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Abstract

Ignorance about the comparative likelihood of events
is reflected in incompleteness of an agent’s prefer-
ences over bets. We argue that determinate ratio-
nal choice is still possible if optimal choice is under-
stood as context-dependent best compromise. An ax-
iomatic characterization of such a choice rule is de-
scribed for the special case of situations of complete
ignorance (maximally incomplete preferences) which
can be viewed as “reduced forms” of general decision
problems under partial ignorance.

Keywords. Incomplete preference, ignorance, ro-
bustness, context-dependent choice, non-informative
priors

1 Introduction: The Dilemma of
Choice under Ignorance

Accepting Subjective Expected Utility theory as uni-
versally valid from a normative point of view has a
startling implication: agents should represent any un-
certainty in terms of a unique subjective probability
measure. However, the claim that situations of gen-
uine ignorance can adequately be represented by a
unique prior, classically expressed as Laplace’s “prin-
ciple of insufficient reason”, has been hard to defend.
Already von Kries (1886) pointed out that no proba-
bility measure can treat all non-trivial events symmet-
rically. In contemporary Bayesian statistics as well
it is often attempted to model the pre-observation
uncertainty in terms of a neutral “non-informative”
prior, with unconvincing results in the view of many;
see for instance Berger (1985, ch. 3) for a review
and Walley (1995) for an extended critique. So, epis-
temically, the case for unique subjective probabilities
seems weak. Moreover, there is a natural and work-
able generalization of the Bayesian model that natu-
rally accommodates ignorance and ambiguity: simply
express an agent’s beliefs by a (convex) set of pri-

ors. Complete Ignorance, for example, is naturally
captured by the set of all priors.

Decision-theoretically, the move from point-valued to
set-valued priors translates naturally into a move from
complete to incomplete preferences (see in particular
Smith (1961), Bewley (1986), Walley (1991) for the
relevant representation theorems). Here is the rub:
while it seems prima facie very natural and even com-
pelling to express one’s ignorance by suspending judg-
ment of preference between bets (and acts more gener-
ally), is there any merit of doing so for the purpose of
decision making? Doesn’t incompleteness merely ren-
der choice more indeterminate? Some decision must
be made — some act will be chosen, after all — so
what use is it to suspend judgment if you cannot sus-
pend choice? Why not, one is inclined to ask, fill in
the gaps in the preference relation, thereby making
it complete; at worst, it seems, some fill-in prefer-
ence judgment might be arbitrary. While epistem-
ically compelling, the critique of unique subjective
probabilities seems to be strangely pointless decision-
theoretically.

This “Dilemma of Choice under Ignorance” may well
be relevant even in situations in which the direct in-
terest is in beliefs rather than choice, as in typical sit-
uations of statistical inference. This holds especially
if one wants to maintain philosophical continuity with
the de-Finetti-Savage tradition of Bayesian thinking,
in which choice has the central role of making beliefs
“operationally meaningful”; the latter ensures that,
in Bayesian discourse, one always knows what one is
talking about (in principle), which cannot be said of
many of its competitors. Hence the overall goal of my
work: to extend Bayesian discourse so that it can ac-
commodate ignorance and ambiguity while preserving
the sources of its intelligibility.

I will argue that there is a way out of the Dilemma of
Choice under Ignorance when one abandons the tra-
ditional equation of optimal choice with incomplete
preferences with admissibility, i.e. non-inferiority to



some other feasible act in terms of the preference re-
lation. While admissibility is clearly necessary for op-
timality, it is arguably not sufficient for it. In par-
ticular, some acts may be superior to others in terms
of their robustness. Intuitively, an act is non-robust
if it may turn out to be a particularly poor choice
under some acceptable prior. Consider, for example,
a situation of complete ignorance over two states, in
which the decision-maker has two choose among three
acts described by the payoff-vectors (in utiles) (1,0),
(0,1), and (0.9,0.9). Note that in view of the assumed
complete ignorance, all three acts are mutually non-
comparable, hence all three are admissible. Picking
either act (1,0) or (0,1) may turn out to have been the
worst possible choice; by contrast, the act (0.9,0.9) is
close to being optimal no matter what state will hap-
pen.

The choice rule presented below and developed more
extensively in Nehring (1998) called “Simultaneous
Expected Utility Maximization” (SIMEU), makes
this intuition of optimal choice as picking the most
robust admissible alternative formally precise and
provides an axiomatic justification for it. Rather
than relying on the slippery and vague concept of
“robustness”, the two key axioms, Symmetry and
Consequence-Isomorphism, express abstract require-
ments of isomorphism of choice with respect to un-
derlying preference. In Nehring (1998), these in
turn are motivated by the idea that a satisfactory
choice-rule must make full use of the information em-
bodied in the asserted preferences, including the as-
serted non-comparabilities (“Principle of Preference-
Basedness”).

2 Framework and Notation

Let £ denote an infinite universe of states, and let F
be the set of finite partitions F' = {S}gecp of € into
infinite subsets S. Note that, by definition, any F' € F
is infinitely divisible in the sense that any event of any
partition in F can be broken up into arbitrarily many
subevents!.

An act x maps states to consequences ¢ € K : x :
) — K. For expositional simplicity, we will assume
that K = [0,1], interpreting ¢ as cardinal utility (nor-
malized von-Neumann Morgenstern utility, “payofl™);
such an interpretation can be justified by standard
arguments along the lines of Anscombe-Aumann’s
(1963) two-stage “horse-lottery” approach. In a world
with only two final consequences ( “winning” and “los-

Te., for each F € F and each #F-tuple of natural
numbers (ns)ng, there exists a refinement G of I in F

such that #{T' € G|T C S} =n,. .

ing”, with winning preferred), z, can be identified
with the objective probability of winning conditional
on w.

A well-defined choice set is assumed to be closed
with respect to the inclusion of mixed acts, and is
therefore formally represented as a convex set of acts
X C [0,1]%.
technically necessary and seems to be the more con-
servative way to proceed outside SEU-theory.

For F € F, let [0,1]¥ denote the class of F-

measurable? acts, and denote [0,1]7 = |J [0,1]%,
Per
the class of simple acts. A choice-set X is simple if it

is a closed (hence compact)3 and convex set of simple
acts; let X' denote their class. It is not very difficult to
show that a closed convex set X C [0,1]” is simple if
and only if all acts in X are measurable with respect
to a common finite partition, i.e. if X C [0,1]" for
some F' € F. This fact is technically important and
will be used throughout.*

To canonically include mixed acts is

Some additional notation: “cl X is the closure of X,
“co X is the convex hull of X, and [z,y] = co {z,y}.
“r <y” holds if z <y and z, <y, for some w € €},
“r Ly if 2, <y, for all w € Q; e denotes the
indicator-function of S, ie., ¢J = 1 if w € 9, and
eUSJ = 0 otherwise.

A decision problem under Complete Ignorance (“CI
problem”) is a pair (X, Ry) , where X is a choice set
and Ry denotes the Complete Ignorance preference
relation defined by
xRpy <[z, > y, foralwe()].

Since Ry is assumed fixed in almost all of the follow-
ing, we will normally identify a CI problem (X, Rp)
with its choice set X, and define a choice function
as a non-empty-valued mapping C' on X such that
C(X) C X for all X € X. We will write “z Pj y”
for “x Ry y and not y Ry x”, as well as “x Ny y” for
“neither x Ry y nor y Ry z”.

3 SIMEU and Leximin: Definition
and Basic Properties.

The following sections are devoted to an axiom-
atization of SIMEU for Complete-Ignorance prob-

2An act z is F-measurable iff it is constant on each
cell S € F.

3With [0,1]” being endowed with the product topol-
ogy; since [0,1]” is compact in this topology (by Ty-
chonoff’s Theorem), so is any simple choice-set X € X..

1 owe this fact to the intervention of a referee; note
that it would clearly be false for non-convex X .



lems, 0. Along the way, we also obtain a choice-
functional characterization of the lexicographic max-
imin rule LM defined as follows, with min () = —oo.

LM(X)={z € X | For all
Y EX i milyp 2y, T > Milyg Ly Yo -

As it reads, we have defined LM (X) as Barbera-
Jackson’s (1988) “protective criterion”. Since the fol-
lowing proposition shows it to coincide (on convex
sets) with the lexicographic maximin, we denote it
by LM and refer to it by the latter, more informative
name.

The SIMEU rule 6! modifies LM by normalizing
ex-post utilities; the normalization yields “degrees of
implementation” A, (z) of  within X in state w,

.Z‘Wfinfye‘A(X) Yw
SUP,c a(x) Yo —inTye a(x) Yo’
by convention.

Ao (1) = with 0/0 = 1

Note that by definition inf,c 4(x)Au() = 0 and
SUP, e 4(x) Aw(2) = 1 for any state w. Also, define

UCI(X) = {x € X | For all
Y € X tminga, (). (y) M (T) 2

ming, \, ()£ (y) Mo () }-

The alternatives chosen by o€’ are “robust” in the

sense of guaranteeing the highest possible degree of
implementation whatever the true state. They can
also be interpreted as an optimal compromise in a
bargaining game with the possible states as players
who value acts according to the ex-post payofl in their
state; on this interpretation, the 0-1 normalization of
utility ranges reflects the absence of “inter-personal”
(i.e. inter-state !) comparability of utilities across
players; for more details, see Nehring (1998).

Example 1. The following matrix describes the
payofls of two acts in terms of the event partition

{51, Sa}.

5. | 9
z|.90] 0
y| 0 |.10

[z,y]. The
leximin-rule equalizes payofls across states, selecting
LM(X) = (0.09,0.09) = 0.1z + 0.9y, which can be
interpreted as randomized choice of y with a proba-
bility of 90%. Measured in terms of degrees of im-
plementation, LM(X) favors the event Sy , and is
thus non-robust with respect to the possibility of Sy,
with A,,((0.09,0.09)) = 0.90 for any w € Sy , whereas

Consider choices from the set X =

A ((0.09,0.09)) = 0.10 for any w € S;. By compar-
ison, SIMEU(X) = (0.45,0.045) = 0.5z + 0.5y ,
equalizing degrees of implementation across states.

It is instructive to compare the selection of
SIMEU to that of Savage’s (1951) “minimax loss”
rule (“MML”),5 its closest kin in the literature.
MML equalizes losses across states: MML(X) =
(0.81,0.01) = 0.9z + 0.1y. This is also non-robust,
this time with respect to the possibility of Sy, with
A,((0.81,0.01)) = 0.10 for any w € Sz , and
A ((0.81,0.01)) = 0.90 for any w € Si. MML relies
heavily on the comparison of utility-differences across
states, arguably more so than is warranted in view of
the absence of any bound on the relative weight of Sy
and So; this is further discussed in example 3 below.

O

Proposition 1 i) If X € X, LM(X) and 0“/(X)
are non-empty and single-valued.

i) Moreover, if t = LM(X) and y € X\{z},
minw:mw;ﬁyw T, > minw:mw;ﬁyw Y-

Similarly, if v = 0“1(X) and y € X\{z},

. minw:Aw (IW)#AW(?/W) )\UJ (xw) >
mlnw:/\w(mw);ﬁ/\w(yw) )‘w (yw) .

4 Axiomatics

The most basic rationality-requirement is compatibil-
ity with asserted preferences.

Axiom 1 (Admissibility) For all X € X and
z,y € X: x Py impliesy ¢ C(X).

If one rewrites the condition “x Py g” in utility-
terms as “for all w € €, z, > y,, and for some
w e Q, x, > y,”, it is evident that this axiom
amounts to the standard concept of strict admissi-
bility.

The two key axioms of the theory are axioms of struc-
tural equivalence. The first is based on the symmetry
of Ry in events. For any one-to-one map ¢ : F — F"
on event partitions F, F' € F, define an associated
one-to-one map on acts ® : [0,1]F — [0,1] by
O(x)p(s) = x5, for S € F. ®(x) is the act that re-
sults if the consequence zg occurs in the event ¢(S)
instead of in the event S.

5MML(X) is the set of acts x that minimize
max,e(maxyex Yo — Tow)-

’The convexity assumption on X is indispensable, as
the counter-example of X = {(1,0),(0,1)} shows, for
which LM (X) =SIMEU(X) = X.



Axiom 2 (Symmetry, SY) For all X € X, every
F € F such that X is F-measurable, and every ¢ :
F — F one-to-one:  ®(X) = X implies C(X) =
(C(X)).

SY requires that symmetry of the choice set in events
implies a corresponding symmetry of the chosen set.
It is a weak version of the hallmark axiom of the CI
literature called “column duplication” or “merger of
states”; it rules out representability of the choice func-
tion by some (as-if) subjective probability, as shown
by the following example.

Example 2. The following matrix describes the
payofls of four acts in terms of the event-partition

F*={851,59,53}.

51 ]Sz | S
w| 1|01
x| 1|10
y 0|11
=] 1]0]o0

Suppose C' to be representable by the as-if subjec-
tive probability vector (my,72,73). SY applied to
the choice set [w,z], with F = F* and ¢ given by
#(S1) = S1, ¢(S2) = S5, and $(53) = Sa, implies
z € C([w,z]) & w € C(lw,z]) , and thus my = 3.
An analogous application of SY to the choice set, [w,y]
yields m; = 79, and thus m1 = 79 =73 = % However,
applying SY to [y, 2] with £ = {51,532 U S3} and ¢
given by ¢(S1) = S2USs, and ¢(S2US3) = Sy implies
y € C(ly,z2]) © 2€ C([y,2]) , and thus 7; = 73 + 73,
a contradiction. |

Symmetry can be viewed as expressing a decision-
theoretic “principle of insufficient reason”. It is de-
sirably weaker than its classical Laplacian epistemic
counterpart by merely asserting context-dependent
equivalences of choice, rather than equal probabili-
ties. As illustrated by example 2, this makes it pos-
sible to apply this principle to arbitrary event parti-
tions simultaneously and to thereby capture complete
ignorance.

A second invariance axiom called CISO (for “Conse-
quence Isomorphism”), “dual” to Symmetry, consid-
ers transformations of payoffs within states. It hinges
critically on an understanding of optimal choice as
compromise, and is a natural consequence of the bar-
gaining metaphor: the optimal choice should be in-
variant to positive afline transformations of state (fic-
titious players’) utilities. In Nehring (1998, section
5.3) a more detailed justification of the axiom is given
which is illustrated in example 3 below. To define

CISO formally, let an affine consequence-isomorphism
be a mapping @ from [0, 1] to [0,1]” (not necessarily
onto) of the form 8(z) = (w2, + B, )wen, for appro-
priate o, > 0 and 3, .

Axiom 3 (CISO) For all X € X and any
affine consequence-isomorphism 6 such that 6(X) €

X: C0(X)) = 0(C(X)).

Example 3. Consider a typical instance of CISO.

Sh | S
T 1
Y 0
y 1 0

Let X = [z,y], X = [z,¥], and assume 0< € < 1.
Since © Ny y as well as z Ny ¢¢, and as X€ can be
obtained from X by positive afline transformation of
payofls, CISO implies y € C(X) < y© € C(X°).

Holding for arbitrarily small positive ¢ , this impli-
cation seems wild at first blush: while it seems per-
fectly reasonable to choose y in X, who would not
choose x over y© in X¢7 After all, x might be much
better than y¢ (in S1) which at best might only be
slightly better (in Sg). Such a reaction forgets, how-
ever, that the decision-maker could have asserted this
preference himself, but explicitly declined to do so by
asserting Ny y©. CISO ensures that the asserted
non-comparabilities are fully respected by the choice-
function. O

The preceding three axioms are incompatible with
traditional context-independent choice-consistency
conditions such as WARP.

[WARP] For all z, y € XNY : 2z € C(X) = [y €
CY)=zeC(Y)].

In words: if x is chosen in X, it is “revealed” to be
at least as choice-worthy as any alternative y in X,
hence must be chosen in Y whenever y is. It seems
natural to contain the extent of context-dependence
by restricting WARP to “range-equivalent” pairs of
decision problems for which it is unproblematic. X
and X' are range-equivalent if proj,, cl A(X) = proj,
cl A(X') for all w € €, that is, if they agree on the
set of “admissible consequences” in each state.

Axiom 4 (WAREP) For any range-equivalent X,
X eXandz,z' e XNX' 2 € C(X)= (2 € C(X')
=z € C(X").

While WAREP does not rest on quite as compelling
a foundation as the other axioms, it has the definite



merit of leading to a tractable and nicely interpretable
solution. Moreover, it is weak in being satisfied by all
major Cl-solutions proposed in the literature, and in
not determining the qualitative character of the choice
rule, for which SY and CISO are responsible.

Theorem 2 07 is uniquely characterized by Admis-

sibility, Symmetry, Consequence-Isomorphism and
WAREP.

If one insists on preserving context-independence, at
least one of the other axioms has to go. If one drops
CISO and strengthening WAREP to WARP, a char-
acterization of leximin is obtained.

Theorem 3 LM is uniquely characterized by Sym-
metry, Admissibility and WARP.,

For proofs, see Nehring (1998); it is shown there as
well how these theorems apply to finite universes via
an embedding argument.

5 On the Rationale for
Context-Dependence

It follows easily from examples 2 and 3 that for single-
valued choice-functions the conjunction of Symmetry
and CISO imply

e Noy=Clr)={ze+gu}. ()

This “coin-flip property” (1) endows judgments
of non-comparability with well-defined operational
meaning. It also entails that one cannot reconcile
these axioms with traditional context-independent
choice-consistency conditions such as WARP.

In the present non-comparability-based approach, the
necessity of violating WARP should come as no sur-
prise. Indeed, since CISO and Symmetry express the
requirement that the choice-function take proper ac-
count of the non-transitive non-comparability inher-
ent in the structure of the underlying partial order
Ry, WARP’s radical incompatibility with these ax-
ioms simply reflects its inappropriateness.

The inherent context-dependence of SIMEU plays in
fact a positive role as it allows to resolve an apparent
tension between the assumed exhaustive interpreta-
tion of the underlying partial order and the single-
valuedness of the derived choice-rule: how can an act
x be legitimately chosen over another act (y) when
the decision maker has suspended judgment between
them? The answer is that suspension of judgment
involves abstention only from expressing a definite

preference of x over y, and thus, given Admissibil-
ity, abstention from context-independent choice of x
over y. This happens under SIMEU: it is not difficult
to show that for any x,y such that xNyy, any choice
of x over y is context-dependent, i.e. that there ex-
ist X', X" D {z,y} such that {z} = ¢9/(X') and
{y} = o¢“I(X"). Intuitively, non-comparability rules
out the choice of one act over another as intrinsically
better, but is compatible with the choice of one act
over another as a superior compromise in the context
of a particular choice-set.

A particularly clear-cut instance of this distinction
occurs in the choice among just two non-comparable
alternatives, where SIMEU recommends the flipping
of a fair coin. Clearly, the only conceivable advantage
of such randomization is the symmetric treatment of
both alternatives; this may not seem much. On the
other hand, it seems obvious that given the assumed
suspension of judgment one cannot really hope to do
better. Psychologically, some dissatisfaction may still
remain (it does for the author). But perhaps such
dissatisfaction reveals just how hard it is to honestly
face genuine ignorance and to suspend judgment ac-
cordingly. In this vein, Elster (1989, p. 54-59) argues
that as a rule there is a psychological bias against its
acknowledgment. He makes a strong case for the exis-
tence of a human tendency to exaggerate the support
of many decisions by “reasons,” summarizing (on p.
58): “The toleration of ignorance, like the toleration
of ambiguity more generally, does not come easily.”

6 Extension to General Decision
Problems under Uncertainty

Due to their rich structure, the analysis of Complete
Ignorance problems is quite easy and fruitful. Their
conceptual simplicity makes them also appealing to
intuition. Yet, this is the simplicity of a logical ex-
treme case. As such, it naturally tends to generate
extreme implications whose frequent apparent con-
trariness to common sense reflects the fact that in
most situations it is simply unreasonable to assert
CI preferences Ry. Contemplating what rationally
would have to be chosen if one were completely ig-
norant brings to light that one generally has beliefs
over many events, that is: that one is prepared to bet
if betting one must.

Nonetheless, the work presented here remains relevant
in such situations of partial ignorance, since Complete
Ignorance problems can be viewed as “reduced forms”
of general decison problems under partial ignorance.
The reduction is developed axiomatically in Nehring
(1991, ch.2) and Nehring (1992), and described briefly
in Nehring (1998).
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