
specific occurrence a Poisson-event,1 whence our subject is
interested in a stream of Poisson-events. The time instants
at which subsequent Poisson-events occur are uncertain to
our subject, hence the need for a probabilistic model. This
set-up is not exclusive to queueing theory; it is also used
in renewal theory and reliability theory, to name but a few
applications.

There is a plethora of alternative but essentially equi-
valent characterisations of this Poisson process. Some of
the more well-known and basic characterisations are as the
limit of the Bernoulli process [5, Chapter VI, Sections 5 and
6] or as a sequence of mutually independent and exponen-
tially distributed inter-Poisson-event times [6, Chapter 5,
Section 3.A]. An alternative way to look at the Poisson

1. We use the term “Poisson-event” rather than just “event” to avoid
confusion with the standard usage of event in probability theory,
where event refers to a subset of the sample space; we are indebted
to an anonymous reviewer for pointing out this potential confusion,
and to Gert de Cooman for suggesting the adopted terminology.

process is as a random dispersion of points in some gen-
eral space—that need not be the real number line—see for
instance [1, Sections 2.1 and 2.2] or [8, Chapter 2]. More
theoretically involved characterisations that are relevant to
our set-up are as a counting process or as a continuous-
time Markov chain, see for example [5, Chapter XVII, Sec-
tion 2], [7, Section 1], [10, Section 2.4], [12, Section 2.1]
or [13, Section 3].

Broadly speaking, these characterisations all make the
same three assumptions: (i) orderliness, in the sense that
the probability that two or more Poisson-events occur at
the same time is zero; (ii) independence, more specific-
ally the absence of after-effects or Markovianity; and (iii)
homogeneity. It is essentially well-known that these three
assumptions imply the existence of a parameter called the
rate, and that this rate uniquely characterises the Poisson
process. We here weaken the three aforementioned assump-
tions. First and foremost, we get rid of the implicit assump-
tion that our subject’s beliefs can be accurately modelled
by a single stochastic process; instead, we assume that her
beliefs only allow us to consider a set of stochastic pro-
cesses. Specifically, we consider a rate interval instead of
a precise value for the rate, and examine two distinct sets:
(i) the set of all Poisson processes whose rate belongs to
this rate interval; and (ii) the set of all processes that are
orderly and “consistent” with the rate interval. We then
define lower and upper conditional expectations as the in-
fimum and supremum of the conditional expectations with
respect to the stochastic processes in these respective sets.
Aside from this general theoretical framework, we focus
on computing the lower and upper expectation of functions
that depend on the number of occurred Poisson-events at a
single future time point. For the set of Poisson processes,
we show that this requires the solution of a one-parameter
optimisation problem; for the second set, we show that this
can be computed using backwards recursion. Furthermore,
we argue that both sets can be justifiably called imprecise
Poisson processes: imprecise because their lower and upper
expectations are not equal, and Poisson because their lower
and upper expectations satisfy imprecise versions of the
defining properties of the (precise) Poisson process. The
interested reader can find proofs for all our results in the
Appendix of the extended pre-print of this contribution [4],
which is available on arXiv.

© 2019 A. Erreygers & J. De Bock.



Our approach is heavily inspired by the theory of im-
precise continuous-time Markov chains [9]. For instance,
we define the imprecise Poisson process via consistency
with a rate interval, whereas Krak et al. [9] use consistency
with a set of transition rate matrices. In the bigger picture,
our contribution can therefore be seen as the first steps to-
wards generalising the theory of imprecise continuous-time
Markov chains from finite to countably infinite state spaces.

2. Counting Processes in General
Recall from the Introduction that our subject is interested in
the occurrences of a Poisson-event. In this setting, it makes
sense to consider the number of Poisson-events that have
occurred from the initial time point tini = 0 up to a time
point t, where t is a non-negative real number.

2.1. Counting Paths and the Sample Space

The temporal evolution of the number of occurred Poisson-
events is given by a counting path ω : R≥0→ Z≥0; at any
time point t in R≥0, ω(t) is the number of Poisson-events
that have occurred from tini = 0 up to t.2 Since the actual
temporal evolution of the number of occurred Poisson-
events is unknown to the subject, we need a probabil-
istic model, more specifically a continuous-time stochastic
process. The sample space—the space of all possible
outcomes—of this process is a set of counting paths, de-
noted by Ω. One popular choice for Ω is the set of all
càdlàg—right-continuous with left limits—counting paths,
in this set-up usually also assumed to be non-decreasing.
However, our results do not require such a strong assump-
tion. Before we state our assumptions on Ω, we first intro-
duce some notation.

In the remainder, we frequently use increasing sequences
t1, . . . , tn of time points, that is, sequences t1, . . . , tn in R≥0
of arbitrary length—that is, with n in N—such that ti < ti+1
for all i in {1, . . . ,n−1}. For the sake of brevity, we follow
[9, Section 2.1] in denoting such a sequence by u. We
collect all increasing—but possibly empty—sequences of
time points in U , and let U /0 := U \ { /0}. Observe that
as a sequence of time points u in U is just a finite and
ordered set of non-negative real numbers, we can perform
common set-theoretic operations on them like unions. In
order to lighten our notation, we identify the single time
point t with a sequence; as such, we can use u∪ t as a
notational shorthand for u∪{t}. Also, a statement of the
form maxu < t is taken to be true if u = /0; see for instance
Lemma 3. With this convention, for any t in R≥0, we let
U<t := {u ∈U : maxu < t} be the set of all sequences of
time points of which the last time point precedes t. Note

2. We use Z≥0 and N to denote the non-negative integers and natural
numbers (or positive integers), respectively. Furthermore, the real
numbers, non-negative real numbers and positive real numbers are
denoted by R, R≥0 and R>0, respectively.

that if t = 0, then there is no such non-empty sequence and
so U<t = { /0}.

In order to better distinguish between general non-
negative integers and counts, we let X := Z≥0. For any
u = t1, . . . , tn in U /0, we let Xu be the set of all n-tuples
xu = (xt1 , . . . ,xtn) of non-negative integers that are non-
decreasing:

Xu := {(xt1 , . . . ,xtn) ∈X n : xt1 ≤ ·· · ≤ xtn}.

If u is the empty sequence /0, then we let Xu = X /0 denote
the singleton containing the empty tuple, denoted by x /0.

With all this notation in place, we can now formally state
our requirements on Ω:

A1. (∀ω ∈Ω)(∀t,∆ ∈ R≥0) ω(t)≤ ω(t +∆);

A2. (∀u ∈U /0)(∀xu ∈Xu)(∃ω ∈Ω)(∀t ∈ u) ω(t) = xt .

Assumption (A1) ensures that all paths are non-decreasing,
which is essential if we interpret ω(t) as the number of
Poisson-events that have occurred up to time t. Assump-
tion (A2) ensures that the set Ω is sufficiently large, es-
sentially ensuring that the finitary events of Equation (1)
further on are non-empty.

2.2. Coherent Conditional Probabilities

We follow Krak et al. [9] in using the framework of coherent
conditional probabilities to model the beliefs of our subject.
What follows is a brief introduction to coherent conditional
probabilities; we refer to [11] and [9, Section 4.1] for a
more detailed exposition. For any sample space—that is, a
non-empty set—S, we let E (S) denote the set all events—
that is, subsets of S—and let E /0(S) := E (S)\{ /0} denote the
set of all non-empty events. Before we introduce coherent
conditional probabilities, we first look at full conditional
probabilities.

Definition 1 Let S be a sample space. A full conditional
probability P is a real-valued map on E (S)×E /0(S) such
that, for all A, B in E (S) and C, D in E /0(S),

P1. P(A |C)≥ 0;

P2. P(A |C) = 1 if C ⊆ A;

P3. P(A∪B |C) = P(A |C)+P(B |C) if A∩B = /0;

P4. P(A∩D |C) = P(A |D∩C)P(D |C) if D∩C 6= /0.

Note that (P1)–(P3) just state that P(· |C) is a finitely-
additive probability measure, and that (P4) is a multiplicat-
ive version of Bayes’ rule. We use the adjective full because
the domain of P is E (S)×E /0(S). Next, we move to domains
that are a subset of E (S)×E /0(S).

Definition 2 Let S be a sample space. A coherent condi-
tional probability P is a real-valued map on D ⊆ E (S)×
E /0(S) that can be extended to a full conditional probability.



Important to emphasise here is that simply demanding that
(P1)–(P4) hold on the domain D is in general not sufficient
to guarantee that P can be extended to a full conditional
probability. A necessary and sufficient condition for the
existence of such an extension can be found in [11, The-
orem 3] or [9, Corollary 4.3], but we refrain from stating it
here because of its technical nature. We here only mention
that this so-called coherence condition—hence explaining
the use of the adjective coherent—has an intuitive betting
interpretation, and that checking this condition is usually
feasible while explicitly constructing the full conditional
extension is typically not; this is extremely useful when
constructing proofs. Another strong argument for using co-
herent conditional probabilities is that they can always be
extended to a coherent conditional probability on a larger
domain [11, Theorem 4]. This too is an essential tool in the
proof of many of our main results, including Theorems 6,
15 and 19.

2.3. Events and Fields

For any v = t1, . . . , tn in U /0 and B ⊆ Xv, we define the
finitary event

(Xv ∈ B) := {ω ∈Ω : (ω(t1), . . . ,ω(tn)) ∈ B}. (1)

Furthermore, we also let (X/0 = x /0) := Ω =: (X/0 ∈ X /0).
Then for any u in U , we let Fu be the field of events—or
algebra of sets—generated by the finitary events for all
sequences with time points in or succeeding u:

Fu := 〈{(Xv ∈ B) : v ∈U ,B⊆Xv,

(∀t ∈ v) t ∈ u∪ [maxu,+∞)}〉. (2)

Lemma 3 Consider some u in U and A in Fu. Then
there is some v in U with minv > maxu and some B⊆Xw
with w := u∪ v such that A = (Xw ∈ B).

2.4. Counting Processes as Coherent Conditional
Probabilities

From here on, we focus on coherent conditional probabilit-
ies with the domain

DCP := {(A,Xu = xu) : u ∈U ,A ∈Fu,xu ∈Xu},

which essentially consists of future events conditional on
the number of occurred Poisson-events at specified past
time-points. The rationale behind this domain is twofold.
First and foremost, it is sufficiently large to make most
inferences that one is usually interested in. For example,
this domain allows us to compute—tight lower and upper
bounds on—the expectation of a real-valued function on the
number of occurred Poisson-events at a single future time

point, as we will see in Section 6. Second, it guarantees
that every rate corresponds to a unique Poisson process, as
we will see in Section 3.

Definition 4 A counting process P is a coherent condi-
tional probability on DCP such that

CP1. P(X0 = 0) = 1;

CP2. for all t in R≥0, u in U<t and (xu,x) in Xu∪t ,

lim
∆→0+

P(Xt+∆ ≥ x+2 |Xu = xu,Xt = x)
∆

= 0

and, if t > 0,

lim
∆→0+

P(Xt ≥ x+2 |Xu = xu,Xt−∆ = x)
∆

= 0.

The second requirement (CP2) is—our version of—the
orderliness property that we previously mentioned in the
Introduction. In essence, it ensures that the probability that
two or more Poisson-events occur at the same time is zero.
We collect all counting processes in the set P.

2.5. Conditional Expectation with Respect to a
Counting Process

For any counting process P, we let EP denote the associated
(conditional) expectation, defined in the usual sense as an
integral with respect to the measure P—see for instance
[11, Theorem 6] or [14, Section 15.10.1].

Let Kb(Ω) denote the set of all real-valued functions
on Ω that are bounded below.3 Fix some u in U . Then f
in Kb(Ω) is Fu-measurable if for all α in [inf f ,+∞), the
level set { f > α} := {ω ∈Ω : f (ω)> α} is an element of
Fu. We collect all such Fu-measurable functions in Gu.

The (conditional) expectation EP has domain

G := {( f ,Xu = xu) ∈Kb(Ω)×E /0(Ω) :
u ∈U ,xu ∈Xu, f ∈ Gu}.

For any ( f ,Xu = xu) in G , we have

EP( f |Xu = xu)

:= inf f +
∫ sup f

inf f
P({ f > α} |Xu = xu)dα,

where the integral is a—possibly improper—Riemann
integral. Note that this integral always exists because
P({ f > α} |Xu = xu) is a non-increasing function of α .
This expression simplifies if f is an Fu-simple function. To

3. Note that we could just as well consider arbitrary real-valued func-
tions instead of restricting ourselves to bounded-below functions.
Our main reason for doing so is that this facilitates a more eleg-
ant treatment. Furthermore, many functions of practical interest are
bounded-below.



define these, we let IA : Ω→ R denote the indicator of an
event A⊆Ω, defined for all ω in Ω as IA(ω) := 1 if ω ∈ A
and 0 otherwise. We then say that f is Fu-simple if it can
be written as f = ∑

n
i=1 aiIAi , with n in N and, for all i in

{1, . . . ,n}, ai in R and Ai in Fu. In this case, the integral
expression reduces to

EP( f |Xu = xu) =
n

∑
i=1

aiP(Ai |Xu = xu). (3)

For unconditional expectations, we have that

E(·) := EP(· |Ω) = EP(· |X/0 = x /0) = EP(· |X0 = 0),

where the final equality holds due to (CP1). Therefore, in
the remainder, we can restrict ourselves to expectations of
the form EP(· |Xu = xu,Xt = x), as E(·) corresponds to the
case u = /0, t = 0 and x = 0.

3. The Poisson Process in Particular
We now turn to the most well-known counting process,
namely the Poisson process. As explained in the Introduc-
tion, there are plenty of alternative characterisations of
the Poisson process. The following definition turns out to
capture all its essential properties in our framework.

Definition 5 A Poisson process P is a counting process
such that, for all t,∆ in R≥0, u in U<t , (xu,x) in Xu∪t and y
in X with y≥ x,

PP1. P(Xt+∆ = y |Xu = xu,Xt = x) = P(Xt+∆ = y |Xt = x);

PP2. P(Xt+∆ = y |Xt = x) = P(Xt+∆ = y− x |Xt = 0);

PP3. P(Xt+∆ = y |Xt = x) = P(X∆ = y |X0 = x).

The first condition (PP1) states that the Poisson process is
Markovian, while conditions (PP2) and (PP3) state that the
Poisson process is homogeneous. Note that—unlike many
of the characterisations mentioned in the Introduction—we
do not impose that the transition probabilities are Poisson
distributed, nor do we impose some value for the “rate”.
It was already observed by Feller [5, Chapter XVII, Sec-
tion 2, Footnote 4] and Khintchine [7, Sections 1 and 2]
that assuming—their version of—(PP1)–(PP3) is sufficient
to obtain the Poisson process. Our results basically extend
these characterisations to our framework for counting pro-
cesses using coherent conditional probabilities.

First and foremost, we obtain that the transition probab-
ilities are Poisson distributed, hence explaining the name
of the process.

Theorem 6 Consider a Poisson process P. Then there is a
rate λ in R≥0 such that, for all t,∆ in R≥0, u in U<t , (xu,x)
in Xu∪t and y in X ,

P(Xt+∆ = y |Xu = xu,Xt = x)

=

{
ψλ∆(y− x) if y≥ x,
0 otherwise,

(4)

where ψλ∆ is the Poisson distribution with parameter λ∆,
defined for all k in Z≥0 as

ψλ∆(k) := e−λ∆ (λ∆)k

k!
.

Conversely, for every λ in R≥0, there is a unique coherent
conditional probability P on DCP that satisfies (CP1) and
Equation (4), and this P is a Poisson process.

Theorem 6 might seem somewhat trivial, but its proof is
surprisingly lengthy. Note that it also establishes that any
rate λ gives rise to a unique Poisson process, so in the
remainder we can talk of the Poisson process with rate λ .
Finally, it has the following obvious corollary.

Corollary 7 Consider a Poisson process P. Then there
is a rate λ in R≥0 such that, for all t in R≥0, u in U<t
and (xu,x) in Xu∪t ,

lim
∆→0+

P(Xt+∆ = x+1 |Xu = xu,Xt = x)
∆

= λ (5)

and, if t > 0,

lim
∆→0+

P(Xt = x+1 |Xu = xu,Xt−∆ = x)
∆

= λ . (6)

We end our discussion of Poisson processes with the fol-
lowing result, which actually is a—not entirely immediate—
consequence of Theorem 15 further on.

Theorem 8 Consider a counting process P. If there is a
rate λ in R≥0 such that P satisfies Equations (5) and (6),
then P is the Poisson process with rate λ .

4. Sets of Counting Processes
Instead of considering a single counting process, we now
study sets of counting processes. With any subset P of P,
we associate a lower expectation

EP(· | ·) := inf{EP(· | ·) : P ∈P} (7)

and, similarly, an upper expectation

EP(· | ·) := sup{EP(· | ·) : P ∈P}. (8)

Since the expectation EP associated with any counting pro-
cess P in P has domain G , EP and EP are well-defined
on the same domain G . Observe that for any ( f ,Xu = xu)
in G such that f is bounded, the lower and upper expect-
ations are conjugate in the sense that EP( f |Xu = xu) =
−EP(− f |Xu = xu). Therefore, it suffices to study one of
the two if only considering bounded functions; we will
focus on lower expectations in the remainder.



4.1. The Obvious Imprecise Poisson Process

From here on, we consider a closed interval Λ := [λ ,λ ]⊂
R≥0 of rates instead of a single value for the rate λ . In
order not to unnecessarily repeat ourselves, we fix one rate
interval Λ that we use throughout the remainder. Due to
Theorem 6, there is one obvious set of counting processes
that is entirely characterised by this rate interval Λ: the set

P?
Λ

:= {Pλ : λ ∈ Λ}

that consists of all Poisson processes with rate in this inter-
val, where Pλ denotes the Poisson process with rate λ .

The lower and upper expectation associated with this
set P?

Λ
according to Equations (7) and (8) are denoted by

E?
Λ

and E?
Λ, respectively. It is clear that by construction,

determining E?
Λ
( f |Xu = xu) and/or E?

Λ( f |Xu = xu) boils
down to solving a one-parameter optimisation problem:
one has to minimise and/or maximise EPλ

( f |Xu = xu)—
the conditional expectation of f with respect to the Poisson
process with rate λ—with respect to all values of λ in
the rate interval Λ. For some specific functions f , see for
example Proposition 16 further on, this one-parameter op-
timisation problem can be solved analytically. For more in-
volved functions, the optimisation problem has to be solved
numerically, for instance by evaluating EPλ

( f |Xu = xu)
over a (sufficiently fine) grid of values of λ in the rate
interval Λ, where EPλ

( f |Xu = xu) might also have to be
numerically approximated.

4.2. A More Involved Imprecise Poisson Process

A second set of counting processes characterised by the rate
interval Λ is inspired by Theorem 8. This theorem suggests
that the dynamics of a counting process are captured by the
rate—that is, the limit expressions in Equations (5) and (6)
of Corollary 7. Essential to our second characterisation is
the notion of consistency.

Definition 9 A counting process P is consistent with the
rate interval Λ, denoted by P ∼ Λ, if for all t in R≥0, u
in U<t and (xu,x) in Xu∪t ,

λ ≤ liminf
∆→0+

P(Xt+∆ = x+1 |Xu = xu,Xt = x)
∆

≤ limsup
∆→0+

P(Xt+∆ = x+1 |Xu = xu,Xt = x)
∆

≤ λ (9)

and, if t > 0,

λ ≤ liminf
∆→0+

P(Xt = x+1 |Xu = xu,Xt−∆ = x)
∆

≤ limsup
∆→0+

P(Xt = x+1 |Xu = xu,Xt−∆ = x)
∆

≤ λ . (10)

We let
PΛ := {P ∈ P : P∼ Λ}

denote the set of all counting processes that are consistent
with the rate interval Λ. Observe that, as every Poisson
process is a counting process,

P?
Λ ⊆ PΛ. (11)

It is essential to realise that P?
Λ

is not equal to PΛ, at least
not in general. Indeed, the set PΛ will contain counting pro-
cesses that have much more exotic dynamics than Poisson
processes, in the sense that they need not be Markovian
nor homogeneous. However, if Λ is equal to the degenerate
interval [λ ,λ ], then it follows from Theorem 8 that

P?
Λ = PΛ = {Pλ}, (12)

where Pλ is the Poisson process with rate λ , as before.
Therefore, both PΛ and P?

Λ
are proper generalisations of

the Poisson process.
We let EΛ and EΛ denote the lower and upper expecta-

tions associated with the set PΛ according to Equations (7)
and (8). It is an immediate consequence of Equations (7),
(8) and (11) that

EΛ(· | ·)≤ E?
Λ(· | ·)≤ E?

Λ(· | ·)≤ EΛ(· | ·). (13)

The remainder of this contribution is concerned with com-
puting these lower and upper expectations for a specific
type of functions, with a particular focus on the outer ones.

We end this section by mentioning that P?
Λ

and PΛ are
not the only two sets of counting processes that are of
potential interest, but they are—to some extent—the two
most extreme sets. One set of counting process that lies in
between the two is that of the time-inhomogeneous Pois-
son processes—see for instance [7, Section 5] or [12, Sec-
tion 2.4]—that are consistent with the rate interval Λ. In
order not to unnecessarily complicate our exposition, we
have chosen to limit ourselves to the two extreme cases.

5. The Poisson Generator and Its
Corresponding Semi-Group

Our method for computing lower expectations is based on
the method used in the theory of imprecise continuous-
time Markov chains [9]. Essential to this method of Krak
et al. [9] is a semi-group of “lower transition operators”
that is generated by a “lower transition rate operator”. In
Section 5.2, we extend their method for generating this
semi-group to a countably infinite state space, be it only
for one specific type of lower transition rate operator. First,
however, we introduce some necessary concepts and ter-
minology.

5.1. Functions, Operators and Norms

Consider some non-empty ordered set Y that is at most
countably infinite, and let L (Y ) be the set of all bounded



real-valued functions on Y . Observe that L (Y ) is clearly
a vector space. Even more, it is well-known that this vector
space is complete under the supremum norm

‖ f‖ := sup{| f (x)| : x ∈ Y } for all f ∈L (Y ).

A transformation is any operator A : L (Y )→L (Y ).
Such an operator A is non-negatively homogeneous if, for
all f in L (Y ) and γ in R≥0, A(γ f ) = γA f . The supremum
norm induces an operator norm for non-negatively homo-
geneous transformations A:

‖A‖ := sup{‖A f‖ : f ∈L (Y ),‖ f‖= 1};

see [2] for a proof that this is indeed a norm. An important
non-negatively homogeneous transformation is the identity
map I that maps any f in L (Y ) to itself.

5.2. The Poisson Generator

A non-negatively homogeneous transformation that will
be essential in the remainder is the Poisson gener-
ator Q : L (X )→L (X ) associated with the rate inter-
val Λ, defined for all f in L (X ) and x in X as

[Q f ](x) := min{λ f (x+1)−λ f (x) : λ ∈ [λ ,λ ]}.

Fix any t,s in R≥0 with t ≤ s. If t < s, then we let U[t,s]
denote the set of all non-empty and increasing sequences
of time points t0, . . . , tn that start with t0 = t and end with
tn = s. For any sequence u in this set U[t,s], we let

Φu :=
n

∏
i=1

(I +∆iQ), (14)

where for any i in {1, . . . ,n}, we denote the difference
between the consecutive time points ti and ti−1 by ∆i :=
ti − ti−1. In the remainder, we let σ(u) := max{∆i : i ∈
{1, . . . ,n}} be the largest of these time differences. If t = s,
then we let U[t,s] := {t}, σ(t) := 0 and Φt := I.

The Poisson generator Q generates a family of transform-
ations, as is evident from the following result. This result
is very similar to [9, Corollary 7.11], which establishes an
analoguous result for imprecise Markov chains with finite
state spaces; it should therefore not come as a surprise that
their proofs are largely similar as well.

Theorem 10 Fix any t,s in R≥0 with t ≤ s. For any se-
quence {ui}i∈N in U[t,s] such that limi→+∞ σ(ui) = 0, the
corresponding sequence {Φui}i∈N converges to a unique
non-negatively homogeneous transformation that does not
depend on the chosen sequence {ui}i∈N.

For any t,s in R≥0 with t ≤ s, Theorem 10 allows us to
define the non-negatively homogeneous transformation

T s
t := lim

σ(u)→0
{Φu : u ∈U[t,s]}, (15)

where this unconventional notation for the limit denotes
the unique limit mentioned in Theorem 10. The family
of transformations thus defined has some very interesting
properties: in the extended pre-print [4], we prove that for
any t,s in R≥0 with t ≤ s, f ,g in L (X ) and γ in R≥0,

SG1. T s
t (γ f ) = γT s

t f ;

SG2. T s
t ( f +g)≥ T s

t f +T s
t g;

SG3. T s
t f ≥ inf f .

We furthermore prove that this family forms a time-
homogeneous semi-group, in the sense that

SG4. T t
t = I;

SG5. T s
t = T r

t T s
r for all r in R≥0 with t ≤ r ≤ s;

SG6. T s
t = T s−t

0 .

While the induced transformation T s
t is interesting in

its own right, we will be mainly interested in (a single
component of) the image T s

t f of some bounded function f .
Therefore, for any x in X and t,s in R≥0 with t ≤ s, we
define the operator Ps

t (· | x) : L (X )→ R as

Ps
t ( f | x) := [T s

t f ](x) for all f ∈L (X ).

The following follows immediately from (SG1)–(SG3).

Corollary 11 For any x in X and t,s in R≥0 with t ≤ s,
Ps

t (· | x) is a coherent lower prevision in the sense of [14,
Definition 4.10].

In the remainder, we let Ps
t (· | x) := −Ps

t (− · | x) be the
conjugate coherent upper prevision of the coherent lower
prevision Ps

t (· | x).

5.3. The Reduced Poisson Generator

Fix any x,x in X such that x≤ x, and let

χ := {x ∈X : x≤ x≤ x}.

We define the reduced Poisson generator Qχ : L (χ)→
L (χ) for all g in L (χ) and x in χ as

[Qχ g](x) :=

 min
λ∈[λ ,λ ]

(λg(x+1)−λg(x)) if x≤ x < x,

0 if x = x.

In the extended pre-print, we verify that this reduced Pois-
son generator Qχ is a lower transition rate operator in the
sense of [9, Definition 7.2]. As outlined in [9, Section 7],
this lower transition rate operator generates a family of
transformations as well. For any t,s in R≥0 with t ≤ s and
any u in U[t,s], we let

Φ
χ
u :=

n

∏
i=1

(I +∆iQχ).



Note the similarity between the equation above and Equa-
tion (14). Because Qχ is a lower transition rate operator, it
follows from [9, Corollary 7.11]—a result similar to The-
orem 10—that the transformation

T χ

t,s := lim
σ(u)→0

{Φχ
u : u ∈U[t,s]} (16)

is non-negatively homogeneous. The limit in this defini-
tion is to be interpreted as the limit in Equation (15): it
does not depend on the actual sequence {ui}i∈N as long
as limi→+∞ σ(ui) = 0. Unsurprisingly, Krak et al. [9] show
that this family of transformations T χ

t,s also satisfies (SG1)–
(SG6). Observe that Equation (16) suggests a method to
evaluate T χ

t,s for some g in L (χ): choose a sufficiently fine
grid u, and compute Φ

χ
u g via backwards recursion. There is

much more to this approximation method than we can cover
here; the interested reader is referred to [9, Section 8.2] and
[3].

5.4. The Essential Case of Eventually Constant
Functions

Our reason for introducing the restricted Poisson gener-
ator Qχ and its induced transformation T χ

t,s is because the
latter can be used to compute Ps

t ( f | x). Essential to our
method are those functions f in L (X ) that are eventually
constant, in the sense that

(∃x ∈X )(∀x ∈X ,x≥ x) f (x) = f (x).

In this case, we say that f is constant starting from x. We
collect all real-valued bounded functions f on X that are
eventually constant in L c(X ).

Our next result establishes a link between Ps
t (· | x) and

T χ

t,s for eventually constant functions.

Proposition 12 Fix some t,s in R≥0 with t ≤ s and some f
in L c(X ) that is constant starting from x. Choose some x
in X with x≤ x, and let χ := {x ∈X : x≤ x≤ x}. Then
for any x in X with x≥ x,

Ps
t ( f | x) = [T s

t f ](x) =

{
[T χ

t,s f χ ](x) if x≤ x,
f (x) if x≥ x,

where f χ is the restriction of f to χ .

Note that we are free to choose x. If we are interested
in Ps

t ( f | x) for a specific value of x, then choosing x =
min{x,x} is the optimal choice. However, if we are inter-
ested in Ps

t ( f | x) for a finite range R ⊂X of different x
values, the obvious choice is x = min(R∪{x}) because we
then only have to determine T χ

t,s f χ once!
A method to compute Ps

t (· |x) for all bounded functions f
follows from combining Proposition 12 with the following
result.

Proposition 13 For any t,s in R≥0 with t ≤ s, f in L (X )
and x in X ,

Ps
t ( f | x) = lim

x→+∞
Ps

t (I≤x f + f (x)I>x | x),

where I≤x and I>x are the indicators of {z ∈X : z ≤ x}
and {z ∈X : z > x}, respectively.

Observe that I≤x f + f (x)I>x—with I≤x f the point-wise
multiplication of I≤x and f —is constant starting from x.
Therefore, it follows from Proposition 12 that Ps

t (I≤x f +
f (x)I>x | x) = [T χ

t,s f χ ](x), where f χ is the restriction of
f to χ . We can combine this observation and Propos-
ition 13 to obtain a method to compute Ps

t ( f | x) for
any bounded function f : (i) choose some sufficiently
large x and let χ := {y ∈ X : x ≤ y ≤ x}; (ii) compute
Ps

t (I≤x f + f (x)I>x | x) = [T χ

t,s f χ ](x), using one of the ex-
isting approximation methods mentioned at the end of Sec-
tion 5.3; (iii) repeat (i)–(ii) for increasingly larger x until
convergence is empirically observed.

6. Computing Lower Expectations of
Functions on Xs

Let Kb(X ) denote the set of all real-valued bounded-
below functions on X . With any f in Kb(X ) and s in
R≥0, we associate the real-valued bounded-below function

f (Xs) : Ω→ R : ω 7→ [ f (Xs)](ω) := f (ω(s)).

In other words, and as suggested by our notation, f (Xs) is
the functional composition of f with the projector

Xs : Ω→X : ω 7→ Xs(ω) := ω(s).

The (conditional) expectation of f (Xs) exists for any count-
ing process P, as is established by the following rather
obvious result.

Lemma 14 Consider some s in R≥0 and u in U with
maxu ≤ s. Then for any f in Kb(X ), f (Xs) is an Fu-
measurable function.

In the remainder, we provide several methods for com-
puting lower and upper expectations; first for those with
respect to the consistent Poisson processes and second for
those with respect to all consistent counting processes. For
the latter, we first limit ourselves to bounded functions and
subsequently move on to functions that are bounded-below.

6.1. With Respect to the Consistent Poisson Processes

Fix some rate λ in R≥0, and let P be the Poisson pro-
cess with rate λ . It is essentially well-known—and a con-
sequence of Theorem 6—that for any t,s in R≥0 with t ≤ s,
u in U<t , (xu,x) in Xu∪t and f in Kb(X ),

EP( f (Xs) |Xu = xu,Xt = x)=
+∞

∑
y=x

f (y)ψλ (s−t)(y−x). (17)



Because of this expression, E?
Λ
( f (Xs) |Xu = xu,Xt = x) can

be computed using the straightforward method that we
already discussed in Section 4.1: (i) fix a finite grid of λ ’s
in Λ = [λ ,λ ], (ii) (numerically) evaluate the infinite sum
in Equation (17) for each λ in this grid, and (iii) compute
the minimum. In some specific cases, it is even possible
to know beforehand for which λ this minimum will be
achieved. For example, if f is monotone and bounded, or
bounded below and non-decreasing, then as we will see
in Propositions 16 and 17, it suffices to consider λ = λ or
λ = λ .

6.2. With Respect to the Consistent Counting
Processes

Computing EΛ( f (Xs) |Xu = xu,Xt = x) is less straightfor-
ward, as in general this does not reduce to a one-parameter
optimisation problem. Nevertheless, as we are about to
show, the semi-group of Section 5 allows us to circumvent
this issue. Our first result establishes a method to com-
pute the lower—and hence also the upper—expectation of
bounded functions.

Theorem 15 For any t,s in R≥0 with t ≤ s, u in U<t , f
in L (X ) and (xu,x) in Xu∪t ,

EΛ( f (Xs) |Xu = xu,Xt = x) = Ps
t ( f | x).

Indeed, because of this result, we can use the method that
was introduced at the end of Section 5.4 to compute the
lower expectation of f .

For the special case of monotone bounded functions, we
obtain an even stronger result.

Proposition 16 Fix any t,s in R≥0 with t ≤ s, u in U<t ,
(xu,x) in Xu∪t and f in L (X ). If f is monotone, then

EΛ( f (Xs) |Xu = xu,Xt = x)

= E?
Λ( f (Xs) |Xu = xu,Xt = x)

= EPλ
( f (Xs) |Xu = xu,Xt = x),

where Pλ is the Poisson process with rate λ = λ if f is
non-decreasing and rate λ = λ if f is non-increasing.

Almost everything has now been set up to consider a gen-
eral real-valued bounded below function of Xs. An essential
intermediary step is an extension of Proposition 16.

Proposition 17 Fix any t,s in R≥0 with t ≤ s, u in U<t
and (xu,x) in Xu∪t . Then for any f in Kb(X ) that is non-
decreasing,

EΛ( f (Xs) |Xu = xu,Xt = x)

= E?
Λ( f (Xs) |Xu = xu,Xt = x)

= EPλ
( f (Xs) |Xu = xu,Xt = x)

and

EΛ( f (Xs) |Xu = xu,Xt = x)

= E?
Λ( f (Xs) |Xu = xu,Xt = x)

= EP
λ
( f (Xs) |Xu = xu,Xt = x),

where Pλ and P
λ

are the Poisson processes with rates λ

and λ , respectively.

As an immediate corollary of Proposition 17, we obtain
an interpretation for the rate interval Λ: its bounds provide
tight lower and upper bounds on the expected number of
Poisson-events in any time period.

Corollary 18 Fix any t,s in R≥0 with t ≤ s, u in U<t
and (xu,x) in Xu∪t . Then

EΛ(Xs |Xu = xu,Xt = x) = x+λ (s− t)

and
EΛ(Xs |Xu = xu,Xt = x) = x+λ (s− t),

and similarly for E?
Λ

and E?
Λ.

A more important consequence of Proposition 17 is the
following result, which can be regarded as an extension of
(the combination of) Proposition 13 and Theorem 15.

Theorem 19 Fix any t,s in R≥0 with t ≤ s, u in U<t ,
(xu,x) in Xu∪t and f in Kb(X ). If

+∞

∑
y=x

fmax(y)ψλ (s−t)(y− x)<+∞,

where fmax in Kb(X ) is defined for all y in X as

fmax(y) := max{ f (z) : z ∈X ,z≤ y},

then

EΛ( f (Xs) |Xu = xu,Xt = x) = lim
x→+∞

Ps
t (I≤x f + f (x)I>x |x),

EΛ( f (Xs) |Xu = xu,Xt = x) = lim
x→+∞

Ps
t (I≤x f + f (x)I>x |x),

where the two limits are finite.

Because of this result, we can compute the lower and upper
expectation using the same method as before. Note that
it makes no difference that f is no longer bounded; the
method still works because I≤x f + f (x)I>x is bounded.

6.3. A Numerical Example

We end this section with a basic numerical example. We
determine tight lower and upper bounds on

P(Xt = x |X0 = 0) = EP(Ix(Xt) |X0 = 0),
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Figure 1: Bounds on transition probabilities as a function
of t for the rate interval Λ = [1,2].

with x equal to 0 or 1. We use the methods outlined in Sec-
tions 6.1 and 6.2 to compute lower and upper bounds with
respect to the sets P?

Λ
and PΛ for Λ = [1,2]. The resulting

bounds are depicted in Figure 1. Observe that for x = 0,
the bounds with respect to P?

Λ
and PΛ are equal, as is to be

expected due to Proposition 16 because Ix is monotone for
x = 0. For x = 1, Ix is not monotone and the bounds with
respect to P?

Λ
are clearly not equal to those with respect

to PΛ.

7. Justification for the Term Imprecise
Poisson Process

Until now, we have provided little justification for why
we call both P?

Λ
and PΛ imprecise Poisson processes. In

Section 4.2, we already briefly mentioned that the two sets
are proper generalisations of the Poisson process: if the rate
interval Λ is degenerate, meaning that λ = λ = λ , then both
sets reduce to the singleton containing the Poisson process
with rate λ . Another argument for referring to P?

Λ
and PΛ as

imprecise Poisson processes concerns the (tight lower and
upper bounds on the) expected number of Poisson events
in a time period of length ∆. For a Poisson process, it is
well-known that this expectation is equal to ∆λ , and we
know from Corollary 18 that the corresponding lower and
upper expectations are equal to ∆λ and ∆λ , respectively.

We end this section with our strongest argument for using
the term imprecise Poisson process to refer to both P?

Λ
and

P?
Λ

. The following result establishes that the corresponding
lower expectations E?

Λ
and EΛ—and, due to conjugacy, also

the corresponding upper expectations E?
Λ and EΛ—satisfy

imprecise generalisations of (CP1), (CP2) and (PP1)–(PP3),
which are the defining properties of a Poisson process.

Proposition 20 For all t,∆ in R≥0, u in U<t , (xu,x) in
Xu∪t and f in L (X ),

(i) EΛ( f (X0)) = f (0);

(ii)

lim
∆→0+

EΛ(I(Xt+∆≥x+2) |Xu = xu,Xt = x)
∆

= 0

and, if t > 0,

lim
∆→0+

EΛ(I(Xt≥x+2) |Xu = xu,Xt−∆ = x)
∆

= 0;

(iii) EΛ( f (Xt+∆) |Xu = xu,Xt = x) = EΛ( f (Xt+∆) |Xt = x);

(iv) EΛ( f (Xt+∆) |Xt = x) = EΛ( f ′x(Xt+∆) |Xt = 0);

(v) EΛ( f (Xt+∆) |Xt = x) = EΛ( f (X∆) |X0 = x);

with f ′x : X → R : z 7→ f ′x(z) := f (x+ z). The same equal-
ities also hold for E?

Λ
.

8. Conclusion
In this contribution, we proposed two generalisations of
the Poisson process in the form of two sets of counting
processes: the set P?

Λ
of all Poisson processes with rate λ

in the rate interval Λ, and the set PΛ of all counting process
that are consistent with the rate interval Λ. We argued why
both of these sets can be seen as proper generalisations of
the Poisson process. First and foremost, for a degenerate
rate interval they both reduce to the singleton containing
the Poisson process with this rate. Second, the lower and
upper expectations with respect to both sets satisfy impre-
cise generalisations of (CP1), (CP2) and (PP1)–(PP3), the
defining properties of a Poisson process. We also presented
several methods for computing lower and upper expecta-
tions for functions that depend on the number of occurred
Poisson-events at a single time point.

We end with two suggestions for future research. An ob-
vious open question is whether we can efficiently compute
lower and upper expectations for functions that depend on
the number of occurred Poisson-events at multiple points
in time. Based on similar results of Krak et al. [9] for im-
precise continuous-time Markov chains with a finite state
space, we strongly believe that this will be the case for PΛ

but not for P?
Λ

, whence providing a practical argument in
favour of the former. A perhaps slightly less obvious open
question is whether Theorem 6 and Corollary 7 can be gen-
eralised to sets of counting processes, in the sense that we
can infer the existence of a rate interval rather than spe-
cify one, by imposing appropriate conditions on the set of
counting processes, including the imprecise generalisations
of (CP1), (CP2) and (PP1)–(PP3).
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