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Abstract Some introspective analysis can demonstrate that in
complicated situations of decision making we cannot

The paper summarizes the author’s experience in dealin§etermine what actions are more preferable. This happens
with the Dempster-Shafer theory relating to reliability When we suffer from a lack of subject matter knowledge.
assessments and demonstrates how to make componehfis indeterminacy is natural and should be taken into
and system reliability assessments based on the theory gPnsideration when modeling. A precise probabilistic
coherent imprecise previsions. The procedure of prioranalysis always gives a determinate decision, and it
imprecise probabi”ty elicitation of Components is based cannot be considered a faithful reflection of reality. The
on analogical reasoning, and two cases of precise anfse€ of precise probabilities might be dangerously
imprecise probabi]ities of prototypes are Considered_fﬂiSleading when making crucial decisions. This issue is
Cases of combining different reliability judgements on related directly to reliability and risk analyses of large-
the same component are analyzed. The formulae obtainedcale potentially hazardous installations.

for system reliability_a_tssess_ments allow getting _the |°Wer|mprecise probabilities are intended to make prior
and upper probabiliies without the presumption of a zgqessments and allow for reliability experience and
conditional independence. An example of systempmage| indeterminacy that is caused by the state of
reliability calculating was considered. information at hand. They are therefore sometimes
) ) ... referred to as the models of the state-of-knowledge
Keywords. Coherent imprecise probablhtles, reliability uncertainty. There are several theories of imprecise
assessments, belief functions, analogy probabilities and they work differently in practice, in
reliability practice in particular. The Dempster-Shafer
) theory of evidence and the theory of possibility have been
1 Introduction considered to be the most promising theories for
reliability and safety assessments, however they have
Obtaining grounded, explanatory and credible prior been under frequent serious criticism by experts in the
reliability assessments is an important task. As a matter ofirea of safety and reliability analyses.
fact, the decision to put a technical object into operation
is based on exclusively prior assessments of reliability,
risk and other attributes. This issue is most prominent for
large-scale and unique installations and actions, failure
of which can lead to dramatic losses. No specific failures
precede putting a technical insttibn into operation.
Furthermore, for non-repeatable actions, prior
assessments will be final, being unchangeable in the Experiences in the Dempster-Shafer
future due to the absence of failures. In many cases, rarj].heo
occurrences cannot constitute representative samples wit ry
the aim of making substantially more precise posterior

assessments compared to prior ones. That is, th everal boints. The first is the failure of Dempster's rule
expectations of representative samples will not come tru v paints. Irst1 aliu mp u
of combination to produce rational results in the case of

and we cannot count on post-action qualifications and,. . : ; ; .
b q nconsistent combined pieces of information. Another

therefore, have to seek faithful methods and theories tdcrucial argued disadvantage of this rule is its inability to
get prior reliabilities of components and systems. 9 Y y

combine opinions of different people with overlapping

The objective of the paper is to give some summaries of
the author’'s experience in dealing with the Dempster-
hafer theory relating to reliability assessments and to
demonstrate how to solve some reliability problems with
the help of the theory of coherent imprecise previsions.

d he criticism of the Dempster-Shafer theory is based on



experiences, making it hardly applicable in safety Py;, m(BB%) = my(2) = 1 - Pag, My(B%) = 1 - Pay

analysis practice [8]. Furthermore, it turned out that them,(B/7B®) = m,(2) = Pa,, WhereB° is the complement of

theory could produce inferences that are formallyB. In combining these two bodies of evidence we can see

incoherent [5]. The conclusion in [8] is that the usefulnessthat there is one conjunction equal f6 B n B® = [J.

of the Dempster-Shafer theory and the theory ofTherefore the probability massy(B)my(B°) should be

possibility in probabilistic safety assessments is verydistributed between the rest of mass probabilities by

doubtful at this time and that this theory should be renormalization of the basic probability assignment

subjected to the same degree of scrutiny as that applied tgyyough the constagt= (1 - myB)mu(B))™ = (1 - Pay(l -

the theory of probability. Pa2)™. Thus, the new assignmentiig A(B) = p Pa; Paz,

Attempting to implement the Dempster-Shafer andm1 (B = p (L - Par)(L - Pas), M ABIBY) = myofD) = p

possibility theories into risk and reliability analyses, the ,, A nah LA 2

authors of the paper also encountered some difficultie L - PayPao. Eventually we geBel(B) = o P Pay, and
I(B) = p (Pay Paz + (1 - Pa)Pa2) = p Paz The result

that could not be solved in the frameworks of these /
. : . ; lls us if, for exampleBeh(B) = Pa; = 0.9 and Beh(B)
theories. The main experienced drawbacks are descrlbe'é_(f Pa = 0.1, then the combination i8el(B)=0.47 and

below. (Details on the concepts of the Dempster-Shafer_ , 2 . ! T
theory can be found, for example, in [4]). PI(B)=0.526 This should be considered intuitively

inconsistent, since the two extremely conflicting opinions
2.1 Combination of Homogeneous Bodies of Evidence are combined to form quite strong consensus.

The combination of knowledge in a rational way is 2.3 Judgements Admitted in Elicitation

essential to prior reliability and safety assessments . . . . . .
Therefore a reliable rule of combination is required to The diversity of direct judgements admitted in a theory of

work with homogeneous, heterogeneous, consistent ananpre_c_ise probabilities is an important po_int Fe'a“f‘g to
inconsistent pieces of information. Let us consider a casée“ablllty assessment practice. When making judgements
n the framework of the Dempster-Shafer theory we must

of the combination of homogeneous judgements where ifoear in mind the following i . .

g interpretations of belief
seemed the rule produces good results. functions and basic assignmeBel(A) measures the total
There aren judgements on an eve®t in the form of  belief that the special element is s, whereasm(A)
simple support functionsBek(A)=py, where k=1,...,n measures the amount of belief that one commits exactly
Source basic assignmentg obtained from the support to A alone (Shafer [4] and Yager [9]). In fact, the analysts
functions are:m(A)=p,, M(2)=1-px, k=1,...,n From must pose their questions to the experts in such a manner
Dempster’s rule of combination the following result for that the experts have to judge whether a special unknown
combined value of basic probability assignmemt () element is confined inA or not. In some practical
can be obtained situations it would be difficult to adjust an issue in a

manner matching the idea of the theory. For example, |
n n could not find a way of constructing a belief function
M (Q=[1mM(Q) =[]~ p)- from the evidence: ‘The reliability of component B is at
1=1 1=t least as probable as the reliability of prototype A’, where
] A’s reliability is imprecise, that isBel(A) andPI(A) were
It is observed thaty _{(€) tends to zero as tends to  nown for A. This kind of comparative evidence appears
infinity. Sincemy_{2) — 0asn — o, hencemy_{A) -~ when comparing the reliabilites of two analogous
1, sincemy _{A) = 1- my_{€). This result tells us that components. It is obvious that this is evidence that could
independently of the valueBek(A) the combined belief be useful for prior assessments, but it is difficult to
function will be close tdl when the number of combined construct the belief and plausibility functions. This is just
belief functions is large. This conclusion renders theone example, and there are many more situations where
results of the combination irrational when combining we can suffer from the poor variety of probability
many experts’ opinions. judgements to express beliefs in whatever forms are most

natural and meaningful for the experts.

2.2 Combination of Inconsistent Pieces of . . , , ,
Information The judgement of conditional independence is needed in

most problems to cope with systems reliability
Let there be two conflicting bodies of evidence for the @S€ssments. In fact, this judgement is a strong structural
same evenB, Beh(B) = Pay, Ph(B) = 1, Beh(B) = 0, constraint that should be Justlfleq anq not taken for .
Ply(B) = Pa, andPa; > Pas. When Py, is close to0 and gran_te.d asis often the case. In domg prior assessments it
Pa» is close tol, these belief functions represent the fact IS difficult sometimes to decide in advance whether
that expert 1 strongly feels that evehwill occur; on the ~ €vents are dependent or not. It is a worthy feature of a
other hand, expert 2 strongly feels that it will not occur. theory of probability to leave room for making systems

Basic probability assignments for this case awgB) = re_IiabiIity assessments with.out constraining the analysts
with the necessity of making arbitrary or ungrounded



conclusions. The Dempster-Shafer theory does nofThe probabilistic models on which the theory is based are
possess this feature, but the theory of possibility andlower previsions and their correspondingupper
coherent imprecise probabilities does. It is clear that theprevisions In this paper we will consider a particular case
cost of a weaker judgement is a lower precision, but inof gambles for which the reward can be either 0 or 1. In
some problems it might be enough and definitely morethis case lower and upper previsions are calieekr and
faithful representation. upper probabilitiescorrespondingly. Alower probability

P is a real-valued function defined on some class of
gamblesz, wherex is called the domain oP. P(A) is
interpreted as a supremum price you are willing to pay for
the gambleA, which pays 1 unit if evenA occurs (and
othing otherwise). Thus each event is identified with a

2.4 Dependence of Imprecision on the Amount of
Information.

One of big advantages that are expected from employind; ,
a theory of imprecise probability is the dependence of amble, and for. both an event and e}_gamble we W'” keep
upper and lower probabilities on the amount of the same notation. Thepper probabilitycan be written
information at hand. For reliability and risk assessmentsas P(A)=1-P(A°), where A° is the set-theoretic
the most important post-action source of information is complement of\.

the number of failures that have happened. The questio _ . . .
arises: How can we model the dependenc8efandPI %(A)_ A-P(A)is called themarginal gambleon A, since

functions on the number of occurrences that haveC(A)+éis desirable to you for all positive That is,G(A)
happened? Since the theory is built on the terms of basi¢S “a@lmost desirable”, we will denote alsG(A) O 2,
assignments, we have to embed this dependence on thghereD is a set of almost desirable gambles.

number of occurrences in the basic probability number
m. But these probability masses are precise, which mak
it difficult to find a straightforward way to allow for this
obvious dependence.

eSThroughout this paper the following definition of the
Ratural extension is implicit (it is a consequence of the
lower envelope theorem [6]). So, the cla#s=7(D)
consists of all linear previsionB such thatP(A) = 0 for
As a final remark, Dempster’s rule of combination can all A in 2. (When the lower and upper probabilities
produce formally incoherent inferences [5], which can coincide and are coherent, they are calléidear
negatively effect some practical decisions throughprobabilities and denoted byP(A)). Provided? avoids
incurring sure loss. sure loss7 is a non-empty set and the natural extension
The above observations regarding to the Dempster-Shaferonsists of all gambles, such thatP(A)> 0 for all P in
theory of evidence should be known for those who are7z. The corresponding lower and upper previsions are

going to use the theory in reliability and safety gefined byP(A)=min{P(A): P} and P (A)=max{P(A):
assessments. P},

3 Imprecise Prior Reliability Assessments The rule of combination of several sources of information

discriminates between consistent and inconsistent
The latest theory of coherent imprecise probabilities [5],judgements/models. The combined lower and upper
[6], [7] appears to take into account the previous previsionsP and P for the two consistent judgements
experience in the field, avoid the disadvantages of thePi(A), B (A) and B(A), P,( A) are defined as follows
predecessors and represent more comprehensive and

flexible tools for practitioners. P(A) = max{P,(A), P, (A)}}

- Rt L
3.1 Key Concepts of the Theory P(A) =min{P.(A), P2(A)}
(Details on the theory can be found in [5]). The Thisruleis called theonjunction rule
mathematical theory of imprecise probabilities is based ) ) , )
on abehavioral interpretatiorand the three fundamental FO inconsistent judgements an alternative rule can be
principles: avoiding sure loss, coherence and natural used that is called thenanimity rule According to this
extension The basic concept relating to the behavioral rulg, the combined lower and upper previsighand P
interpretation is the concept ofgamble

A gambleis a bounded real—valged function defined on P(A) = min{P,(A), P, (A)}
domain @. A gamble should be interpreted as a reward — — - (2)
whose value depends on the uncertain St&eo, P(A) = max{P1(A), P2(A)}

i=1,...,n. If you accept the gamblé, then at some later
time the true stated will be determined and you will
receive the rewar@(4), in units of utility.



3.2 Analogy-Based Procedure of Reliability cannot figure out preference. Experts’ and our choices are
Elicitation simply not determined by the current state of mind or
knowledge.
In [2], [3] an analogical approach to prior reliability . - D
elicitation was offered and briefly described. The main \éVe can fonly fsee t%epresult Ig)f Erlor reliability elicitation
idea of the approach was to analyze analogous y use of two formg¢0,P4] or [P,,1].
components (prototypes), the reliabilities of which are Consider now two prototypes.fand A with reliabilities
known. Then, through a procedure of comparing P,; andPa, (Pai # Pas) and a component B, analogous to
dissimilarities and similarities of the component of both A and A. To take advantage of having the two
interest with the analogs, to elicit reliability assessmentssources of reliability information on the component of
that, how it was shown, can be only of imprecise nature.interest B, the two evidences have to be combined into a
We will consider below that the analogical analysis hassingle imprecise probability model. The possible cases of
been done and we deal with the outcomes of it. Therelations betweeRas, Pa, andPr(B) can be as follows:
outcomes of this analysis can be of four types

1. Pr(B) 2 Pay, Pr(B) = Pay Pas Pay = Py(B) = Pay,

3 PrEB; p PrEA;' R.(B)=1 andP,(B) = Py P»(B) =1
Pr(B) < Pr(A), 2. Pr(B) < Pay, Pr(B) < Pay, Pus P, P,(B) = 0,
3) PrB)CPI(A) @ RE) e andb®) =0 AE) S

4) indeterminacy, 3. PI(B) > Pay, PI(B) < Pao, Pus Pao= Pi(B) = Py,
where symbol fI' means indifference between the two R(B)=1,andP(B) =0, P,(B)=Px,

gambles A and B (lack of difference or distinction 4. Pr(B) =Pay Pr(B) < Paz Pai 2 Paz= Pi(B) = Pay,
between them, that is, we cannot see any reason to assert Pi(B) =1, andP(B) =0, P,(B)= Pa;

that the reliability of B will be either higher or lower than 5. Indifference with two prototypes meaRg(B) = Pa;

A). Pr(A) is a shortened designation of the phrase and Pr(B) = Pa,, which is nonsense and cannot be
“Probability of an evenf”, and A denotes a succestate further processed

of the prototype A and\°® is the failure of A.B and B®

denote success andiilure states for the analogous Case 1. In this case the two judgements are consistent and
component B. In a broad sense, if an event or a kind ofwe must use the conjunction rule of combination (1). The
behavior meets a predetermined criterion, whatever theesult of combining the two intervals, one of which is
criterion is, then we say it is a success. If the criterion isincluded within the othefP,(B),1] O [P2(B),1], is the

violated, then a failure occurs [10]. interval[P(B),1] = [P 2(B),1] = [P a2,1].

Consider two different cases of prototypes’ reliabilities: Case 2. In this case the two judgements are also

when they are precise and imprecise. consistent and we must use the conjunction rule of
combination (1). The result of combining the two

3.3 Precise Prototypes’ Reliabilities intervals[0, P, (B)] O [0,P,(B)] is the interval0,P (B)]

=[0,P,(B)]=[0,P Aj.
Let P, denote a known prototype’s precise reliability. For [0.P(B)]=[0.P xd

precise probabilities of prototypes the first two outcomesCase 3. The source underlying intervals are not included
of (3) can be rewritten 1Pr(B) = Pa, 2) Pr(B) < Pa. within one another but their intersection is not equallto
Behavioral interpretation and results in terms of loweri.e., [0, P,(B)]n[P1(B),1] # O. This means the two
and upper probabilities of these judgements are presentggdgements are consistent and we have to use the same
respectively as follows1) P, is a maximal price which  conjunction rule of combination (1). The result of
can be paid for gamblB, thatis(B - Pa) 02 @ isaset  combining the two intervals is the interval

of almost desirable gambles} P(B —P) = P(B) —Pa > [P(B),P (B)]=[P1(B),P5( B)]=[Pa1Paal.

0 = P(B)=min{P(B):P(BRPA}=P,, and P (B)= , — _
max{P(B):P(B)= Pa}=1; 2) P4 is a minimal selling price Case 4. For th|s.cas[9, P>(B)]n[P4(B).1] = U, which

for B, that is(Pa- B) 12 = P(Pa- B) = Pa- P(B) 20 = means thatcthe f!rst model says (or the first expert) that
P(B)=min{P(B):P(B)PA}=0, andP (B )=max{P(B):P(B) the eventB® is highly probable, but the second model

o . . (expert) considers the opposite eveBt as highly
<Pa}=Py; 3) any of two gambles is desirab® -Band  1ghaple. The two models are inconsistent, and we have
B - P, thatis Pa—B) O 2 = (see No. 2)P(B)=0 and

2 to use the unanimity rule (2). The result of combining is

P (B)=Pa, and B8-Py) 2 = (see No. 1P(B)=Pa, and  maximally imprecisgP(B),P (B)]=[0,1] and states our

P (B)=1. The combination of the two generated models complete ignorance concerning the reliability of the

according to (1) giveP(B=P (B)=P,; 4) beliefs about  analogous component B. Complete ignorance is modeled
two events (gambles) are indeterminate when the eventby vacuous probabilities P(B)=@ndP (B )=1. (How we

A andB are not equivalent for us, but between which we could see earlier this case of combination of the two



inconsistent models was crucial for Dempster’s rule ofthe forms [0,P] and [P,1], and, hence, the above
combination). algorithm can be considered as general algorithm of

Consider three prototypes;,Ai=1,2,3 with their known interval combination.

precise reliabilitiesPa1<Pa<Pas. Let the analogy-based
elicitation give the following results: Pr(B)=Pay,
Pr(B)sPa,, and Pr(B)=Pas. Results of combining these
three intervals are different depending on the sequence of,o  apove-described procedure of eliciting and
combination. If the sequenceff®, P(B)] 77 [P1(B), 1]} 7 combining reliabilities from analogous components dealt
[Ps(B),1], where [J denotes “combination”, then the with the precise probabilities of prototypes. Let us
result of the combination is the interval consider a more general case when prototypes are
[P(B),1]=[P.(B),1]=[Pa,1]. _ If the sequence is qualified by imprecise models; that is, lower and upper
{[P1(B),1]7[P5(B),1]} 7 [0,P,(B)], then the result is the  reliabilities P(A) and P (A) of the successtates of
interval [0,1], i.e., vacuous probabilities (complete components Ai=1,...,nare known.

ignorance).

3.4 Imprecise Prototypes’ Reliability

When the reliability of prototype A is qualified by the
When all of the three intervals are consistent, for two numbers?(A)andP (A) the analogical procedure of
example, Pr(B)>Pa;, Pr(B)>Pas, Pr(B)sPas, and  prior reliability elicitation must be constructed to be able
Pa1<Pa2<Pas the combined interval is unique and more to distinguish cases compared to precise prototypes’
precise compared to all the three combining Under')’lngrellablllty If, for example, the result of the judgements is
judgements, that i§P4(B),1]C[P2(B),1]0,P(B)] =  pr(B) > Pr(A), then we should be sure whether it is
[P2(B), Py(B)]. It should be stressed that when possible to make a more precise judgemenPoB) >
combining more than two judgements, we must do it P (A). If not, we have to accept thadgement oPr(B) >
pairwise. Pr(A). Thus, the following outcomes must be considered:

Having analyzed the above results, the following 1) PT(B) =P (A), 2) Pr(B) 2Pr(A), 3) Pr(B) <P(A) 4)

generalization can be accomplished. Pr(B) s Pr(A), 5) Pr(B)[Pr(A) and6) indeterminacy.

There aren judgements on the reliability of the Once we have arrived at one of these conclusions, we can

componentB - [0,P ], i=1,...l, and [P,1], j=I+ 1... translate them into statements about classof the

The combined intervals for different possible cases area"‘nOSt -desirable gambles_and corresponding lower and

presented below: upper probabilitiesP and P. So, correspondingly we
have:

1.[0,P 4] 4...0[0,P ;] = P(B)=0, P (B)=P 1 _ - —
1. (B-P(A)) UD =P(B P(A)) = P(B) -P(A)=0

2.[Py, 1] [0...00[Py, 1] = P(B) =Py, P (B)=1 = P(B)=min{P(B): P(B) > P(A)}=P(A) and
P(B) max{P(B):P(B) 2P (A)}=1, that isPr(B) =
3.[0,P 4] [7....7[0,P ] and[P+1,1]7...L0Pn,1]: [P(A)];

2. B - A 0D = PB-A=PB)-PA) >0 =

a.) if Pnz P 1 andP | <Pl+l = P(B) = O P (B) 1 E_(B):mln{P(B) P(B) > P(A)}: E(A). and

b) if P, > Py and P' = Pu = P(B)=0, P (B)=max{P(B):P(B) = P(A)}=1, that is Pr(B) =
P(B)= minP: P, <R}, [P(A).1];
oif P, < P, and P, s P = 3 (PA-B)LID = PEA)-B)=PFA)-PB)20
P(B)= m_an{Ej ; Ezgj}, P(B)= 1, = P(B)=min{P(B): AA) > P(B)} = 0, and
R P (B )=max{P(B): P(A)=P(B)} = P(A), that isPr(B)
d) ifPhsPiandP 2Py, = =0, P(A)];
E(B):ma>{g. P 2P ], 4. A-B)OD = PA -B)=P(A) - P(B)=0 =

P(B)=min{P(B): P(A) > P(B)}= 0, and P(B)=

P()= min{7: P, <R}. max{P(B):P(A) > P(B)}=F (A), that is Pr(B) =

[0.P (A);
These results can be extended for general intervals 06 (A —B)/72 = P(B)=0andP (B)=P (A) (see No.
[P;,P ], where0 s P, < P, <1 for anyi=1,...,n The 4) N

generalization can be done if we take into accognt that (B —A) 0D = P(B) = P(A) andP (B )=1 (see No.2).

according to the conjunction rule (1), any inter{@},P ] The combination of these two models according to

may be represented as the combination of two intervals (1) yieldsP(B) = P(A) andP (B)=P (A)

[0,P10[P;,1]. That is, source combined probability ? iy iy '
&

: ) Indeterminacy does not suppose any solution.
intervals always may be represented as set of intervals



4 Systems Reliability A system §$ of two components A and B is connected in
parallel if the system fails only if both components fail,

Quantitative systems reliability analysis is based onOr, otherwise, the system, & in a successtate if either

Boolean algebra, where the events either occur or do nof\ or B is in a successtate, that is,S=ALB. For this

occur. Most systems can be viewed as sets of series anglystem the task is to calcule¢ALB) and P (ALB).

parallel subsystems from reliability standpoint. Defining

how to calculate the reliability of series and parallel P,(AOB)=max[P(A),P(B)],

systems with imprecise probabilities will cover a w_|de R(ADB)=min[L,P(A)+P(B)] .

range of practical tasks and lay down a principle

foundation for systems reliability assessing. . . : .
¥ y ¢ General expressions for calculating the imprecise

Let us say that there are two evedtsB /7 ©. Imprecise  probabilities of the two kinds of the systems have been
probabilitiesP(A), P (A), P(B)andP (B) are known and  obtained. So, for a system consisting rofcomponents
satisfy the coherence constraifts P(A)s P (A)sland  connected irserieswe have

0 < P(B) < P(B)s 1. What are the formulae for

calculating P(ACB), P(AnB), P (ALB), and P (AnB) 0 i ip( A)<n-1
depending orP(A), P (A), P(B) andP (B)? (The events P (ﬁA) _ i

ALB and AnB characterize a series and parallel system—'"_| P '
success states correspondingly). ;E(A) -(n-1) if ;E(A) >n-1
Unlike conventional theory, the lower and upper — n _
probabilities of the unions and intersections (depending Pi()A) = min[P(A)] (4)
i=1 -

on the lower and upper probabilities ¥fand Y) can be
obtained without the judgement of conditional - .
dependence or independence. This possibility can pé OF @ system consisting of components connected in
important when we are completely ignorant of conditional parallel

dependence. When considering the array of judgements,

the judgement of logical independence is the weakest P (LnJ A)=mafP(A)],

structural constraint for a system. It is reasonable to — isisn

expect that the results based on the stronger structural

judgement are more precise compared to the weaker one. . ZI_D(A) if ZI_D(A) <1 (5)
PUJA)= "~ o
i=1 :
4.1 Series and Parallel Reliability Structures 1 i ; P(A)>1

The knowledge of system S consists of two component

A and B, each of which has two statés A" andB, B, | inear function components imprecise probabilities.
generates a structure of? such that all of the events qygjitatively the behaviour of the imprecise probabilities
AnB, AnB®, A°’nB andA°nB* are non-empty. In this case of series and parallel systems can be characterized as
the two eventsA andB are calledogically independent  fo|iows. If component reliability for series systems is

[1] and [5]. close to 1, then the lower probability of the system
We say that the two components are connected in series §Onverges to zero very quickly asincreases; the upper
the failure of either one of the components causes arProbability differs from 1 if there is at least one
immediate failure of the system, or, otherwise, the systerffomponent in the system the upper reliability of which is
S.is in a successtate if the both components and B less then 1. The upper reliability of a parallel system
are in a succesgate, that iSS=X Y (see, for example, CONVerges very quickly to 1 asincreases; now the lower
[10]). For this system the task is to calcul@A\1B) and probability is greater than zero if at least one component
P (AnB). The expressions for doing it are the following has a lower reliability greater than 0.

[3]: Now consider the case of conditional independence.

SThe imprecision /=P — P of the both systems is

_ B Using the generalized Bayes rule (for details on the rule
E'(éﬂ B)—max[F),E_(A) +_E(B) 1 see [2]) for two independent events and B through
R(An B)=min[P(A),P(B)] natural extension we can get the following equations:

Designation P’ with the subl indicates that the resulting
probabilities are obtained based on the judgement of
logical independence.



P(ANB)=P(A)P(B), 5 Conclusions
P.(AnB)=P (A)P (B),
PL(ALB)=P(A)+P(B)-P(A)P(B), (6) 1. The work described in this paper summarizes briefly
P.(ACB)=P (A)+P (B)-P (A)P (B), some of the author’s experiences in employing imprecise
probabilities for reliability and risk assessments. Multiple
where the sult indicates that the resulting probabilities 2ltempts to implement the Dempster-Shafer theory of

are obtained based on the judgement of conditionafVidence in reliability practice have failed due to the
independence. serious disadvantages found. Some of them, for example,

_ the combination of inconsistent judgements can be
It is easy to check tha® (AnB) < P.(AnB), P.(AnB) =  corrected in principle, but most of them, not. The
P (AnB) and P,(ALB) < P(ALB), P.(ALB) < B (ALB). dis_advantag_gs of the theory make it problematical for
This means that imprecision in the case of the judgemenf©ing reliability assessments.
of conditional independence is less that what would havegl The other theory of coherent imprecise previsions
been expected. appeared to be a practical and applicable reliability

Consider an example of a systems of three componentsa”alySiS tool. It provides clear and tractable results when

the structure function of which iIS=A; n(A,LJAs), where combining reliqbilities from differe_nt prototypes even
Sis a succesgate of the system S, see Fig. 1 ' though the bodies of evidence are inconsistent. A way of

transition from the results of analogical comparative
judgements to imprecise probabilities with behavioral

A ! .
ZO interpretation was demonstrated.
A 3. System reliability assessments were restricted by
_O_ I considering the sets of components connected in series
and parallel. On the basis of the theory of coherent
Aﬁ\ imprecise probabilities we now have some practical

) results that cannot be obtained within the framework of
conventional probability and the Dempster-Shafer theory.
So, the formulae were obtained that allow for getting the
lower and upper probabilities without the presumption of
Under the conditions P(A)=P(A)=P(A)=P and conditional independence, which can be useful for doing
P (A)=P (A)=P (A)= P the imp_recise_proba_bilities of rough and quick_ assessments when we are ig_norant or in
S are calculated through the expressidReS)=max{0, doubt about the independence of components in a system,

- = 7 L or we know that the components are dependent but do not
[P(A)+max(BAr).P(Ag))-1]}=max(0,2R1), B (S) = min 4 10 what extent. For some practical tasks it can be

{P (A),P (A2),P (A)}=P, _PS)=P(A)[P(A)*P(As)~ satisfactory and a cheap way of solving the issue. If there
P(A)P(As)]=P (2P-P%) and P.(S)=P (A)[P (A)*+P (A)  are grounds to judge conditional independence of
- P(A)P (As))=P (2P - P?. These functions are components in a system, the lower and upper are more
graphed in Fig. 2. It is seen that models based on theprecise and can be calculated according to the formulae
judgement of conditional independence are substantiallyprovided.

more precise compared to those based on logical

independence. So, for arbitraB; and P, A4=P;(S) -

Pi(S) < 4= Py (S) - Ry(S) Even though the reliability of Acknowledgement

components in a system are precise, the judgement of

logical independence generates imprecise probabilities. | NS work was completed at the Center for Intelligent
Systems, State University of New York at Binghamton,

On the basis of formulae (4) and (5) an algorithm for where the author, hosted by Professor George Kiir,

quickly calculating the lower and upper reliabilities of a studied as a Fulbright Scholar. The author expresses his

system composed of components connected both in seriafeep gratitude to the Lipsmeyers for their versatile

and parallel has been worked out and its performance hasupport and help, to George Klir, whose aura of creativity

been checked for some systems tasks. and kind advice were a source of constant
encouragement, and to Yevgeny Filimonov for his
valuable comments.

Figure 1: Reliability structure of a system of three
components
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Figure 2: Upper and lower probability functions for both conditionally independent
and logically independent components for a system of three components
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